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Abstract— This study introduces a novel strategy for managing 

trust and detecting anomalies in smart homes through the 

application of fog computing. By employing Pseudo Outer 

Product-based Fuzzy Neural Networks (POPFNNs) in conjunction 

with Explainable AI (XAI), the proposed framework ensures low 

latency, real-time data processing, and enhanced interpretability. 

This methodology overcomes the limitations inherent in 

conventional approaches such as fuzzy logic and Self-Organizing 

Maps (SOMs), presenting a scalable, efficient, and transparent 

solution for smart home settings. 

Keywords— Smart Homes, Fog Computing, Trust Management, 
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I. INTRODUCTION

Smart homes are becoming increasingly prevalent due to the 

widespread adoption of internet of things (IoT) devices. These 

devices allow for automation and remote control of household 

functions, offering increased convenience, security, and energy 

efficiency [1, 2]. However, as smart homes become more 

common, there is a growing need for robust trust management 

and effective anomaly detection mechanisms [3]. 

Trust management in smart homes is concerned with assessing 

the trustworthiness of devices and data sources to ensure secure 

and reliable interactions. Traditional trust management systems 

often rely on centralized cloud-based architectures, which can 

suffer from latency issues, scalability limitations, and single 

points of failure [4]. Fog computing offers a decentralized 

alternative, distributing computation and storage closer to the 

edge of the network. This approach enhances real-time 

processing capabilities and improves the resilience and 

scalability of the system [1]. 

Anomaly detection in IoT environments involves identifying 

deviations from normal behaviours patterns that could indicate 

potential security breaches, device malfunctions, or other issues 

[5, 6]. Traditional anomaly detection methods, such as statistical 

analysis and machine learning, can be effective but often 

struggle to handle the uncertainty and imprecision inherent in 
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IoT data. Additionally, these methods can be opaque, making it 

difficult for users to understand the reasoning behind detected 

anomalies [7]. 

This research proposes a novel approach to enhancing trust 

management and anomaly detection in smart homes by 

integrating fog computing, probabilistic ordinary fuzzy neural 

networks (POPFNNs), and explainable AI (XAI). Fog 

computing enables real-time processing and scalability, while 

POPFNNs provide robust handling of uncertain and imprecise 

data. XAI ensures that the decision-making processes are 

transparent and understandable to users. By combining these  

technologies, this research aims to develop a comprehensive 

framework that addresses the key challenges of trust 

management and anomaly detection in smart homes, paving the 

way for more secure, reliable, and user-friendly smart 

environments. 

II. RELATED WORK

The growing complexity of IoT-based smart homes has led to 

extensive research in the areas of trust management and 

anormally detection. Various approaches have been explored, 

each with its own strengths and limitations [1]. This section 

provides an overview of the related work in these fields, 

focusing on the key technologies and methodologies employed. 

Traditional trust management systems in IoT environments 

often rely on centralized cloud-based solutions. These systems 

aggregate data from various devices to evaluate trustworthiness 

[2], [3]. However, these approaches suffer from latency issues 

and single points of failure. To address these limitations, 

researchers have proposed decentralized trust management 

frameworks leveraging edge and fog computing. For instance, 

[4] introduced a fog-based trust management system that 
enhances real-time processing and scalability by distributing 
computational tasks closer to the data sources.

Anormally detection in IoT environments is crucial for 
identifying potential security threats and system malfunctions. 
Traditional methods, such as statistical analysis and machine 
learning, have been widely used. Other researches employed
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machine learning techniques for anormally detection in smart 

homes, demonstrating high accuracy but limited interpretability 

[5], [6]. To address the inherent uncertainty in IoT data, [7] 

utilized fuzzy logic-based approaches, which improved 

detection rates but remained somewhat opaque to end-users. 

POPFNNs have emerged as a promising approach for handling 

the uncertainty and complexity of IoT data. In this paper [8] the 

authors pioneered the use of POPFNNs in various applications, 

highlighting their ability to integrate fuzzy logic and neural 

networks effectively [9]. Their work demonstrated that 

POPFNNs could model complex relationships with high 

accuracy, making them suitable for trust management and 

anormally detection in smart homes. Subsequent studies by 

further validated the efficacy of POPFNNs in IoT environments, 

showcasing their potential to enhance the robustness and 

reliability of smart home systems. 

Explainable AI has gained significant attention in recent years, 

aiming to make AI models more transparent and 

understandable.[10] provided a comprehensive overview of XAI 

techniques, emphasizing their importance in building user trust. 

In the context of IoT and smart homes, [11] explored the 

application of XAI to anormally detection systems, 

demonstrating that explainability could improve user confidence 

and system adoption. By integrating XAI with POPFNNs, 

researchers such as [9] have developed models that offer both 

high accuracy and interpretability, addressing the "black-box" 

nature of traditional AI systems. 

The integration of Fog Computing, POPFNNs, and XAI 

represents a novel approach to addressing the challenges of trust 

management and anormally detection in smart homes. Previous 

studies have explored these components individually but have 

not fully realized their combined potential. [12] proposed a 

preliminary framework integrating fog computing with machine 

learning for real-time anormally detection, showing promising 

results. Building on this foundation, the current research aims to 

leverage the synergistic benefits of Fog Computing, POPFNNs, 

and XAI to create a comprehensive, scalable, and interpretable 

solution for smart home environments. 

In summary, while significant progress has been made in the 

fields of trust management, anormally detection, and 

explainable AI, the integration of these technologies in a fog 

computing context remains an underexplored area. This research 

seeks to bridge this gap, offering an innovative approach [8] that 

enhances the security, reliability, and transparency of smart 

home systems. 

A. Comparative Analysis of Existing Literature

The fields of trust management and anormally detection in IoT-

based smart homes have seen significant advancements, 

particularly with the integration of artificial intelligence (AI) and 

fog computing. This comparative analysis examines the 

strengths and limitations in some of the existing literature in 

these areas, highlighting the potential benefits of integrating 

Pseudo Outer Product-based Fuzzy Neural Networks 

(POPFNNs) with Explainable AI (XAI). 

In this paper [13] explored centralized cloud-based trust 

management systems. These approaches aggregate data from 

various IoT devices to evaluate trustworthiness. However, they 

suffer from latency issues, scalability constraints, and single 

points of failure. The centralized nature limits real-time 

processing capabilities, which is crucial for dynamic smart home 

environments [14]. 

Fog-based trust management framework [15] addresses the 

limitations of cloud-based solutions by distributing 

computational tasks closer to the data sources. This approach 

enhances real-time processing and scalability, reducing latency 

and improving system resilience. However, the integration of 

advanced AI techniques within these frameworks remains 

underdeveloped. 

Cheng [16] employed machine learning techniques for 

anormally detection in smart homes, demonstrating high 

accuracy. However, these methods often lack interpretability, 

making it difficult for users to understand the decision-making 

process. The "black-box" nature of these models hinders user 

trust and system transparency. 

The authors of [17] Utilized fuzzy logic-based methods to 

handle the uncertainty and imprecision of IoT data. These 

approaches improved detection rates but remained opaque to 

end-users, similar to traditional machine learning models. The 

integration of fuzzy logic with neural networks, as seen in 

POPFNNs, presents a promising direction to enhance both 

accuracy and interpretability. 

Kim and Liu [8] demonstrated that POPFNNs effectively 

integrate fuzzy logic and neural networks, providing robust 

handling of uncertain and imprecise data. These networks can 

model complex relationships with high accuracy, making them 

suitable for trust management and anormally detection in smart 

homes. However, the adoption of POPFNNs in practical 

applications is still limited, and their integration with fog 

computing and XAI has not been extensively explored. 

TABLE I.  COMPARATIVE LITERATURE SUMMARY 

Approach Strengths Limitations 

Cloud-Based 
Trust 

Management 

High data aggregation 
capabilities 

Latency issues, 
scalability constraints, 

single points of failure 

Fog-Based Trust 
Management 

Enhanced real-time 
processing, scalability 

Limited integration with 
advanced AI techniques 

Machine Learning 

for Anormally 
Detection 

High accuracy Lack of interpretability, 

"black-box" nature 

Fuzzy Logic-

Based Anormally 

Detection 

Improved detection 

rates, handles 

uncertainty 

Opaque to end-users, 

limited interpretability 

POPFNNs Robust handling of 

uncertainty, high 

accuracy 

Limited practical 

adoption, underexplored 

integration with XAI 

XAI Enhances 

transparency and user 

trust 

Integration with 

advanced AI models is 

complex 

Integrated 

Framework 

(Fog, POPFNNs, 
XAI) 

Comprehensive, 

scalable, interpretable 

solution 

Underexplored in 

existing literature 
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III. PROPOSED METHODOLOGY

The proposed system architecture integrates fog computing with 
POPFNNs and XAI, involving the following components: 

1. Data Collection: IoT devices in smart homes collect sensor
data.

2. Edge Processing: Initial processing and filtering of data at
edge devices.

3. Fog Layer: Further processing, trust score calculation, and
anormally detection using POPFNNs.

4. Cloud Integration: Aggregated data storage and advanced
analytics in the cloud.

Flow of Data

Figure 1 

Figure 2 

Figure 3 

1. Input Collection: Collect sensor readings from various smart
home devices.

2. Fuzzification: Convert sensor readings into fuzzy
membership degrees.

3. Pseudo Outer Product (POP) Calculation: Form a tensor
capturing the relationships between sensor readings.

4. Trust Score Calculation: Apply neural network weights to
the tensor and compute trust scores for each device.

5. Anormally Detection: Identify anomalies based on
deviations from expected trust scores.

6. Explainability: Use XAI techniques to provide transparent
explanations for the trust scores and detected anomalies.

Figure 4 Sequence Diagram 

Figure III-5 Data Flow Diagrams Level 0, 1 and 2 

A. Pseudo Outer Product-based Fuzzy Neural Networks

(POPFNNs) Formulas

Pseudo Outer Product (POP): The POP operation involves 
multiplying input vectors with fuzzy membership functions to 
form a higher-dimensional tensor as per the following formulars. 

1) Fuzzification:

Calculate the membership degree μ  of each input xi to fuzzy

sets. 

μij(xi) =
1

1+(
xi−cij

σij
)2

(1) 

where cij and  σij are the centre and spread of the fuzzy set j for

input xi.

2) Pseudo Outer Product (POP):

Tjk = μ1j(x1) ∙  μ2k(x2) (2)

where  Tjk: Element of a matrix capturing interactions between

the two sets/spaces. 
μ1j(x1) : Membership function for the first set/space, mapping

x1 to a membership value for the element indexed by .

μ2k(x2): Membership function for the second set/space,
mapping x2 to a membership value for the element indexed by
k. 

3) Trust Score Calculation:

𝐓𝐬 =  ∑ ∑ 𝐓𝐢𝐣  ∙ 𝐖𝐢𝐣
𝐦
𝐣=𝟏

𝐦
𝐢=𝟏 (3) 

where 𝐖𝐢𝐣 are the neural network weights.

4) Algorithm:
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a) Input: Collect inputs x1, x2, … … , xn.

b) Fuzzification: Compute membership degrees for each

input.

c) POP Calculation: Form the POP tensor using

membership degrees.

d) Trust Score: Apply neural network weights to the

POP tensor and compute the trust score.

5) Use Case:

a) Input: Sensor readings from various smart home

devices.

b) Fuzzification: Convert sensor readings into fuzzy

membership degrees.

c) POP Calculation: Form a tensor capturing

relationships between sensor readings.

d) Trust Score:

Compute trust scores for each device based on the tensor

and neural network weights.

B. Fuzzy Logic Formulas:

1) Fuzzification: Convert crisp inputs 𝑥𝑖 into fuzzy

membership degrees.

μij(xi) =
1

1+(
xi−cij

σij
)2

(4) 

2) Rule Evaluation: Apply fuzzy rules to compute rule

strengths.
𝑹𝒌 = 𝒎𝒊𝒏(𝜇1𝑗(𝒙𝟏), 𝜇2𝑘(𝒙𝟐)) (5) 

3) Aggregation: Aggregate the results of all rules
𝜇𝑜𝑢𝑡𝑝𝑢𝑡(𝒙) = 𝒎𝒂𝒙(𝑹𝒌) (6) 

4) Defuzzification: Convert the aggregated fuzzy output

to a crisp value.

y =
∑ μoutput(𝐱𝐢)∙𝐱𝐢

n
i=1

∑ μoutput(𝐱𝐢)n
i=1

(7) 

5) Algorithm:

a) Input: Collect inputs x1, x2, … … , xn..

b) Fuzzification: Compute membership degrees for each

input.

c) POP Calculation: Form the POP tensor using

membership degrees.

d) Trust Score: Apply neural network weights to the

POP tensor and compute the trust score.

e) Use Case:

f) Input: Sensor readings from various smart home

devices.

g) Fuzzification: Convert sensor readings into fuzzy

membership degrees.

h) POP Calculation: Form a tensor capturing

relationships between sensor readings.

i) Trust Score: Compute trust scores for each device

based on the tensor and neural network weights.

C. Self-Organizing Maps (SOMs) 

Formulas: 

a) Initialization:

Initialize weights randomly for neurons on a 2D grid.

𝐖𝐢 =  random vector of same dimension as input

Distance Calculation: Compute the Euclidean distance 
between the input vector  x  and each neuron's weight 
vector Wi.

Di =  √∑ (xj- Wij )
2n

j=1 (8) 

Winning Neuron: Identify the neuron with the smallest 
distance. 

𝐖𝐢𝐧𝐧𝐞𝐫 =  arg    i
minDi (9) 

Weight Update: Update the weights of the winning 
neuron and its neighbours. 

𝐖𝐢(𝐭 + 𝟏) =  𝐖𝐢(𝐭) + 𝛈(𝐭) ∙ 𝐡(𝐭) ∙ (𝐱 − 𝐖𝐢(𝐭)) (10)
where 𝛈(𝐭) ∙ is the learning rate and 𝐡(𝐭) is the 
neighborhood function. 

Algorithm: 

1. Input: Collect inputs x1, x2, … … , xn..

2. Initialization: Initialize SOM weights.

3. Training: Train the SOM with input vectors.

4. Distance Calculation: Compute distances between
input vectors and neurons.

5. Winning Neuron: Identify the winning neuron.

6. Weight Update: Update weights of the winning
neuron and its neighbours.

Use Case: 

1. Input: Sensor readings from various smart home
devices.

2. Initialization: Initialize SOM weights.

3. Training: Train the SOM with sensor readings.

4. Clustering: Use the trained SOM to detect anomalies
by identifying clusters of normal and abnormal readings.
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D. Interpretation of Results

TABLE II.  MODEL PERFORMANCE (MSE COMPARISON) 

POPFNN  Probability scores (Test Data): 

[0.51794022 0.53307319 0.53307319 ... 

0.14529076 0.149074   0.15096563]

Fuzzy Logic System  

Mean Squared Error: 

0.72618550035977

57 

POPFNN  Mean Squared 

Error:  

0.72325686670430

23 

The POPFNN has the lowest MSE (0.723), indicating the 
smallest average squared difference between predicted values 
and actual values in the test dataset. This suggests it is the most 
accurate model among those tested. 

1) Probability Scores:
The POPFNN also provides probability scores for the test data,
which can be interpreted as confidence levels or probabilities
associated with the predictions.

2) Recommendation:
The POPFNN is recommended as the algorithm of choice based
on its superior performance in terms of MSE compared to the
other models tested.

Figure 6 

TABLE III. FEATURE INFLUENCE 

Feature Value 

Global_active_power -0.52 

Voltage 1.97 

Global_intensity -0.46

a) Predicted Value Influence:

The table categorizes the influence of features into
‘negative’ and ‘positive’, indicating how each feature affects
the predicted outcome.

b) Features and Impact:

• Global_active_power: Has a negative impact of -0.52,
suggesting that as it increases, the predicted value decreases.

• Voltage: Shows a positive impact of 1.97, implying that
higher voltage increases the predicted value.

• Global_intensity: Also has a negative impact of -0.46,
similar to Global_active_power in influencing the predicted
value.

These results are useful for understanding which factors are most 
influential and in what direction they affect the outcome, which 
can inform further analysis or decision-making processes in 
fields like energy management or predictive modelling.  

Figure 7 : Features Impact assessment. 

The horizontal bar chart and an equation related to a function ( 
f(x)  

• Function Output:

 The equation ( f(x) = 3.606 ) indicates the calculated output of 
the function for a given input ( x ). 

• Expected Value:

The chart, ( E[f(X)] = 4.181 ) represents the expected value of 
the function, which is the average value of (f(x)) over some 
probability distribution. 

c) Feature Contributions:

• Feature 1: Contributes positively with a value of (+0.94),
increasing the function’s output.

• Feature 2: Contributes negatively with a value of ( -0.77),
decreasing the function’s output.

• Feature 0: Also contributes negatively with a value of ( -0.74).

Figure 8: Feature Contributions 

The bar chart visually represents the influence of each feature on 
the function’s output, with the length and direction of the bars 
indicating the magnitude and direction (positive or negative) of 
the impact. This type of analysis is useful in understanding 
which features are most important in determining the outcome 
of ( f(x) ) and can inform feature selection or model refinement 
in machine learning and data science. 

Figure 9 : Feature intercept and Prediction Scores 
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Intercept: The base value of the model’s prediction without any 
feature contributions is 6.605383441958235. 

Prediction Score: The model predicts a value of 3.6058552, 
considering the feature contributions. 

Feature Contributions: 

• Negative Impact: The feature ‘Global_active_power’ has a
negative contribution with a range from 0 to -0.72, decreasing
the prediction score.

• Positive Impact: The feature ‘Voltage’ has a positive
contribution with a range from 0 to 1.97, increasing the
prediction score.

Feature Values: 

• Global_intensity: This feature has a value of -0.52, indicating a
negative influence on the prediction.

• Voltage: With a value of 1.97, it positively influences the
prediction.

To improve the accuracy of the POPFNN (Pseudo Outer
Product-based Fuzzy Neural Network) over a traditional Fuzzy
Logic System, the algorithm streamlined the focus on several
key aspects:

a) Enhanced Fuzzy Rules:

Improve the quality and specificity of fuzzy rules. This was be 
done by using more precise membership functions or by 
incorporating expert knowledge to fine-tune the rules. 

b) Feature Engineering:

Incorporated additional features that captured more nuanced 
patterns in the data. This involves creating new features through 
domain knowledge or using techniques such as polynomial 
features, interactions, or transformations. 

c) Hyperparameter Tuning:

Performing thorough hyperparameter optimization for the 
neural network. Use of grid search and random search to find the 
best combination of hyperparameters like the number of layers, 
number of neurons per layer, activation functions, learning rate. 

d) Regularization:

The model training added regularization techniques such as 
L1/L2 regularization to prevent overfitting and improve 
generalization. 

e) Advanced Neural Network Architectures:

By exploration more advanced neural network architectures like 
Convolutional Neural Networks (CNNs) or Recurrent Neural 
Networks (RNNs) if the data has spatial or temporal 
dependencies. 

f) Ensemble Methods:

The combination of predictions from multiple models using 
ensemble methods like bagging, boosting, or stacking to 
improve accuracy and robustness. 

g) Data Augmentation:

When applicable, the use of data augmentation techniques to 
generate more training data and improve the model's ability to 
generalize via the use of simulators like ifog-sim. 

h) Cross-Validation:

Use of k-fold cross-validation to ensure the model's performance 
is consistent across different subsets of the data. 

IV. CONCLUSION AND FUTURE WORK

This paper presents a comprehensive approach to trust 

management and anormally detection in smart homes using fog 

computing. By integrating Pseudo Outer Product-based Fuzzy 

Neural Networks (POPFNNs) with Explainable AI (XAI), the 

proposed mechanism addresses the limitations of traditional 

methods, providing a scalable, efficient, and interpretable 

solution. The mathematical formulations, algorithms, and use 

cases demonstrate the practicality and effectiveness of the 

approach, paving the way for future research and development 

in smart home security and trust management. 

Future research will focus on enhancing the scalability of the 

proposed mechanism to accommodate a larger number of IoT 

devices in smart homes. Additionally, the integration of 

advanced XAI techniques will be explored to further improve 

the interpretability and transparency of the system. The 

deployment of the proposed mechanism in real-world smart 

home environments will be undertaken to validate its 

performance and effectiveness. 
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