- Open Access
- Total Downloads : 1027
- Authors : Tarun Gupta, Neeraj Patel
- Paper ID : IJERTV5IS010593
- Volume & Issue : Volume 05, Issue 01 (January 2016)
- DOI : http://dx.doi.org/10.17577/IJERTV5IS010593
- Published (First Online): 29-01-2016
- ISSN (Online) : 2278-0181
- Publisher Name : IJERT
- License: This work is licensed under a Creative Commons Attribution 4.0 International License
Methodology for Designing a Gearbox and its Analysis
Neeraj Patel, Tarun Gupta
B.Tech,
Department of Mechanical Engineering, Maulana Azad National Institute of Technology, Bhopal, India.
AbstractRobust and Axiomatic design, a property based approach in design, is applied and integrated into a new methodology for developing Functional Requirements (FR) or Design Parameters (DP).The reliability of the design structure and design components are used as a functional requirements of the gearbox, in relation to the service and driving conditions, and also as a design constraints in analytical relationships. The different operating conditions of gearbox are used as case study in this paper. The same design structures have to operate under different operating conditions. In these circumstances, the carrying capacity as a functional requirement is related to driving conditions [5]. This paper unveils the more sophisticated methodology of the gearbox designing using the modern designing softwares.
KeywordsKISSsoft, Load spectrum, Gears, Shafts, Bearings
INTRODUCTION
Gears and gear drives have been known and used for millennia as critical components of mechanisms and machines. Over the last several decades the development of gearing has mostly focused in the following fields: the improving of material, manufacturing technology and tooling, thermal treatment, tooth surface engineering and coatings, tribology and lubricants, testing technology and diagnostics [4]. Gear design is a highly complicated art. The constant pressure to build less expensive, quieter running, lighter, and more powerful machinery has resulted in a steady change in gear designs [3]. At present much is known about gear load-carrying capacity, and many complicated processes for making gears are available. Gear design also included material selection, which should provide the required strength and durability of every component in the gear drive. The vast majority of gears are designed with the standard 20 pressure angle tooth proportions [4]. In this paper, two stage reduction helical gearbox has been designed. The gears and shaft design calculations are done with the help of KISSsoft. KISSsoft is a program for machine design calculations. KISSsoft have been incorporated with various calculation methods for the gear and shaft design separately. Here AGMA 2101-D04 (Metric Edition) has been selected as the calculation method. When the gear design completes, the next stage of gear drive development is fabrication of parts and assembly; this stage included technological process selection and tool design [4].
I. DESIGN PROCESS:
-
MATERIAL SELECTION
The first step in the gearbox design process is to select the material. A material is to be selected by doing intensive research on the properties of the various materials. A material is to be selected keeping in mind the various parameters like strength, weight, durability, cost and other parameters. KISSsoft provide the user, list of the various materials which can be selected for the designing of gears.
TABLE.I MATERIAL SPECIFICATION
PROPERTIES
VALUE
Surface hardness
HRC 61
Allowable bending stress number (N/mm2 )
430
Allowable contact stress number (N/mm2 )
1500
Tensile strength (N/mm2 )
1200
Yield point (N/mm2 )
850
Youngs modulus (N/mm2 )
206000
Poissons ratio
0.3
Also there is a provision for the user to enter his own material properties and thus one can define his own material in the program. In this paper for the sake of designing gearbox, case-carburized steel is selected due to its better mechanical properties. Also the material selected for gears and shaft is to be same because of the fact, same material can be manufactured as a single unit.
-
INPUT PARAMETERS
FOR 1ST REDUCTION
Fig.1 Gear Pair 1
TABLE.II INPUT PARAMETERS
PARAMETERS
GEAR 1
GEAR 2
Transmitted power (KW)
7.5
7.5
Speed (1/min)
1278.9
403.9
Torque(Nm)
56
177.3
Overload factor
2.0
2.0
Required service life(h)
2000
2000
FOR 2ND REDUCTION
Fig.2 Gear Pair 2 TABLE.III INPUT PARAMETERS
PARAMETERS
GEAR 1
GEAR 2
Transmitted power (KW)
7.5
7.5
Speed (1/min)
400.1
126.4
Torque(Nm)
179
566.8
Overload factor
2.0
2.0
Required service life(h)
2000
2000
TABLE.IV INPUT SHAFT PARAMETERS
PARAMETERS
VALUE
Initial position
0.0
Length (mm)
142
Speed (1/min)
1279
Sense of rotation
Counter clockwise
Fig.3 Input shaft
TABLE.V INTERMADIATE SHAFT PARAMETERS
Fig.4 Intermediate Shaft TABLE.VI OUTPUT SHAFT PARAMETERS
PARAMETERS
VALUE
Initial position
0.0
Length (mm)
183.2
Speed (1/min)
125
Sense of rotation
Counter clockwise
Fig.5 Output Shaft
-
ROUGH SIZING OF GEARS
PARAMETERS
GEAR 1
GEAR 2
Centre distance (mm)
89
89
Centre distance tolerance
ISO 286:2010
Measure js7
ISO 286:2010
Measure js7
Normal diametral pitch (1/in)
11.28889
11.28889
Transverse diametral pitch (1/in)
10.60809
10.60809
Normal module (mm)
2.25
2.25
Pressure angle ()
20
20
Helix angle ()
20
20
Number of teeth
18
57
Facewidth (mm)
22.49
21.55
Hand of gear
right
Left
Accuracy grade
A8
A8
Inner diameter
0.0
0.0
Roughness average value, Flank (µm)
0.6
0.6
Roughness average value, Root (µm)
3.0
3.0
Mean roughness height, Flank (µm)
4.8
4.8
Mean roughness height, Rot (µm)
20
20
PARAMETERS
GEAR 1
GEAR 2
Centre distance (mm)
89
89
Centre distance tolerance
ISO 286:2010
Measure js7
ISO 286:2010
Measure js7
Normal diametral pitch (1/in)
11.28889
11.28889
Transverse diametral pitch (1/in)
10.60809
10.60809
Normal module (mm)
2.25
2.25
Pressure angle ()
20
20
Helix angle ()
20
20
Number of teeth
18
57
Facewidth (mm)
22.49
21.55
Hand of gear
right
Left
Accuracy grade
A8
A8
Inner diameter
0.0
0.0
Roughness average value, Flank (µm)
0.6
0.6
Roughness average value, Root (µm)
3.0
3.0
Mean roughness height, Flank (µm)
4.8
4.8
Mean roughness height, Root (µm)
20
20
TABLE.VII 1ST REDUCTION PARAMETERS
PARAMETERS
VALUE
Initial position
0.0
Length (mm)
142.350
Speed (1/min)
400
Sense of rotation
Clockwise
Fig.6 Drawing Gear 1
Fig.7 Drawing Gear 2
TABLE.VIII 2ND REDUCTION PARAMETERS
PARAMETERS
GEAR 3
GEAR 4
Centre distance(mm)
100
100
Centre distance tolerance
ISO 286:2010
Measure js7
ISO 286:2010
Measure js7
Normal diametral pitch(1/in)
10.160
10.160
Transverse diametral pitch(1/in)
9.54728
9.54728
Normal module(mm)
2.5
2.5
Pressure angle()
20
20
Helix angle()
20
20
Number of teeth
18
57
Facewidth(mm)
45.88
44.38
Hand of gear
Right
left
Accuracy grade
A8
A8
Inner diameter
0.0
0.0
Roughness average value, Flank (µm)
0.6
0.6
Roughness average value, Root (µm)
3.0
3.0
Mean roughness height, Flank (µm)
4.8
4.8
Mean roughness height Root(µm)
20
20
Fig.8 Drawing Gear 3
Fig.9 Drawing Gear 4
-
FINE SIZING OF GEARS
FOR 1ST REDUCTION
TABLE.IX PROFILE PARAMETERS
PARAMETERS
GEAR 1
GEAR 2
Reference profile
1.25 / 0.38 / 1.0 ISO
53.2:1997 Profile A
1.25 / 0.38 / 1.0 ISO
53.2:1997 Profile A
Dedendum coefficient
1.25
1.25
Root radius factor
0.380
0.380
Addendum
1.0
1.0
Tip radius factor
0.0
0.0
Protuberance height factor
0.0
0.0
Protuberance angle
0.0
0.0
Tip form height coefficient
0.0
0.0
Ramp angle
0.0
0.0
Fig.10 Tooth Form Gear 1
Fig.11 Tooth Form Gear 2
(mm)
Diameter of single contact point D (mm)
44.580
133.727
Addendum contact ratio
0.874
0.657
Minimal length of contact line (mm)
34.348
34.348
Transverse contact ratio
1.531
1.531
Transverse contact ratio with allowances
1.538
1.538
Overlap ratio
1.043
1.043
Total contact ratio
2.574
2.574
Total contact ratio with allowances
2.581
2.581
PARAMETERS
GEAR 1
GEAR 2
Overall transmission ratio
-3.167
-3.167
Gear ratio
3.167
3.167
Transverse module(mm)
2.394
2.394
Pressure angle at pitch circle ()
21.173
21.173
Working transverse pressure angle ()
19.818
19.818
Working pressure angle at normal section (°)
19.850
19.787
Helix angle at operating pitch circle (°)
18.727
18.727
Base helix angle (°)
18.747
18.747
Reference centre distance (mm)
89.790
89.790
Sum of profile shift coefficients
-0.3405
-0.3405
Profile shift coefficient
0.1605
-0.5010
Tooth thickness (Arc) (module)
1.6876
1.2061
Tip alteration (mm)
-0.024
-0.024
Reference diameter (mm)
43.099
136.481
Base diameter (mm)
40.190
127.268
Tip diameter (mm)
48.273
138.678
Tip diameter allowances (mm)
0.0
0.0
Tip form diameter (mm)
48.273
138.678
Active tip diameter (mm)
48.273
138.678
Operating pitch diameter (mm)
42.720
135.280
Root diameter (mm)
38.196
128.601
Generating Profile shift coefficient
0.1275
-0.5590
Manufactured root diameter with xE (mm)
38.048
128.340
Theoretical tip clearance (mm)
0.563
0.563
Effective tip clearance (mm)
0.748
0.701
Active root diameter (mm)
0.533
131.630
Root form diameter (mm)
40.513
130.893
Reserve (dNf-dFf)/2 (mm)
0.056
0.511
Addendum (mm)
2.587
1.099
Dedendum (mm)
2.451
3.940
Roll angle at dFa (°)
38.123
24.800
Roll angle at dNa (°)
38.123
24.800
Roll angle to dNf (°)
7.684
15.185
Roll angle at dFf (°)
6.696
13.448
Tooth height (mm)
5.038
5.038
Virtual gear no. of teeth
21.362
67.646
Normal-tooth thickness at tip circle (mm)
1.434
1.807
Normal-tooth thickness on tip form circle (mm)
1.488
1.900
Normal space width at root circle (mm)
0.0
2.089
Max. sliding velocity at tip (m/s)
1.080
0.813
Specific sliding at the tip
0.378
0.284
Specific sliding at the root
-0.284
-0.378
Mean specific sliding
0.644
0.644
Sliding factor on tip
0.378
0.284
Sliding factor on root
-0.284
-0.378
Pitch on reference circle (mm)
7.522
7.522
Base pitch (mm)
7.014
7.014
Transverse pitch on contact-path (mm)
7.014
7.014
Lead height(mm)
372.009
1178.03
Axial pitch (mm)
20.667
20.667
Length of path of contact (mm)
10.740
10.740
Length T1-A, T2-A (mm)
2.631
27.554
Length T1-B (mm)
6.356
23.818
Length T1-C (mm)
7.242
22.933
Length T1-D (mm)
9.645
20.529
Length T1-E (mm)
13.371
16.804
Length T1-T2 (mm)
30.174
30.174
Diameter of single contact point B
42.152
135.891
PARAMETERS
GEAR 1
GEAR 2
Overall transmission ratio
-3.167
-3.167
Gear ratio
3.167
3.167
Transverse module(mm)
2.394
2.394
Pressure angle at pitch circle ()
21.173
21.173
Working transverse pressure angle ()
19.818
19.818
Working pressure angle at normal section (°)
19.850
19.787
Helix angle at operating pitch circle (°)
18.727
18.727
Base helix angle (°)
18.747
18.747
Reference centre distance (mm)
89.790
89.790
Sum of profile shift coefficients
-0.3405
-0.3405
Profile shift coefficient
0.1605
-0.5010
Tooth thickness (Arc) (module)
1.6876
1.2061
Tip alteration (mm)
-0.024
-0.024
Reference diameter (mm)
43.099
136.481
Base diameter (mm)
40.190
127.268
Tip diameter (mm)
48.273
138.678
Tip diameter allowances (mm)
0.0
0.0
Tip form diameter (mm)
48.273
138.678
Active tip diameter (mm)
48.273
138.678
Operating pitch diameter (mm)
42.720
135.280
Root diameter (mm)
38.196
128.601
Generating Profile shift coefficient
0.1275
-0.5590
Manufactured root diameter with xE (mm)
38.048
128.340
Theoretical tip clearance (mm)
0.563
0.563
Effective tip clearance (mm)
0.748
0.701
Active root diameter (mm)
40.533
131.630
Root form diameter (mm)
40.513
130.893
Reserve (dNf-dFf)/2 (mm)
0.056
0.511
Addendum (mm)
2.587
1.099
Dedendum (mm)
2.451
3.940
Roll angle at dFa (°)
38.123
24.800
Roll angle at dNa (°)
38.123
24.800
Roll angle to dNf (°)
7.684
15.185
Roll angle at dFf (°)
6.696
13.448
Tooth height (mm)
5.038
5.038
Virtual gear no. of teeth
21.362
67.646
Normal-tooth thickness at tip circle (mm)
1.434
1.807
Normal-tooth thickness on tip form circle (mm)
1.488
1.900
Normal space width at root circle (mm)
0.0
2.089
Max. sliding velocity at tip (m/s)
1.080
0.813
Specific sliding at the tip
0.378
0.284
Specific sliding at the root
-0.284
-0.378
Mean specific sliding
0.644
0.644
Sliding factor on tip
0.378
0.284
Sliding factor on root
-0.284
-0.378
Pitch on reference circle (mm)
7.522
7.522
Base pitch (mm)
7.014
7.014
Transverse pitch on contact-path (mm)
7.014
7.014
Lead height(mm)
372.009
1178.03
Axial pitch (mm)
20.667
20.667
Length of path of contact (mm)
10.740
10.740
Length T1-A, T2-A (mm)
2.631
27.554
Length T1-B (mm)
6.356
23.818
Length T1-C (mm)
7.242
22.933
Length T1-D (mm)
9.645
20.529
Length T1-E (mm)
13.371
16.804
Length T1-T2 (mm)
30.174
30.174
Diameter of single contact point B
42.152
135.891
(mm)
Diameter of single contact point D (mm)
44.580
133.727
Addendum contact ratio
0.874
0.657
Minimal length of contact line (mm)
34.348
34.348
Transverse contact ratio
1.531
1.531
Transverse contact ratio with allowances
1.538
1.538
Overlap ratio
1.043
1.043
Total contact ratio
2.574
2.574
Total contact ratio with allowances
2.581
2.581
TABLE.X RECTIFIED PARAMETERS
Fig.12 Meshing of Gear 1 and 2
FOR 2ND REDUCTION
TABLE.XI PROFILE PARAMETERS
PARAMETERS
GEAR 1
GEAR 2
Reference profile
1.25 / 0.38 / 1.0
ISO 53.2:1997
Profile A
1.25 / 0.38 / 1.0
ISO 53.2:1997
Profile A
Dedendum coefficient
1.25
1.25
Root radius factor
0.380
0.380
Addendum
1.0
1.0
Tip radius factor
0.0
0.0
Protuberance height factor
0.0
0.0
Protuberance angle
0.0
0.0
Tip form height coefficient
0.0
0.0
Ramp angle
0.0
0.0
Active root diameter (mm)
45.279
147.797
Root form diameter (mm)
45.133
146.723
Reserve (dNf-dFf)/2 (mm)
0.127
0.698
Addendum (mm)
3.058
2.174
Dedendum (mm)
2.565
3.449
Roll angle at dFa (°)
38.965
26.684
Roll angle at dNa (°)
38.965
24.684
Roll angle to dNf (°)
9.765
17.461
Roll angle at dFf (°)
7.879
15.563
Tooth height (mm)
5.623
5.623
Virtual gear no. of teeth
21.362
67.646
Normal-tooth thickness at tip circle (mm)
1.562
2.019
Normal-tooth thickness on tip form circle (mm)
1.562
2.019
Normal space width at root circle (mm)
0.0
2.024
Max. sliding velocity at tip (m/s)
0.352
0.279
Specific sliding at the tip
0.378
0.640
Specific sliding at the root
-1.776
-1.237
Mean specific sliding
0.591
0.591
Sliding factor on tip
0.350
0.277
Sliding factor on root
-0.277
-0.350
Pitch on reference circle (mm)
8.358
8.358
Base pitch (mm)
7.794
7.794
Transverse pitch on contact-path (mm)
7.794
7.794
Lead height(mm)
413.343
1308.92
Axial pitch (mm)
22.964
22.964
Length of path of contact (mm)
11.438
11.438
Length T1-A, T2-A (mm)
3.746
32.929
Length T1-B (mm)
7.390
29.285
Length T1-C (mm)
8.802
27.873
Length T1-D (mm)
11.540
25.135
Length T1-E (mm)
15.184
21.491
Length T1-T2 (mm)
36.675
36.675
Diameter of single contact point B (mm)
47.038
153.058
Diameter of single contact point D (mm)
50.267
150.078
Addendum contact ratio
0.819
0.649
Minimal length of contact line (mm)
67.913
67.913
Transverse contact ratio
1.468
1.468
Transverse contact ratio with allowances
1.474
1.474
Overlap ratio
1.933
1.933
Total contact ratio
3.4
3.4
Total contact ratio with allowances
3.406
3.406
Active root diameter (mm)
45.279
147.797
Root form diameter (mm)
45.133
146.723
Reserve (dNf-dFf)/2 (mm)
0.127
0.698
Addendum (mm)
3.058
2.174
Dedendum (mm)
2.565
3.449
Roll angle at dFa (°)
38.965
26.684
Roll angle at dNa (°)
38.965
24.684
Roll angle to dNf (°)
9.765
17.461
Roll angle at dFf (°)
7.879
15.563
Tooth height (mm)
5.623
5.623
Virtual gear no. of teeth
21.362
67.646
Normal-tooth thickness at tip circle (mm)
1.562
2.019
Normal-tooth thickness on tip form circle (mm)
1.562
2.019
Normal space width at root circle (mm)
0.0
2.024
Max. sliding velocity at tip (m/s)
0.352
0.279
Specific sliding at the tip
0.378
0.640
Specific sliding at the root
-1.776
-1.237
Mean specific sliding
0.591
0.591
Sliding factor on tip
0.350
0.277
Sliding factor on root
-0.277
-0.350
Pitch on reference circle (mm)
8.358
8.358
Base pitch (mm)
7.794
7.794
Transverse pitch on contact-path (mm)
7.794
7.794
Lead height(mm)
413.343
1308.92
Axial pitch (mm)
22.964
22.964
Length of path of contact (mm)
11.438
11.438
Length T1-A, T2-A (mm)
3.746
32.929
Length T1-B (mm)
7.390
29.285
Length T1-C (mm)
8.802
27.873
Length T1-D (mm)
11.540
25.135
Length T1-E (mm)
15.184
21.491
Length T1-T2 (mm)
36.675
36.675
Diameter of single contact point B (mm)
47.038
153.058
Diameter of single contact point D (mm)
50.267
150.078
Addendum contact ratio
0.819
0.649
Minimal length of contact line (mm)
67.913
67.913
Transverse contact ratio
1.468
1.468
Transverse contact ratio with allowances
1.474
1.474
Overlap ratio
1.933
1.933
Total contact ratio
3.4
3.4
Total contact ratio with allowances
3.406
3.406
Fig.13 Tooth Form Gear 3
PARAMETERS
GEAR 1
GEAR 2
Overall transmission ratio
-3.167
-3.167
Gear ratio
3.167
3.167
Transverse module(mm)
2.660
2.660
Pressure angle at pitch circle()
21.173
21.173
Working transverse pressure angle()
21.515
21.515
Working pressure angle at normal section (°)
20.322
20.322
Helix angle ()
20.043
20.043
Base helix angle (°)
18.747
18.747
Reference centre distance (mm)
99.767
99.767
Sum of profile shift coefficients
0.2238
-0.1298
Profile shift coefficient
1.7337
1.4763
Tooth thickness (Arc) (module)
1.7337
1.4763
Tip alteration (mm)
-0.002
-0.002
Reference diameter (mm)
47.888
47.888
Base diameter (mm)
44.655
141.409
Tip diameter (mm)
54.003
155.993
Tip form diameter (mm)
54.003
155.993
Active tip diameter (mm)
54.003
155.993
Operating pitch diameter (mm)
48.0
152.0
Root diameter (mm)
42.757
144.747
Generating Profile shift coefficient
0.1941
-0.1820
Manufactured root diameter with xE (mm)
42.609
144.486
Theoretical tip clearance (mm)
0.625
0.625
Effective tip clearance (mm)
0.847
0.763
PARAMETERS
GEAR 1
GEAR 2
Overall transmission ratio
-3.167
-3.167
Gear ratio
3.167
3.167
Transverse module(mm)
2.660
2.660
Pressure angle at pitch circle()
21.173
21.173
Working transverse pressure angle()
21.515
21.515
Working pressure angle at normal section (°)
20.322
20.322
Helix angle ()
20.043
20.043
Base helix angle (°)
18.747
18.747
Reference centre distance (mm)
99.767
99.767
Sum of profile shift coefficients
0.2238
-0.1298
Profile shift coefficient
1.7337
1.4763
Tooth thickness (Arc) (module)
1.7337
1.4763
Tip alteration (mm)
-0.002
-0.002
Reference diameter (mm)
47.888
47.888
Base diameter (mm)
44.655
141.409
Tip diameter (mm)
54.003
155.993
Tip form diameter (mm)
54.003
155.993
Active tip diameter (mm)
54.003
155.993
Operating pitch diameter (mm)
48.0
152.0
Root diameter (mm)
42.757
144.747
Generating Profile shift coefficient
0.1941
-0.1820
Manufactured root diameter with xE (mm)
42.609
144.486
Theoretical tip clearance (mm)
0.625
0.625
Effective tip clearance (mm)
0.847
0.763
Fig.14 Tooth Form Gear 4 TABLE.XII RECTIFIED PARAMETERS
Fig.15 Meshing of Gear 3 and 4
-
SHAFT AND BEARING DESIGN
TABLE.XIII INPUT SHAFT PARAMETERS
PARAMETERS
CYLINDER 1
CYLINDER 2
CYLINDER 3
Diameter (mm)
20
25
20
Length (mm)
40
84
18
Surface roughness(µm)
8
8
8
Keyway (mm)
10
18
–
TABLE.XIV INPUT SHAFT FORCES PARAMETERS
PARAMETERS
GEAR 1
COUPLING
Position on shaft (mm)
56.0000
6.0000
Position in global system (mm)
56.0000
6.0000
Operating pitch diameter (mm)
43.0990
0.0000
Helix angle (°)
19.8380
0.0000
Working pressure angle at normal section (°)
18.7270
0.0000
Position of contact (°)
0.0000
0.0000
Length of load application (mm)
22.5000
0.0000
Power (kW)
driving (Output)
7.5000
driven (Input)
Torque (Nm)
55.9967
-55.9967
Axial force (N)
937.469
0.0000
Shearing force X (N)
-936.48
0.0000
Shearing force Z (N)
-2598.5
0.0000
Bending moment X (Nm)
-0.0000
0.0000
Bending moment Z (Nm)
20.2020
0.0000
TABLE.XV INPUT SHAFT BEARINGS PARAMETERS
PARAMETERS
BEARING 1
BEARING 2
Bearing type
SKF 4204 ATN9
Deep groove ball bearing (double row)
SKF 4204 ATN9
Deep groove ball bearing (double row)
Bearing position (mm)
31.000
133.000
Attachment of external ring
Free bearing
Fixed bearing
Inner diameter (mm)
20.000
20.000
External diameter (mm)
47.000
47.000
Width (mm)
18.000
18.000
Corner radius (mm)
1.000
1.000
Basic static load rating
12.500
12.500
Basic dynamic load rating
17.800
17.800
Fatigue load rating
0.530
0.530
Basic dynamic load rating
(kN)
0.000
0.000
Basic static load rating (kN)
0.000
0.000
Fig.16 Load application
Fig.17 Force diagram
Fig.18 Torque diagram
TABLE.XVI INTERMEDIATE SHAFT PARAMETERS
PARAMETERS
CYLIN DER 1
CYLIN DER 2
CYLIN DER 3
CYLIN DER 4
CYLIN DER 5
Diameter (mm)
20
35
36
35
30
Length (mm)
20
26.3
20
55
21
Surface roughness (µm)
8
8
8
8
8
Keyway (mm)
–
20
–
42
–
TABLE.XVII INTERMEDIATE SHAFT FORCES PARAMETERS
PARAMETERS
GEAR 2
GEAR 3
Position on shaft (mm)
35.5750
89.35
Position in global system (mm)
35.5750
89.35
Operating pitch diameter (mm)
136.5
47.888
Helix angle (°)
19.8380
right
20.0430
right
Working pressure angle at normal section (°)
18.7270
20.3320
Position of contact (°)
0.0000
0.0000
Length of load application (mm)
21.5500
45.900
Power (kW)
7.5000
driving (Input)
7.5000
driven (Output)
Torque (Nm)
179.049
-179.049
Axial force (N)
-946.460
2728.067
Shearing force X (N)
945.459
-2949.520
Shearing force Z (N)
-2623.43
7477.83
Bending moment X (Nm)
0.0000
-0.0000
Bending moment Z (Nm)
-64.5959
65.3205
TABLE.XVIII INTERMEDIATE SHAFT BEARINGS
PARAMETERS
BEARING 1
BEARING 2
Bearing type
SKF *22205/20E
Spherical roller bearings
SKF *22206E
Spherical roller bearings
Bearing position (mm)
9.000
132.350
Attachment of external ring
Fixed bearing
Fixed bearing
Inner diameter (mm)
20.000
30.000
External diameter (mm)
52.000
62.000
Width (mm)
18.000
20.000
Corner radius (mm)
1.000
1.000
Basic static load rating
44.000
60.000
Basic dynamic load rating
49.000
64.000
Fatigue load rating
4.750
6.400
Basic dynamic load rating (kN)
0.000
0.000
Basic static load rating (kN)
0.000
0.000
Fig.19 Load application
Fig. 20 Force Diagram
Fig.21 Torque Diagram TABLE.XIX OUTPUT SHAFT PARAMETERS
PARAMETERS
GEAR 4
COUPLING
Position on shaft (mm)
125.8
10.0
Position in global system (mm)
125.8
10.0
Operating pitch diameter (mm)
151.645
0.0000
Helix angle (°)
20.0430
0.0000
Working pressure angle at normal section (°)
20.3220
0.0000
Position of contact (°)
180.000
0.0000
Length of load application (mm)
44.4000
0.0000
Power (kW)
7.5000
driving (Input)
7.5000
driven (Output)
Torque (Nm)
-572.95
572.95
Axial force (N)
-2756.8
0.0000
Shearing force X (N)
2978.98
0.0000
Shearing force Z (N)
-7556.5
0.0000
Bending moment X (Nm)
0.0000
0.0000
Bending moment Z (Nm)
209.026
0.0000
TABLE.XX OUTPUT SHAFT FORCES PARAMETERS
PARAMETERS
CYLINDER 1
CYLINDER 2
CYLINDER 3
Diameter (mm)
45
50
52
Length (mm)
60
88
35
Surface roughness (µm)
8
8
8
Keyway (mm)
–
43
–
Splines (mm)
44.60
–
–
PARAMETERS
BEARING 1
BEARING 2
Bearing type
SKF *22209E
Spherical roller bearings
SKF *22211E
Spherical roller bearings
Bearing position (mm)
48.500
170.000
Attachment of external ring
Fixed bearing
Fixed bearing
Inner diameter (mm)
45.000
55.000
External diameter (mm)
85.000
100.00
Width (mm)
23.000
25.000
Corner radius (mm)
1.100
1.500
Basic static load rating
98.000
127.000
Basic dynamic load rating
102.000
125.000
Fatigue load rating
10.800
13.700
Basic dynamic load rating (kN)
0.000
0.000
Basic static load rating (kN)
0.000
0.000
PARAMETERS
BEARING 1
BEARING 2
Bearing type
SKF *22209E
Spherical roller bearings
SKF *22211E
Spherical roller bearings
Bearing position (mm)
48.500
170.000
Attachment of external ring
Fixed bearing
Fixed bearing
Inner diameter (mm)
45.000
55.000
External diameter (mm)
85.000
100.00
Width (mm)
23.000
25.000
Corner radius (mm)
1.100
1.500
Basic static load rating
98.000
127.000
Basic dynamic load rating
102.000
125.000
Fatigue load rating
10.800
13.700
Basic dynamic load rating (kN)
0.000
0.000
Basic static load rating (kN)
0.000
0.000
TABLE.XXI OUTPUT SHAFT BEARINGS PARAMETERS
Fig.22 Load application
Fig.23 Force diagram
Fig.24 Torque diagram
-
FACTORS OF GENERAL INFLUENCE
PARAMETERS
GEAR 1
GEAR 2
Axial force (N)
945.8
945.8
Radial force (N)
944.8
944.8
Pitch line velocity (ft/min)
563.13
563.13
Mesh alignment factor
0.140
0.140
Mesh alignment correction factor
0.800
0.800
Lead correction factor
1.000
1.000
Pinion proportion factor
0.025
0.025
Face load distribution factor
1.138
1.138
Load distribution factor
1.138
1.138
Dynamic factor
1.250
1.250
Number of load cycles (in mio.)
153.471
48.464
Rim thickness factor
1.00
1.00
Size factor
1.00
1.00
Load angle (°)
30.33
21.45
PARAMETERS
GEAR 1
GEAR 2
Axial force (N)
945.8
945.8
Radial force (N)
944.8
944.8
Pitch line velocity (ft/min)
563.13
563.13
Mesh alignment factor
0.140
0.140
Mesh alignment correction factor
0.800
0.800
Lead correction factor
1.000
1.000
Pinion proportion factor
0.025
0.025
Face load distribution factor
1.138
1.138
Load distribution factor
1.138
1.138
Dynamic factor
1.250
1.250
Number of load cycles (in mio.)
153.471
48.464
Rim thickness factor
1.00
1.00
Size factor
1.00
1.00
Load angle (°)
30.33
21.45
TABLE.XXII 1ST REDUCTION PARAMETERS
Height of Lewis parabola(mm)
4.08
3.90
Tooth thickness at critical section(mm)
4.31
4.29
Helical factor
1.35
1.35
Tooth form factor Y
0.512
0.469
Stress correction factor
1.464
1.482
Load sharing ratio
0.63
0.63
Bending strength geometry factor J
0.557
0.505
Bending stress number(N/mm2 )
259.23
286.26
Stress cycle factor
0.969
0.989
Temperature factor
1.000
1.000
Reliability factor
1.000
1.000
Required safety factor
1.400
1.400
Size factor
1.000
1.000
Load sharing ratio
0.627
0.627
Geometry factor I
0.217
0.217
Contact stress number
168021
1158.26
Service factor for tooth root
3.22
2.97
Service factor for pitting
2.96
3.12
Service factor for gear set
2.96
2.96
Height of Lewis parabola(mm)
4.08
3.90
Tooth thickness at critical section(mm)
4.31
4.29
Helical factor
1.35
1.35
Tooth form factor Y
0.512
0.469
Stress correction factor
1.464
1.482
Load sharing ratio
0.63
0.63
Bending strength geometry factor J
0.557
0.505
Bending stress number(N/mm2 )
259.23
286.26
Stress cycle factor
0.969
0.989
Temperature factor
1.000
1.000
Reliability factor
1.000
1.000
Required safety factor
1.400
1.400
Size factor
1.000
1.000
Load sharing ratio
0.627
0.627
Geometry factor I
0.217
0.217
Contact stress number
168021
1158.26
Service factor for tooth root
3.22
2.97
Service factor for pitting
2.96
3.12
Service factor for gear set
2.96
2.96
TABLE.XXIII 2ND REDUCTION PARAMETERS
PARAMETERS
GEAR 3
GEAR 4
Axial force (N)
2721.0
2721.0
Radial force (N)
2940.2
2940.2
Pitch line velocity (ft/min)
197.95
197.95
Mesh alignment factor
0.154
0.154
Mesh alignment correction factor
0.800
0.800
Lead correction factor
1.000
1.000
Pinion proportion factor
0.077
0.077
Face load distribution factor
1.200
1.200
Load distribution factor
1.200
1.200
Dynamic factor
1.091
1.091
Number of load cycles (in mio.)
48.013
15.162
Rim thickness factor
1.00
1.00
Size factor
1.00
1.00
Load angle (°)
30.33
21.45
Height of Lewis parabola (mm)
4.60
4.52
Tooth thickness at critical section(mm)
4.89
5.12
Helical factor
1.35
1.35
Tooth form factor Y
0.527
0.524
Stress correction factor
1.475
1.525
Load sharing ratio
0.65
0.65
Bending strength geometry factor J
0.556
0.526
Bending stress number(N/mm2 )
302.83
314.68
Stress cycle factor
0.990
1.010
Temperature factor
1.000
1.000
Reliability factor
1.000
1.000
Required safety factor
1.400
1.400
Size factor
1.000
1.000
Load sharing ratio
0.627
0.627
Geometry factor I
0.217
0.217
Contact stress number
168021
1158.26
Service factor for tooth root
2.81
2.76
Service factor for pitting
2.76
2.90
Service factor for gear set
2.75
2.90
-
FORMULAE USED
-
Gear Wear Equations
[1]-
Gear Bending Equations
-
-
-
RESULTS AND DISCUSSIONS
TABLE.XXIV GEAR PARAMETERS
PARAMETERS
1st Reduction
2nd Reduction
Bending safety factor
Gear 1
Gear 2
Gear 3
Gear 4
1.61
1.49
1.41
1.38
Pitting safety factor
1.22
1.25
1.17
1.20
Probability of scuffing
<5%
<5%
Meshing stiffness (N/mm/µm)
17.145
17.463
Total weight (kg)
2.871
7.464
Wear sliding coefficient by Niemann
0.986
0.868
Gear power loss (kW)
0.113
0.126
Meshing efficiency (%)
98.489
98.323
Kinematic viscosity of oil (40C)
220
220
Kinematic viscosity of oil (100C)
17.5
17.5
Oil temperature (C)
70
70
-
FOR 1ST REDUCTION
Fig.25 Hardening depth
Fig.26 Oil viscosity
Fig.27 Factor of safety
Fig.28 Contact temperature
-
FOR 2ND REDUCTION
Fig.29 Hardening depth
Fig.30 Oil viscosity
Fig.31 Factor of safety
PARAMETER
INPUT SHAFT
INTERMEDIATE SHAFT
OUTPUT SHAFT
Maximum deflection
0.019
0.028
0.029
Mass centre of gravity (mm)
73.746
74.941
117.0
Total axial load (N)
937.47
1781.604
-2756.7
Torsion under torque()
0.105
-0.045
-0.096
Minimum factor of safety for endurance
3.49
2.56
3.77
Minimum factor of safety for yield point
4.92
6.45
3.69
Eigen frequency (Hz)
4195.66
4116.53
4816.68
Critical speed (1/min)
251739.33
246991.62
289000.64
PARAMETER
INPUT SHAFT
INTERMEDIATE SHAFT
OUTPUT SHAFT
Maximum deflection
0.019
0.028
0.029
Mass centre of gravity (mm)
73.746
74.941
117.0
Total axial load (N)
937.47
1781.604
-2756.7
Torsion under torque()
0.105
-0.045
-0.096
Minimum factor of safety for endurance
3.49
2.56
3.77
Minimum factor of safety for yield point
4.92
6.45
3.69
Eigen frequency (Hz)
4195.66
4116.53
4816.68
Critical speed (1/min)
251739.33
246991.62
289000.64
Fig.32 Contact temperature TABLE.XXV SHAFT PARAMETERS
-
FOR INPUT SHAFT
Fig.33 Bending and torsion angle
Fig.34 Displacement
Fig.35 Equivalent stress
Fig.36 Goodman diagram
Fig.37 Strength diagram
-
FOR INTERMEDIATE SHAFT
Fig.38 Bending and torsion angle
Fig.39 Displacement
Fig.40 Equivalent stress
Fig.41 Strength
-
FOR OUTPUT SHAFT
-
Fig.42 Bending and torsion angle
Fig.43 Displacement
Fig.44 Equivalent stress
Fig.45 Goodman diagram
Fig.48 With Casing
-
GEAR PAIR ANALYSIS
TABLE.XXVI ANALYSIS PARAMETERS
PARAMETERS
VALUE
Equivalent stress
2.5924e-6
Maximum deformation
1.124e-10
Minimum factor of safety
4.5
-
GEARBOX DESIGN
Fig.46 Strength
Fig.47 Without Casing
Fig.49 Equivalent stress
Fig.50 Total deformation
-
-
TOOLS USED
SOLIDWORKS- It is used to create a complete 3D digital model of the component. The model consists of 2D and 3D solid model data which can also be used downstream in finite element analysis.
ANSYS- It is software which provides finite element analysis (FEA), in this methodology any component under consideration is discredited into small geometric shapes and the material properties are analyzed over these small elements.
KISSsoft- It is used for the design calculations involved in the designing of the various mechanical parts. KISSsoft have been incorporated with various calculation methods for the gear and shaft design separately.
-
CONCLUSION
This paper unveils the more sophisticated methodology of the gearbox designing using the modern designing softwares. By defining the load spectrum in the program more realistic driving conditions have been entered as an input to the software. And as a result designer can achieve more accurate results of strength, equivalent stress, deformation, safety factors and other such parameters .
REFERENCES
-
BudynasNisbett: Shigleys Mechanical Engineering Design,
Eighth Edition, 2008; Pg. 746-47
-
Gitin M. Maitra: Handbook of gear design, 1994 Stephen P. Radzevich; Dudleys Handbook of Practical Gear Design and Manufacture, Second Edition, 2012
-
Kapelevich, A. and McNamara, T., "Direct Gear Design® for Automotive Applications, 2013
-
Milosav Ognjanovic1 Miroslav Milutinovic2, Design for Reliability Based Methodology For Automotive Gearbox Load Capacity Identification, 2012