- Open Access
- Total Downloads : 1111
- Authors : Mr. Polamuri Pradeep, Mr.N.Vamsi Krishna
- Paper ID : IJERTV1IS5367
- Volume & Issue : Volume 01, Issue 05 (July 2012)
- Published (First Online): 03-08-2012
- ISSN (Online) : 2278-0181
- Publisher Name : IJERT
- License: This work is licensed under a Creative Commons Attribution 4.0 International License
Analysis of Power System Stabilizer Using Fuzzy Logic Controller
International Journal of Engineering Research & Technology (IJERT)
ISSN: 2278-0181
Vol. 1 Issue 5, July – 2012
Analysis of Power System Stabilizer Using Fuzzy Logic Controller
Mr. Polamuri Pradeep1, Mr.N.Vamsi Krishna2
1M. Tech Student, 2Assistant professor,
1, 2 Electrical and Electronics Department,
1, 2 V R Siddhartha Engineering College, Kanuru
1,2Vijayawada, India
AbstractThe performance of fuzzy-logic power systemstabilizer (FPSS), is investigatedby applying it to a single- machine power system connected to infinite bus. FPSS is developedusingspeeddeviation andthederivativeofspeed deviationasthecontrollerinputvariables.Theperformanc eofthesystemwith fuzzylogicbasedpowersystemstabilizeris compared withthesystemhavingconventionalpowersystem stabilizer
andsystemwithoutp ow er systemstabilizer.The simulationresultsshowthatthe proposedFPSSexhibitsverygood performanceindampingpowersystemlow frequencyoscillationsandgreatlyimprovespowersyste mstability.
Keywords: Power s y s t emstabilizer, s i n g l e -machine pow ersystem, fuzzylogiccontrol,lowfrequencyoscillations,system stability.
I.INTRODUCTION
Thepowersystem isadynamic system.Itis constantlybeingsubjectedto disturbances,which causethe generatorvoltageangletochange.When thesedisturbances dieout,anew acceptable steadystateoperatingconditionis reached.Itis importantthatthesedisturbances donot drive thesystemto unstable condition
In the pastfive decades thePSShave beenusedto providethedesired system performanceundercondition that requiresstabilization.Stability ofsynchronousgenerator dependson
anumberoffactorssuch asthesetting of automaticvoltage regulator(AVR).Manygenerators are designedwithhighgain,fastactingAVRs toenhancelarge scalestabilitytoholdthegeneratorin synchronismwith the
powersystemduringlargetransient faultconditions.But withthehighgainofexcitation systems,itcan decreasethe damping torque of generator.Asupplementaryexcitation controller referred to as PSS have been added to synchronousgeneratorstocounteracttheeffect ofhigh gain AVRs and other sourcesofnegative damping[7].
To provide damping,the stabilizersmust producea componentof
electricaltorqueontherotorwhichisinphase with speedvariations. The application of a PSSistogenerateasupplementarystabilizingsignal,whic h isapplied
totheexcitationsystemorcontrolloopofthegenerating unittoproduceapositivedamping.Themostwidely used conventional PSS is the lead-lag PSS, where the gain settingsare fixed atcertain values whichare
determined underparticularoperatingconditionsto resultinoptimal performanceforthatspecificcondition.However,theygi vePoorperformanceunderdifferentsynchronousgenerat or loadingconditions. ConventionalPSS(CPSS) iswidelyused in existing powersystemsandhasmadea contributionin enhancingpowersystemdynamicstability.Theparamete rs ofCPSSaredeterminedbasedon alinearizedmodel [2]of thepowersystem
aroundanominaloperatingpointwhere theycanprovidegoodperformance.Sincepowersystems arehighlynon-linearsystems,with configurations and parameters thatchangewith time,theCPSS design basedon thelinearizedmodelofthepowersystemcannotguarantee its performance ina practicaloperatingenvironment[3].
-
OVERVIEWOFPOWERSYSTEMAND MODELLING
Asimplifiedschematicdiagram [3]ofasingle- machineinfinite-bussystem isshowninFig.1.The system consistsof agenerating unit connectedtoaconstantvoltage bus throughtwoparalleltransmissionlines.An excitation systemandautomaticvoltageregulator (AVR)areemployed tocontroltheterminalvoltage,andan associatedgovernor monitors theshaftfrequencyandcontrolsmechanical power. Neglectingthetransientsinthestatorcircuitandtheeffect ofrotoramortisseur,thesynchronousgeneratorcan be representedin theform of Park'stwo- axismachinemodel by aset of simplifiedlinearequations [2]. Thetransmission networkwithanimpedance of re+jx,is connectedtoan infinite bus of voltage Vb and the AVR and excitation systemarerepresentedby afirstorderdifferentialequation. Undernormal operating conditions,alinear,time-invariant systemcan be derivedby applying smallperturbation relationsaroundacertainequilibriumpoint.A linearized model [6] isshowninBlockdiagramformatFig.2
Fig.1Aschematic diagram of the powerstem.
Fig.2Linearzedpower systemmodelwithFPSS
Fig.3Linearizedpower systemmodelwithPSS TABLE.1
PARAMETERS FORTHELINEARIZED POWERSYSTEMMODEL
Parameter
Value
K1
1.5495
K2
1.2255
K3
0.3231
K4
0.8910
K5
-0.0138
K6
0.4942
H
3.5
D
0
T3
2.3567
Ga(s)
210
TR
0.02
0
314
The blockdiagramfor power systemstabilizer [6] is shown below.
TABLE.2
PARAMETERS FOR THE ANALOG PSS
Fig.4Thermistor excitationsystemswithAVRandPSS
-
FUZZYLOGICBASEDPSS
The fuzzycontrolsystemsarerule-basedsystemsin whichasetoffuzzy rulesrepresentacontrol decision mechanismtoadjusttheeffectsofcertain system stimuli. Withaneffectiverulebase,thefuzzy controlsystemscan replaceaskilledhuman operator.Thefuzzy logiccontroller providesanalgorithmwhichcan convertthelinguistic control strategy based on expert knowledge into an automatic control strategy. The Fig.5 illustrates the schematicdesignofafuzzylogiccontrollerwhichconsist s ofafuzzification interface,a knowledge base,decision makinglogic, anda DefuzzificationInterface.
Fig.5Theprincipledesign of fuzzy logic controller
-
CONTROLLERDESIGNPROCEDURE
Thefuzzylogiccontroller(FLC)designconsistsofth e followingsteps.
1)
Identificationofinputandoutputvariabl es.
2)
Constructionofcontrolr ules.
-
Establishingthe approachfor describingsystemstate in termsoffuzzy sets,i.e.establishingfuzzificationmethod andfuzzymembershipfunctions.
-
Selectionofthe compositionalrule ofinference.
-
Defuzzification m e t h o d , i . e ., t r a n s f o r m a t i o n of t h e fuzzycontrol statementintospecific controlactions.
MEMBERSHIPFUNCTION:
Thevariableschosenforthiscontrollerarespeed deviation, accelerationandvoltage. In this, the speedDeviationandaccelerationaretheinputvar iablesandvoltageisthe outputvariable.
NB
NegativeBig
NM
NegativeMedium
NS
NegativeSmall
ZE
Zero
PS
Positive Small
PM
Positive Medium
PB
Positive Big
Table3. Membership functions for fuzzyvariables.
Fig.6Membership functionsfor Acceleration
Fig.7Membership functionsfor speeddeviation
Fig.8Membership functionsfor voltage
Eachoftheinput andoutputfuzzyvariablesisassigned seven linguisticfuzzy subsets varyingfromnegativebig(NB)topositivebig(PB).Ea chsubsetisassociatedwithaTriangularmembershipfu nction toform asetofseven membershipfunctionsfor eachfuzzyvariable.Thevariables arenormalizedby multiplyingwith respective gainsKin1,Kin2,Koutsothat thirvalueliesbetween- 1and1. Themembershipfunctions ofthe inputoutputvariableshave 50% overlap between adjacent fuzzy subsets.Themembershipfunctionfor acceleration,speedandvoltageare Shown below.
FUZZYRUL E BASE:
Asetof ruleswhich definetherelation between the inputandoutputoffuzzycontrollercan befoundusingthe availableknowledgeintheareaofdesigningPSS.Thes e rulesare definedusing thelinguisticvariables.Thetwo
inputs,speedandacceleration, resultin49rulesforeach machine. The typical rules are having the following structure: Rule1:Ifspeeddeviation isNM (negativemedium)AND acceleration is PS (positivesmall)thenvoltage(output of fuzzyPSS) isNS(negative small).
Rule2:IfspeeddeviationisNB (negative big)AND accelerationis NB(negativebig) thenvoltage (outputof fuzzyPSS) isNB(negative big).
Rule 3: If speeddeviationisPS(positive small) AN D
Acceleration isPS(positivesmall)thenvoltage(outputof fuzzyPSS) isPS(positive small). Andso on.
Allthe49rulesgoverningthemechanism areexplainedin Table3.2whereallthesymbolsaredefinedinthebasic fuzzylogic terminology:
T A B L E
. 4
RULE BASEOF FUZZYLOGICCONTROLLER
Speed
Deviation
Acceleration
NB
NM
NS
ZE
PS
PM
PB
NB
NB
NB
NB
NB
NM
NM
NS
NM
NB
NM
NM
NM
NS
NS
ZE
NS
NM
NM
NS
NS
ZE
ZE
PS
ZE
NM
NS
NS
ZE
PS
PS
PM
PS
NS
ZE
ZE
PS
PS
PM
PM
PM
ZE
PS
PS
PM
PM
PM
PB
PB
PS
PM
PM
PB
PB
PB
PB
-
-
RESULTSANDDISCUSSION SIMULINKMODEL:
Fig.9Simulinkmodel forsinglemachine connectedtoinfinitebuswithPSS
Fig.10Simulink model for singlemachineconnected toinfinitebuswith
Fuzzylogic basedPSS
CaseI:
Simulation resultswithoutPSS when voltage(0.1p.u)Disturbanceisapplied
Fig.11Loadanglewhen0.1 pp.voltagedisturbanceapplied
Fig.12Speeddeviation when5% torque disturbanceapplied
Fig.13Loadanglewhen5%torquedisturbanceapplied
CaseII:
Simulation resultswithPSS when voltagedisturbance (0.1p.u)andtorquedisturbanceof5%isapplied.
Fig.14Controlsignalwhen0.1 pp. voltagedisturbanceapplied
Fig.15Controlsignalwhen5% torquedisturbanceapplied
Fig.16 Load angle when 0.1 p.u voltage disturbance applied
Fig.17Loadanglewhen5%torquedisturbanceapplied
Fig.18Speeddeviation when0.1 pp.voltagedisturbanceapplied.
CaseIII:
Simulation resultswithFPSS when voltagedisturbance(0.1p.u)andtorquedisturbance of5%isapplied
Fig.19Controlsignalwhen0.1 pp. voltagedisturbanceapplied
Fig.20Controlsignalwhen5% torquedisturbanceapplied
Fig.23Speeddeviations when0.1 pp.voltage disturbanceapplied
Fig.24 Speeddeviationswhen5% torque disturbanceapplied VII.CONCLUSION
FromtheaboveresultswecansaythatFPSS shows thebettercontrolperformancethanpowersystemstabili zer interms ofsettling timeanddamping effect.Itisthus possibleto
realizethecontrollerefficiently.Therefore,it can beconcludedthat the performanceofthe proposedFPSSis much better andtheoscillations are dampedoutmuchquicker
REFERENCES
Fig .21Loadanglewhen0.1 pp.voltagedisturbanceapplied
[1]-
afee,T.Chen,andO.P.Malik,"Atechniqueforoptimal digital redesign of a n a l o g c o n t r o l l e r s ", IEEE T r a n s a c t i o n s on C o n t r o l SystemsTechnology,vol. 5, no.1pp. 89-99,Jan. 1997
-
F.P.deMelloand Concordia Conceptsof synchronousmachine
Stability aseffectedbyexcitationcontrol.IEEE TransactionsonPowerapparatusand systems.vol.PAS- 88,no.4, 316-329,1969.
-
S.Chen, O.P.Malik, Power system stabilizer design using mu
synthesis.IEEE Transactions on Energy conversion,
vol.10, no.1,
175-181.1996.
-
S.Chen and O.P.Malik, An H-inf optimization based power system stabilizer design.IEEE proceedings-Genaration, Transmision and
Distribution, vol.142, no.2, pp.179-184, 1993.
-
HanguShu, Optimal Design of Multirate Systems.thesis The
University of Calgary, April 1997
-
P Kundur, Power System Stability and Control,
McGraw-Hill 1994
-
H.Othman and J.J.Sanchez, M.A.Kale and J.H.Chow, On t he
-
design of robust power system stabilizers, Proceedings of the 28th Conference on Decision and Control .Tampa, Florida
December
1989.