Analysis of Power System Stabilizer Using Fuzzy Logic Controller

DOI : 10.17577/IJERTV1IS5367

Download Full-Text PDF Cite this Publication

Text Only Version

Analysis of Power System Stabilizer Using Fuzzy Logic Controller

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Vol. 1 Issue 5, July – 2012

Analysis of Power System Stabilizer Using Fuzzy Logic Controller

Mr. Polamuri Pradeep1, Mr.N.Vamsi Krishna2

1M. Tech Student, 2Assistant professor,

1, 2 Electrical and Electronics Department,

1, 2 V R Siddhartha Engineering College, Kanuru

1,2Vijayawada, India

AbstractThe performance of fuzzy-logic power systemstabilizer (FPSS), is investigatedby applying it to a single- machine power system connected to infinite bus. FPSS is developedusingspeeddeviation andthederivativeofspeed deviationasthecontrollerinputvariables.Theperformanc eofthesystemwith fuzzylogicbasedpowersystemstabilizeris compared withthesystemhavingconventionalpowersystem stabilizer

andsystemwithoutp ow er systemstabilizer.The simulationresultsshowthatthe proposedFPSSexhibitsverygood performanceindampingpowersystemlow frequencyoscillationsandgreatlyimprovespowersyste mstability.

Keywords: Power s y s t emstabilizer, s i n g l e -machine pow ersystem, fuzzylogiccontrol,lowfrequencyoscillations,system stability.

I.INTRODUCTION

Thepowersystem isadynamic system.Itis constantlybeingsubjectedto disturbances,which causethe generatorvoltageangletochange.When thesedisturbances dieout,anew acceptable steadystateoperatingconditionis reached.Itis importantthatthesedisturbances donot drive thesystemto unstable condition

In the pastfive decades thePSShave beenusedto providethedesired system performanceundercondition that requiresstabilization.Stability ofsynchronousgenerator dependson

anumberoffactorssuch asthesetting of automaticvoltage regulator(AVR).Manygenerators are designedwithhighgain,fastactingAVRs toenhancelarge scalestabilitytoholdthegeneratorin synchronismwith the

powersystemduringlargetransient faultconditions.But withthehighgainofexcitation systems,itcan decreasethe damping torque of generator.Asupplementaryexcitation controller referred to as PSS have been added to synchronousgeneratorstocounteracttheeffect ofhigh gain AVRs and other sourcesofnegative damping[7].

To provide damping,the stabilizersmust producea componentof

electricaltorqueontherotorwhichisinphase with speedvariations. The application of a PSSistogenerateasupplementarystabilizingsignal,whic h isapplied

totheexcitationsystemorcontrolloopofthegenerating unittoproduceapositivedamping.Themostwidely used conventional PSS is the lead-lag PSS, where the gain settingsare fixed atcertain values whichare

determined underparticularoperatingconditionsto resultinoptimal performanceforthatspecificcondition.However,theygi vePoorperformanceunderdifferentsynchronousgenerat or loadingconditions. ConventionalPSS(CPSS) iswidelyused in existing powersystemsandhasmadea contributionin enhancingpowersystemdynamicstability.Theparamete rs ofCPSSaredeterminedbasedon alinearizedmodel [2]of thepowersystem

aroundanominaloperatingpointwhere theycanprovidegoodperformance.Sincepowersystems arehighlynon-linearsystems,with configurations and parameters thatchangewith time,theCPSS design basedon thelinearizedmodelofthepowersystemcannotguarantee its performance ina practicaloperatingenvironment[3].

  1. OVERVIEWOFPOWERSYSTEMAND MODELLING

    Asimplifiedschematicdiagram [3]ofasingle- machineinfinite-bussystem isshowninFig.1.The system consistsof agenerating unit connectedtoaconstantvoltage bus throughtwoparalleltransmissionlines.An excitation systemandautomaticvoltageregulator (AVR)areemployed tocontroltheterminalvoltage,andan associatedgovernor monitors theshaftfrequencyandcontrolsmechanical power. Neglectingthetransientsinthestatorcircuitandtheeffect ofrotoramortisseur,thesynchronousgeneratorcan be representedin theform of Park'stwo- axismachinemodel by aset of simplifiedlinearequations [2]. Thetransmission networkwithanimpedance of re+jx,is connectedtoan infinite bus of voltage Vb and the AVR and excitation systemarerepresentedby afirstorderdifferentialequation. Undernormal operating conditions,alinear,time-invariant systemcan be derivedby applying smallperturbation relationsaroundacertainequilibriumpoint.A linearized model [6] isshowninBlockdiagramformatFig.2

    Fig.1Aschematic diagram of the powerstem.

    Fig.2Linearzedpower systemmodelwithFPSS

    Fig.3Linearizedpower systemmodelwithPSS TABLE.1

    PARAMETERS FORTHELINEARIZED POWERSYSTEMMODEL

    Parameter

    Value

    K1

    1.5495

    K2

    1.2255

    K3

    0.3231

    K4

    0.8910

    K5

    -0.0138

    K6

    0.4942

    H

    3.5

    D

    0

    T3

    2.3567

    Ga(s)

    210

    TR

    0.02

    0

    314

    The blockdiagramfor power systemstabilizer [6] is shown below.

    TABLE.2

    PARAMETERS FOR THE ANALOG PSS

    Fig.4Thermistor excitationsystemswithAVRandPSS

  2. FUZZYLOGICBASEDPSS

    The fuzzycontrolsystemsarerule-basedsystemsin whichasetoffuzzy rulesrepresentacontrol decision mechanismtoadjusttheeffectsofcertain system stimuli. Withaneffectiverulebase,thefuzzy controlsystemscan replaceaskilledhuman operator.Thefuzzy logiccontroller providesanalgorithmwhichcan convertthelinguistic control strategy based on expert knowledge into an automatic control strategy. The Fig.5 illustrates the schematicdesignofafuzzylogiccontrollerwhichconsist s ofafuzzification interface,a knowledge base,decision makinglogic, anda DefuzzificationInterface.

    Fig.5Theprincipledesign of fuzzy logic controller

  3. CONTROLLERDESIGNPROCEDURE

    Thefuzzylogiccontroller(FLC)designconsistsofth e followingsteps.

    1)

    Identificationofinputandoutputvariabl es.

    2)

    Constructionofcontrolr ules.

    1. Establishingthe approachfor describingsystemstate in termsoffuzzy sets,i.e.establishingfuzzificationmethod andfuzzymembershipfunctions.

    2. Selectionofthe compositionalrule ofinference.

    3. Defuzzification m e t h o d , i . e ., t r a n s f o r m a t i o n of t h e fuzzycontrol statementintospecific controlactions.

      MEMBERSHIPFUNCTION:

      Thevariableschosenforthiscontrollerarespeed deviation, accelerationandvoltage. In this, the speedDeviationandaccelerationaretheinputvar iablesandvoltageisthe outputvariable.

      NB

      NegativeBig

      NM

      NegativeMedium

      NS

      NegativeSmall

      ZE

      Zero

      PS

      Positive Small

      PM

      Positive Medium

      PB

      Positive Big

      Table3. Membership functions for fuzzyvariables.

      Fig.6Membership functionsfor Acceleration

      Fig.7Membership functionsfor speeddeviation

      Fig.8Membership functionsfor voltage

      Eachoftheinput andoutputfuzzyvariablesisassigned seven linguisticfuzzy subsets varyingfromnegativebig(NB)topositivebig(PB).Ea chsubsetisassociatedwithaTriangularmembershipfu nction toform asetofseven membershipfunctionsfor eachfuzzyvariable.Thevariables arenormalizedby multiplyingwith respective gainsKin1,Kin2,Koutsothat thirvalueliesbetween- 1and1. Themembershipfunctions ofthe inputoutputvariableshave 50% overlap between adjacent fuzzy subsets.Themembershipfunctionfor acceleration,speedandvoltageare Shown below.

      FUZZYRUL E BASE:

      Asetof ruleswhich definetherelation between the inputandoutputoffuzzycontrollercan befoundusingthe availableknowledgeintheareaofdesigningPSS.Thes e rulesare definedusing thelinguisticvariables.Thetwo

      inputs,speedandacceleration, resultin49rulesforeach machine. The typical rules are having the following structure: Rule1:Ifspeeddeviation isNM (negativemedium)AND acceleration is PS (positivesmall)thenvoltage(output of fuzzyPSS) isNS(negative small).

      Rule2:IfspeeddeviationisNB (negative big)AND accelerationis NB(negativebig) thenvoltage (outputof fuzzyPSS) isNB(negative big).

      Rule 3: If speeddeviationisPS(positive small) AN D

      Acceleration isPS(positivesmall)thenvoltage(outputof fuzzyPSS) isPS(positive small). Andso on.

      Allthe49rulesgoverningthemechanism areexplainedin Table3.2whereallthesymbolsaredefinedinthebasic fuzzylogic terminology:

      T A B L E

      . 4

      RULE BASEOF FUZZYLOGICCONTROLLER

      Speed

      Deviation

      Acceleration

      NB

      NM

      NS

      ZE

      PS

      PM

      PB

      NB

      NB

      NB

      NB

      NB

      NM

      NM

      NS

      NM

      NB

      NM

      NM

      NM

      NS

      NS

      ZE

      NS

      NM

      NM

      NS

      NS

      ZE

      ZE

      PS

      ZE

      NM

      NS

      NS

      ZE

      PS

      PS

      PM

      PS

      NS

      ZE

      ZE

      PS

      PS

      PM

      PM

      PM

      ZE

      PS

      PS

      PM

      PM

      PM

      PB

      PB

      PS

      PM

      PM

      PB

      PB

      PB

      PB

  4. RESULTSANDDISCUSSION SIMULINKMODEL:

Fig.9Simulinkmodel forsinglemachine connectedtoinfinitebuswithPSS

Fig.10Simulink model for singlemachineconnected toinfinitebuswith

Fuzzylogic basedPSS

CaseI:

Simulation resultswithoutPSS when voltage(0.1p.u)Disturbanceisapplied

Fig.11Loadanglewhen0.1 pp.voltagedisturbanceapplied

Fig.12Speeddeviation when5% torque disturbanceapplied

Fig.13Loadanglewhen5%torquedisturbanceapplied

CaseII:

Simulation resultswithPSS when voltagedisturbance (0.1p.u)andtorquedisturbanceof5%isapplied.

Fig.14Controlsignalwhen0.1 pp. voltagedisturbanceapplied

Fig.15Controlsignalwhen5% torquedisturbanceapplied

Fig.16 Load angle when 0.1 p.u voltage disturbance applied

Fig.17Loadanglewhen5%torquedisturbanceapplied

Fig.18Speeddeviation when0.1 pp.voltagedisturbanceapplied.

CaseIII:

Simulation resultswithFPSS when voltagedisturbance(0.1p.u)andtorquedisturbance of5%isapplied

Fig.19Controlsignalwhen0.1 pp. voltagedisturbanceapplied

Fig.20Controlsignalwhen5% torquedisturbanceapplied

Fig.23Speeddeviations when0.1 pp.voltage disturbanceapplied

Fig.24 Speeddeviationswhen5% torque disturbanceapplied VII.CONCLUSION

FromtheaboveresultswecansaythatFPSS shows thebettercontrolperformancethanpowersystemstabili zer interms ofsettling timeanddamping effect.Itisthus possibleto

realizethecontrollerefficiently.Therefore,it can beconcludedthat the performanceofthe proposedFPSSis much better andtheoscillations are dampedoutmuchquicker

REFERENCES

Fig .21Loadanglewhen0.1 pp.voltagedisturbanceapplied

[1]
    1. afee,T.Chen,andO.P.Malik,"Atechniqueforoptimal digital redesign of a n a l o g c o n t r o l l e r s ", IEEE T r a n s a c t i o n s on C o n t r o l SystemsTechnology,vol. 5, no.1pp. 89-99,Jan. 1997

      1. F.P.deMelloand Concordia Conceptsof synchronousmachine

        Stability aseffectedbyexcitationcontrol.IEEE TransactionsonPowerapparatusand systems.vol.PAS- 88,no.4, 316-329,1969.

      2. S.Chen, O.P.Malik, Power system stabilizer design using mu

        synthesis.IEEE Transactions on Energy conversion,

        vol.10, no.1,

        175-181.1996.

      3. S.Chen and O.P.Malik, An H-inf optimization based power system stabilizer design.IEEE proceedings-Genaration, Transmision and

        Distribution, vol.142, no.2, pp.179-184, 1993.

      4. HanguShu, Optimal Design of Multirate Systems.thesis The

        University of Calgary, April 1997

      5. P Kundur, Power System Stability and Control,

        McGraw-Hill 1994

      6. H.Othman and J.J.Sanchez, M.A.Kale and J.H.Chow, On t he

design of robust power system stabilizers, Proceedings of the 28th Conference on Decision and Control .Tampa, Florida

December

1989.

Leave a Reply