- Open Access
- Authors : Pawan Kumar, Prashanta Kumar Pradhan
- Paper ID : IJERTCONV8IS01011
- Volume & Issue : NCRTAPSE – 2020 (Volume 8 – Issue 01)
- Published (First Online): 08-02-2020
- ISSN (Online) : 2278-0181
- Publisher Name : IJERT
- License: This work is licensed under a Creative Commons Attribution 4.0 International License
A Method to Optimize Process Parameters of Turning
Pawan Kumar
Mechanical Engineering
Einstein Academy of Technology & Management Bhubaneswar, India
Prashanta Kumar Pradhan
Mechanical Engineering
Veer Surendra Sai University of Technology Burla, India
Abstract-It is well known that the relation between different input process parameters and surface roughness in all machining operations. The same things happen in turning operation also. In turning operation, the input parameters speed, feed, depth of cut etc. affect the surface finish. Many engineer and researchers have tried to do optimize of this. But still, there is a gap in determining of the exact contribution of speed, feed and depth of cut (S, F&D) to get optimum surface finish.
Keyword:-ANOVA, Taguchi, surface finish, S/N ratio, orthogonal array, Grey.
-
INTRODUCTION
A common process to manufacture parts to a precise dimension has the removal of excess material by
machining operation with the help of cutting tool. Turning process is the one of the methods to remove material from cylindrical and non-cylindrical parts. Taguchi method is a dominant tool for the design of high quality systems. It offers simple, effective and methodical tactic to optimize design for performance, quality and cost. Taguchi method is efficient method for designing process that operates consistently and optimally over a variety of conditions. Taguchi approach to design the of experiments easy to adopt and apply for users with limited knowledge of statics, hence grew wide popularity in the engineering and scientific community.
-
PHYSICAL DESCRIPTION OF THE PROBLEM
Equipments used in the Machining Process: High Speed Precision Lathe NH22
Cutting Tool Used: Tungsten Carbide Tip Tool
Work Piece Used: Mild steel bars of diameter 32mm and length 200 mm.
Roughness Measurement: Surface Profile Roughness measurement has been done using a portable stylus-type profilometer,
Process variables and their limits for L27
Taguchi method is efficient method for designing process that operates consistently and optimally over a variety of conditions. Taguchi approach to design of experiments easy to adopt and apply for users with limited knowledge of statics, hence gained wide popularity in the engineering and scientific community. The desired cutting parameters determined by handbook. Cutting parameter are reflected on surface roughness.
Levels
Speed (RPM)
Feed (mm/rev)
Depth of Cut (mm)
1
740
0.09
0.15
2
580
0.07
0.10
3
450
0.05
0.05
TABLE 1.
-
EXPERIMENTATION
-
Design of experiment techniques, i.e. Taguchis technique has been used to accomplish the objective. L27 orthogonal array used for conducting the experiments. ANOVA and factorial design technique is employed to analyse the PC and influence of Process Parameters.
-
RESULTS AND DISCUSSION
The results and discussion of the present work mainly consists of the following;
-
Percentages contribution of input variables on surface finish using Grey Relational Analysis technique.
-
Percentages contribution of input variables on Ra, MMR&PC using Grey Relational Analysis technique.
-
Percentages contribution of input variables on Ra, MMR&PC using Weighted Signal to Noise Ratio (WSNR) technique.
-
Percentages contribution of input variables on Ra, MMR&PC using Multi-Response Signal-to-Noise Ratio (MRSN) technique.
-
3.1. Percentages contribution of input variables on multi response using Taguchi using Gray relational analysis (GRA)
The data obtained from the experiments (L27) have been used to get the PC of the input variables.
Experimental Results For 27
17 |
0.362 56 |
0.91530 |
0.860 369 |
0.439 58 |
0.855 134 |
0.781 7 |
0.692 139 |
18 |
0.446 97 |
0.60586 |
0.718 48 |
0.474 82 |
0.559 196 |
0.639 779 |
0.557 932 |
19 |
0.542 11 |
0.76707 |
0.358 845 |
0.521 98 |
0.682 193 |
0.438 152 |
0.547 442 |
20 |
0.490 13 |
0.27615 |
0.745 995 |
0.495 12 |
0.408 545 |
0.663 126 |
0.522 262 |
21 |
1.000 00 |
0.62115 |
0.408 17 |
1.000 00 |
0.568 928 |
0.457 947 |
0.675 625 |
22 |
0.193 79 |
0.77983 |
0.983 072 |
0.382 79 |
0.694 28 |
0.967 252 |
0.681 44 |
23 |
0.437 08 |
0.92275 |
0.821 088 |
0.470 40 |
0.866 183 |
0.736 472 |
0.691 018 |
24 |
0.803 14 |
0.10682 |
0.677 427 |
0.717 51 |
0.358 892 |
0.607 849 |
0.561 416 |
25 |
0.224 55 |
0.84091 |
0.522 656 |
0.392 02 |
0.758 625 |
0.511 591 |
0.554 078 |
26 |
0.772 57 |
0.00000 |
0.639 089 |
0.687 35 |
0.333 333 |
0.580 78 |
0.533 822 |
27 |
0.700 97 |
0.11026 |
1 |
0.625 76 |
0.359 779 |
1 |
0.661 847 |
Sl . N o. |
|||||||
Ra(µ m) |
MRR( 3/ ) |
PC(K W) |
Ra |
MRR |
PC |
||
1 |
0.706 44 |
1.00000 |
0.198 281 |
0.630 08 |
1 |
0.384 107 |
0.671 394 |
2 |
0.306 62 |
0.69516 |
0 |
0.418 98 |
0.621 243 |
0.333 333 |
0.457 851 |
3 |
0.715 01 |
0.51074 |
0.108 704 |
0.636 95 |
0.505 429 |
0.359 377 |
0.500 586 |
0.617 30 |
0.72395 |
0.095 206 |
0.566 45 |
0.644 286 |
0.355 924 |
0.522 219 |
|
5 |
0.290 25 |
0.94381 |
0.255 436 |
0.413 31 |
0.898 968 |
0.401 747 |
0.571 342 |
6 |
0.319 61 |
0.81745 |
0.361 378 |
0.423 59 |
0.732 55 |
0.439 127 |
0.531 755 |
7 |
0.219 73 |
0.87470 |
0.215 109 |
0.390 54 |
0.799 616 |
0.389 138 |
0.526 432 |
8 |
0.408 13 |
0.75819 |
0.369 379 |
0.457 93 |
0.674 026 |
0.442 235 |
0.524 73 |
9 |
0.446 97 |
0.81745 |
0.685 388 |
0.474 82 |
0.732 55 |
0.613 789 |
0.607 054 |
10 |
0.738 55 |
0.99975 |
0.413 324 |
0.656 64 |
0.999 501 |
0.460 119 |
0.705 42 |
11 |
0.138 17 |
0.76707 |
0.719 954 |
0.367 15 |
0.682 193 |
0.640 988 |
0.563 445 |
12 |
0.695 68 |
0.79291 |
0.557 281 |
0.621 64 |
0.707 124 |
0.530 381 |
0.619 715 |
13 |
0.290 43 |
0.92153 |
0.348 929 |
0.413 37 |
0.864 352 |
0.434 378 |
0.570 7 |
14 |
0.388 96 |
0.86648 |
0.482 876 |
0.450 03 |
0.789 247 |
0.491 582 |
0.576 952 |
15 |
0.490 41 |
0.76575 |
0.253 217 |
0.495 25 |
0.680 971 |
0.401 032 |
0.525 751 |
16 |
0.000 00 |
0.91777 |
0.666 428 |
0.333 33 |
0.858 77 |
0.599 828 |
0.597 311 |
Sl . N o. |
|||||||
Ra(µ m) |
MRR( 3/ ) |
PC(K W) |
Ra |
MRR |
PC |
||
1 |
0.706 44 |
1.00000 |
0.198 281 |
0.630 08 |
1 |
0.384 107 |
0.671 394 |
2 |
0.306 62 |
0.69516 |
0 |
0.418 98 |
0.621 243 |
0.333 333 |
0.457 851 |
3 |
0.715 01 |
0.51074 |
0.108 704 |
0.636 95 |
0.505 429 |
0.359 377 |
0.500 586 |
4 |
0.617 30 |
0.72395 |
0.095 206 |
0.566 45 |
0.644 286 |
0.355 924 |
0.522 219 |
5 |
0.290 25 |
0.94381 |
0.255 436 |
0.413 31 |
0.898 968 |
0.401 747 |
0.571 342 |
6 |
0.319 61 |
0.81745 |
0.361 378 |
0.423 59 |
0.732 55 |
0.439 127 |
0.531 755 |
7 |
0.219 73 |
0.87470 |
0.215 109 |
0.390 54 |
0.799 616 |
0.389 138 |
0.526 432 |
8 |
0.408 13 |
0.75819 |
0.369 379 |
0.457 93 |
0.674 026 |
0.442 235 |
0.524 73 |
9 |
0.446 97 |
0.81745 |
0.685 388 |
0.474 82 |
0.732 55 |
0.613 789 |
0.607 054 |
10 |
0.738 55 |
0.99975 |
0.413 324 |
0.656 64 |
0.999 501 |
0.460 119 |
0.705 42 |
11 |
0.138 17 |
0.76707 |
0.719 954 |
0.367 15 |
0.682 193 |
0.640 988 |
0.563 445 |
12 |
0.695 68 |
0.79291 |
0.557 281 |
0.621 64 |
0.707 124 |
0.530 381 |
0.619 715 |
13 |
0.290 43 |
0.92153 |
0.348 929 |
0.413 37 |
0.864 352 |
0.434 378 |
0.570 7 |
14 |
0.388 96 |
0.86648 |
0.482 876 |
0.450 03 |
0.789 247 |
0.491 582 |
0.576 952 |
15 |
0.490 41 |
0.76575 |
0.253 217 |
0.495 25 |
0.680 971 |
0.401 032 |
0.525 751 |
16 |
0.000 00 |
0.91777 |
0.666 428 |
0.333 33 |
0.858 77 |
0.599 828 |
0.597 311 |
TABLE 2.
Figure 1: variation of Gray relational grade
Level of parameters |
Speed (S) |
Feed (F) |
Depth of cut (D) |
1 |
0.545929 |
0.58486 |
0.597382 |
2 |
0.601041 |
0.581399 |
0.570396 |
3 |
0.603217 |
0.583927 |
0.582409 |
Delta(Max- Min) |
0.057288 |
0.003461 |
0.026986 |
Rank |
1 |
3 |
2 |
TABLE 3.( ANOVA Results for Gray relational analysis)
Figure 2: variation of level average of parameters
Facto rs(Fa ) |
Sum of Square (SS) |
Degree of Freedom (DOF) |
Mean Square(MS ) |
PC |
S |
0.00636 77 |
2 |
0.003184 |
5.234443 |
F |
0.02544 08 |
2 |
0.01272 |
20.91311 |
D |
0.00062 62 |
2 |
0.000313 |
0.514755 |
S*F |
0.02553 74 |
4 |
0.006384 |
20.99252 |
S*D |
0.00673 77 |
4 |
0.001684 |
5.538594 |
F*D |
0.01969 06 |
4 |
0.004923 |
16.18627 |
S*F* D |
0.03724 94 |
8 |
0.004656 |
30.62014 |
Error |
——— |
0 |
———– |
———— |
Total |
0.12164 98 |
26 |
———- |
100 |
Facto rs(Fa ) |
Sum of Square (SS) |
Degree of Freedom (DOF) |
Mean Square(MS ) |
PC |
S |
0.00636 77 |
2 |
0.003184 |
5.234443 |
F |
0.02544 08 |
2 |
0.01272 |
20.91311 |
D |
0.00062 62 |
2 |
0.000313 |
0.514755 |
S*F |
0.02553 74 |
4 |
0.006384 |
20.99252 |
S*D |
0.00673 77 |
4 |
0.001684 |
5.538594 |
F*D |
0.01969 06 |
4 |
0.004923 |
16.18627 |
S*F* D |
0.03724 94 |
8 |
0.004656 |
30.62014 |
Error |
——— |
0 |
———– |
———— |
Total |
0.12164 98 |
26 |
———- |
100 |
S . N . |
S/N ratio () |
Scaled S/N ratio () |
WS N |
||||
Ra |
MR R |
PC |
Ra |
MR R |
PC |
||
1 |
– 8.730 25 |
– 2.61 537 |
– 19.3 056 |
0.70 644 |
0.99 3339 |
0.19 828 |
0.63 2688 |
2 |
– 13.26 67 |
– 8.29 756 |
– 21.3 227 |
0.30 661 |
0.69 5336 |
0 |
0.33 3983 |
3 |
– 8.633 06 |
– 11.8 149 |
– 20.2 168 |
0.71 501 |
0.51 0868 |
0.10 8709 |
0.44 4863 |
4 |
– 9.741 64 |
– 7.74 856 |
– 20.3 542 |
0.61 730 |
0.72 4128 |
0.09 5203 |
0.47 8878 |
5 |
– 13.45 23 |
– 3.55 533 |
– 18.7 242 |
0.29 025 |
0.94 4043 |
0.25 5431 |
0.49 6576 |
6 |
– 13.11 93 |
– 5.96 519 |
– 17.6 464 |
0.31 960 |
0.81 7657 |
0.36 1378 |
0.49 9547 |
7 |
– 14.25 25 |
– 4.87 336 |
– 19.1 344 |
0.21 973 |
0.87 4918 |
0.21 5109 |
0.43 6585 |
8 |
– 12.11 49 |
– 7.09 549 |
– 17.5 65 |
0.40 813 |
0.75 8378 |
0.36 938 |
0.51 1963 |
9 |
– 11.67 42 |
– 5.96 519 |
– 14.3 502 |
0.44 697 |
0.81 7657 |
0.68 5393 |
0.65 0007 |
1 0 |
– 8.366 03 |
– 2.48 836 |
– 17.1 18 |
0.73 855 |
1 |
0.41 332 |
0.71 7289 |
1 1 |
– 15.17 78 |
– 6.92 610 |
– 13.9 986 |
0.13 817 |
0.76 7262 |
0.71 9955 |
0.54 1797 |
1 2 |
– 8.852 42 |
– 6.43 328 |
– 15.6 535 |
0.69 568 |
0.79 3108 |
0.55 7279 |
0.68 2021 |
1 3 |
– 13.45 03 |
– 3.98 016 |
– 17.7 73 |
0.29 043 |
0.92 1762 |
0.34 8933 |
0.52 0376 |
1 4 |
– 12.33 25 |
– 5.03 004 |
– 16.4 104 |
0.38 895 |
0.86 6701 |
0.48 2876 |
0.57 951 |
1 5 |
– 11.18 14 |
– 6.95 121 |
– 18.7 467 |
0.49 041 |
0.76 5945 |
0.25 3219 |
0.50 319 |
1 6 |
– 16.74 55 |
– 4.05 188 |
– 14.5 431 |
0.00 000 |
0.91 8001 |
0.66 6431 |
0.52 8144 |
1 7 |
– 12.63 19 |
– 4.09 909 |
– 12.5 702 |
0.36 256 |
0.91 5525 |
0.86 0366 |
0.71 2818 |
1 8 |
– 11.67 42 |
– 10.0 008 |
– 14.0 136 |
0.44 697 |
0.60 6009 |
0.71 848 |
0.59 0487 |
1 9 |
– 10.59 48 |
– 6.92 610 |
– 17.6 722 |
0.54 211 |
0.76 7262 |
0.35 8842 |
0.55 6071 |
2 0 |
– 11.18 45 |
– 16.2 892 |
– 13.7 337 |
0.49 013 |
0.27 6213 |
0.74 5994 |
0.50 4113 |
2 1 |
– 5.399 59 |
– 9.70 904 |
– 17.1 704 |
1.00 000 |
0.62 131 |
0.40 8169 |
0.67 6493 |
2 2 |
– 14.54 |
– 6.68 |
– 11.3 |
0.19 379 |
0.78 0025 |
0.98 3073 |
0.65 2295 |
S . N . |
S/N ratio () |
Scaled S/N ratio () |
WS N |
||||
Ra |
MR R |
PC |
Ra |
MR R |
PC |
||
1 |
– 8.730 25 |
– 2.61 537 |
– 19.3 056 |
0.70 644 |
0.99 3339 |
0.19 828 |
0.63 2688 |
2 |
– 13.26 67 |
– 8.29 756 |
– 21.3 227 |
0.30 661 |
0.69 5336 |
0 |
0.33 3983 |
3 |
– 8.633 06 |
– 11.8 149 |
– 20.2 168 |
0.71 501 |
0.51 0868 |
0.10 8709 |
0.44 4863 |
4 |
– 9.741 64 |
– 7.74 856 |
– 20.3 542 |
0.61 730 |
0.72 4128 |
0.09 5203 |
0.47 8878 |
5 |
– 13.45 23 |
– 3.55 533 |
– 18.7 242 |
0.29 025 |
0.94 4043 |
0.25 5431 |
0.49 6576 |
6 |
– 13.11 93 |
– 5.96 519 |
– 17.6 464 |
0.31 960 |
0.81 7657 |
0.36 1378 |
0.49 9547 |
7 |
– 14.25 25 |
– 4.87 336 |
– 19.1 344 |
0.21 973 |
0.87 4918 |
0.21 5109 |
0.43 6585 |
8 |
– 12.11 49 |
– 7.09 549 |
– 17.5 65 |
0.40 813 |
0.75 8378 |
0.36 938 |
0.51 1963 |
9 |
– 11.67 42 |
– 5.96 519 |
– 14.3 502 |
0.44 697 |
0.81 7657 |
0.68 5393 |
0.65 0007 |
1 0 |
– 8.366 03 |
– 2.48 836 |
– 17.1 18 |
0.73 855 |
1 |
0.41 332 |
0.71 7289 |
1 1 |
– 15.17 78 |
– 6.92 610 |
– 13.9 986 |
0.13 817 |
0.76 7262 |
0.71 9955 |
0.54 1797 |
1 2 |
– 8.852 42 |
– 6.43 328 |
– 15.6 535 |
0.69 568 |
0.79 3108 |
0.55 7279 |
0.68 2021 |
1 3 |
– 13.45 03 |
– 3.98 016 |
– 17.7 73 |
0.29 043 |
0.92 1762 |
0.34 8933 |
0.52 0376 |
1 4 |
– 12.33 25 |
– 5.03 004 |
– 16.4 104 |
0.38 895 |
0.86 6701 |
0.48 2876 |
0.57 951 |
1 5 |
– 11.18 14 |
– 6.95 121 |
– 18.7 467 |
0.49 041 |
0.76 5945 |
0.25 3219 |
0.50 319 |
1 6 |
– 16.74 55 |
– 4.05 188 |
– 14.5 431 |
0.00 000 |
0.91 8001 |
0.66 6431 |
0.52 8144 |
1 7 |
– 12.63 19 |
– 4.09 909 |
– 12.5 702 |
0.36 256 |
0.91 5525 |
0.86 0366 |
0.71 2818 |
1 8 |
– 11.67 42 |
– 10.0 008 |
– 14.0 136 |
0.44 697 |
0.60 6009 |
0.71 848 |
0.59 0487 |
1 9 |
– 10.59 48 |
– 6.92 610 |
– 17.6 722 |
0.54 211 |
0.76 7262 |
0.35 8842 |
0.55 6071 |
2 0 |
– 11.18 45 |
– 16.2 892 |
– 13.7 337 |
0.49 013 |
0.27 6213 |
0.74 5994 |
0.50 4113 |
2 1 |
– 5.399 59 |
– 9.70 904 |
– 17.1 704 |
1.00 000 |
0.62 131 |
0.40 8169 |
0.67 6493 |
2 2 |
– 14.54 |
– 6.68 |
– 11.3 |
0.19 379 |
0.78 0025 |
0.98 3073 |
0.65 2295 |
Table 3.4: weighted S/N ratio for L27
TABLE 4.
40
30
20
10
0
40
30
20
10
0
Figure 3: PC of factors
It is observed from above (L27-GRA) analysis that S3-F1- D1 is the optimal combination for getting best output results and corresponding Gray relational grade is 0.547442. The best output results mean the combination of all output parameters, these are surface finish, MRR and power consumption with equal weightage. The PC of speed is 5.23 %, of feed is 20.91 % and of depth of cut is 0.52 %. Similarly, the PC of speed and feed is 20.99%, of speed and depth of cut is 5.53%, of feed and depth of cut is 16.18%, and the combination of S, F&Dof cut is 30.62%. It indicates that, for the above ranges of input levels, the feed is most (single) effective parameters and as a combination, S-F-D is most effective.
Percentages contribution of input variables on surface finish using weighted signal-to-noise ratio technique.
Using the data obtained from the table (Table 5.7), the weighted signal-to-noise ratio (WSN) of input variables have been calculated.
WSN
40
30
20
10
0
WSN
40
30
20
10
0
Figure3.4: Variation of WSN
Table 3.5: Level Average for WSN
Level |
Speed (S) |
Feed(F) |
Depth of Cut |
1 |
0.498343 |
0.56548 |
0.561307 |
2 |
0.597292 |
0.554062 |
0.54204 |
3 |
0.583212 |
0.559306 |
0.57550 |
Delta (Max- Min) |
0.098949 |
0.011418 |
0.03346 |
Rank |
1 |
3 |
2 |
Fa |
SS |
DOF |
MS |
PC |
S |
0.004096 |
2 |
0.0020478 |
1.672439 |
F |
0.017957 |
2 |
0.0089788 |
7.332784 |
D |
0.01138 |
2 |
0.0056848 |
4.646902 |
S*F |
0.080264 |
4 |
0.0200659 |
32.77565 |
S*D |
0.028104 |
4 |
0.0070261 |
11.47643 |
F*D |
0.050021 |
4 |
0.0125052 |
20.42596 |
S*F*D |
0.053067 |
8 |
0.0066334 |
21.66987 |
Error |
———– |
0 |
———— |
———— |
Total |
0.2448879 |
26 |
———– |
100 |
Fa |
SS |
DOF |
MS |
PC |
S |
0.004096 |
2 |
0.0020478 |
1.672439 |
F |
0.017957 |
2 |
0.0089788 |
7.332784 |
D |
0.01138 |
2 |
0.0056848 |
4.646902 |
S*F |
0.080264 |
4 |
0.0200659 |
32.77565 |
S*D |
0.028104 |
4 |
0.0070261 |
11.47643 |
F*D |
0.050021 |
4 |
0.0125052 |
20.42596 |
S*F*D |
0.053067 |
8 |
0.0066334 |
21.66987 |
Error |
———– |
0 |
———— |
———— |
Total |
0.2448879 |
26 |
———– |
100 |
Figure 3.5: Variation of level average of parameter Table 3.6: ANOVA for WSN:
Figure 3.6: PC of input parameters
68 |
275 |
219 |
|||||
2 3 |
– 11.78 65 |
– 3.95 684 |
– 12.9 698 |
0.43 707 |
0.92 2985 |
0.82 1085 |
0.72 7048 |
2 4 |
– 7.633 13 |
– 19.5 185 |
– 14.4 312 |
0.80 314 |
0.10 6852 |
0.67 743 |
0.52 9141 |
2 5 |
– 14.19 78 |
– 5.51 776 |
– 16.0 057 |
0.22 455 |
0.84 1123 |
0.52 2658 |
0.52 9443 |
2 6 |
– 7.979 97 |
– 21.5 559 |
– 14.8 213 |
0.77 257 |
0 |
0.63 9084 |
0.47 0552 |
2 7 |
– 8.792 34 |
– 19.4 530 |
– 11.1 497 |
0.70 097 |
0.11 0287 |
1 |
0.60 3753 |
68 |
275 |
219 |
|||||
2 3 |
– 11.78 65 |
– 3.95 684 |
– 12.9 698 |
0.43 707 |
0.92 2985 |
0.82 1085 |
0.72 7048 |
2 4 |
– 7.633 13 |
– 19.5 185 |
– 14.4 312 |
0.80 314 |
0.10 6852 |
0.67 743 |
0.52 9141 |
2 5 |
– 14.19 78 |
– 5.51 776 |
– 16.0 057 |
0.22 455 |
0.84 1123 |
0.52 2658 |
0.52 9443 |
2 6 |
– 7.979 97 |
– 21.5 559 |
– 14.8 213 |
0.77 257 |
0 |
0.63 9084 |
0.47 0552 |
2 7 |
– 8.792 34 |
– 19.4 530 |
– 11.1 497 |
0.70 097 |
0.11 0287 |
1 |
0.60 3753 |
It is observed from above (L27-WSN) analysis that S2- F1-D3 is the optimal combination for getting best output results and corresponding weighted signal-to-noise ratio is 0.619715. The best output results mean the combination of all output parameters, these are surface finish, MRR and power consumption with equal weightage. The PC of speed is 1.67 %, of feed is 7.33 %, and of depth of cut is 4.64 %. Similarly, the PC of speed and feed is 32.77%, of speed and depth of cut is 11.48%, of feed and depth of cut is 20.43%, and the combination of S, F&Dis 21.67%. It indicates that, for the above ranges of input levels, the feed is most (single) effective parameters and as a combination S-F is most effective.
Percentages contribution of input variables on surface finish using Multi-response signal-to-noise ratio technique.
Using the data obtained from the table (Table5.7), the multi-response signal-to-noise ratio (MRSN) of input variables have been calculated.
Sl . N o |
Quality loss() |
Normalised loss () |
Tota l quali ty loss( ) |
M RS N |
||||
Ra |
MR R |
PC |
Ra |
MR R |
PC |
|||
1 |
7.4 64 9 |
1.82 61 |
85.2 233 |
0.45 456 |
0.10 419 |
1.67 265 |
0.74 380 |
1.2 85 42 |
2 |
21. 21 61 |
6.75 70 |
135. 603 |
1.29 192 |
0.38 551 |
2.66 144 |
1.44 629 |
– 1.6 02 5 |
3 |
7.2 99 72 |
15.1 87 |
105. 119 |
0.44 450 |
0.86 6513 |
2.06 315 |
1.12 472 |
– 0.5 10 4 |
4 |
9.4 22 44 |
5.95 46 |
108. 496 |
0.57 376 |
0.33 9738 |
2.12 943 |
1.01 431 |
– 0.0 61 7 |
5 |
22. 14 26 |
2.26 74 |
74.5 444 |
1.34 834 |
0.12 936 |
1.46 306 |
0.98 025 |
0.0 86 6 |
6 |
20. 50 8 |
3.94 92 |
58.1 621 |
1.24 881 |
0.22 532 |
1.14 153 |
0.87 189 |
0.5 95 38 |
7 |
26. 62 |
3.07 14 |
81.9 293 |
1.62 113 |
0.17 5237 |
1.60 800 |
1.13 479 |
– 0.5 |
Sl . N o |
Quality loss() |
Normalised loss () |
Tota l quali ty loss( ) |
M RS N |
||||
Ra |
MR R |
PC |
Ra |
MR R |
PC |
|||
1 |
7.4 64 9 |
1.82 61 |
85.2 233 |
0.45 456 |
0.10 419 |
1.67 265 |
0.74 380 |
1.2 85 42 |
2 |
21. 21 61 |
6.75 70 |
135. 603 |
1.29 192 |
0.38 551 |
2.66 144 |
1.44 629 |
– 1.6 02 5 |
3 |
7.2 99 72 |
15.1 87 |
105. 119 |
0.44 450 |
0.86 6513 |
2.06 315 |
1.12 472 |
– 0.5 10 4 |
4 |
9.4 22 44 |
5.95 46 |
108. 496 |
0.57 376 |
0.33 9738 |
2.12 943 |
1.01 431 |
– 0.0 61 7 |
5 |
22. 14 26 |
2.26 74 |
74.5 444 |
1.34 834 |
0.12 936 |
1.46 306 |
0.98 025 |
0.0 86 6 |
6 |
20. 50 8 |
3.94 92 |
58.1 621 |
1.24 881 |
0.22 532 |
1.14 153 |
0.87 189 |
0.5 95 38 |
7 |
26. 62 |
3.07 14 |
81.9 293 |
1.62 113 |
0.17 5237 |
1.60 800 |
1.13 479 |
– 0.5 |
Table 3.7: Multi-response signal-to-noise ratio
25 |
49 1 |
|||||||
8 |
16. 27 39 |
5.12 32 |
57.0 822 |
0.99 097 |
0.29 2305 |
1.12 033 |
0.80 120 |
0.9 62 55 |
9 |
14. 70 33 |
3.94 92 |
27.2 285 |
0.89 534 |
0.22 532 |
0.53 440 |
0.55 169 |
2.5 83 04 |
1 0 |
6.8 64 |
1.77 35 |
51.4 985 |
0.41 799 |
0.10 118 |
1.01 074 |
0.50 997 |
2.9 24 49 |
1 1 |
32. 94 41 |
4.92 73 |
25.1 108 |
2.00 608 |
0.28 1124 |
0.49 284 |
0.92 668 |
0.3 30 68 |
1 2 |
7.6 77 88 |
4.39 87 |
36.7 576 |
0.46 753 |
0.25 096 |
0.72 143 |
0.47 997 |
3.1 87 79 |
1 3 |
22. 13 23 |
2.50 04 |
59.8 831 |
1.34 771 |
0.14 2661 |
1.17 530 |
0.88 856 |
0.5 13 12 |
1 4 |
17. 10 98 |
3.18 42 |
43.7 562 |
1.04 187 |
0.18 1674 |
0.85 879 |
0.69 411 |
1.5 85 69 |
1 5 |
13. 12 61 |
4.95 58 |
74.9 329 |
0.79 929 |
0.28 2754 |
1.47 068 |
0.85 091 |
0.7 01 15 |
1 6 |
47. 26 56 |
2.54 20 |
28.4 651 |
2.87 816 |
0.14 5036 |
0.55 867 |
1.19 396 |
– 0.7 69 9 |
1 7 |
18. 33 12 |
2.56 98 |
18.0 724 |
1.11 625 |
0.14 6621 |
0.35 470 |
0.53 919 |
2.6 82 56 |
1 8 |
14. 70 33 |
10.0 01 |
25.1 976 |
0.89 534 |
0.57 0643 |
0.49 454 |
0.65 351 |
1.8 47 47 |
1 9 |
11. 46 77 |
4.92 73 |
58.5 082 |
0.69 830 |
0.28 1124 |
1.14 832 |
0.70 925 |
1.4 91 99 |
2 0 |
13. 13 55 |
42.5 51 |
23.6 248 |
0.79 986 |
2.42 775 |
0.46 367 |
1.23 043 |
– 0.9 00 5 |
2 1 |
3.4 67 04 |
9.35 2 |
52.1 240 |
0.21 112 |
0.53 3572 |
1.02 302 |
0.58 923 |
2.2 97 08 |
2 2 |
28. 48 89 |
4.65 88 |
13.5 578 |
1.73 478 |
0.26 5805 |
0.26 609 |
0.75 556 |
1.2 17 29 |
2 3 |
15. 08 85 |
2.48 70 |
19.8 142 |
0.91 879 |
0.14 1897 |
0.38 888 |
0.48 319 |
3.1 58 79 |
2 4 |
5.7 98 46 |
89.5 05 |
27.7 410 |
0.35 308 |
5.10 6675 |
0.54 446 |
2.00 141 |
– 3.0 13 3 |
2 5 |
26. 28 92 |
3.56 26 |
39.8 631 |
1.60 084 |
0.20 3266 |
0.78 238 |
0.86 216 |
0.6 44 10 |
2 6 |
6.2 80 53 |
143. 08 |
30.3 476 |
0.38 244 |
8.16 3486 |
0.59 562 |
3.04 718 |
– 4.8 38 9 |
2 7 |
7.5 72 40 |
88.1 65 |
13.0 308 |
0.46 111 |
5.03 0243 |
0.25 |
1.91 570 |
– 2.8 23 2 |
25 |
49 1 |
|||||||
8 |
16. 27 39 |
5.12 32 |
57.0 822 |
0.99 097 |
0.29 2305 |
1.12 033 |
0.80 120 |
0.9 62 55 |
9 |
14. 70 33 |
3.94 92 |
27.2 285 |
0.89 534 |
0.22 532 |
0.53 440 |
0.55 169 |
2.5 83 04 |
1 0 |
6.8 64 |
1.77 35 |
51.4 985 |
0.41 799 |
0.10 118 |
1.01 074 |
0.50 997 |
2.9 24 49 |
1 1 |
32. 94 41 |
4.92 73 |
25.1 108 |
2.00 608 |
0.28 1124 |
0.49 284 |
0.92 668 |
0.3 30 68 |
1 2 |
7.6 77 88 |
4.39 87 |
36.7 576 |
0.46 753 |
0.25 096 |
0.72 143 |
0.47 997 |
3.1 87 79 |
1 3 |
22. 13 23 |
2.50 04 |
59.8 831 |
1.34 771 |
0.14 2661 |
1.17 530 |
0.88 856 |
0.5 13 12 |
1 4 |
17. 10 98 |
3.18 42 |
43.7 562 |
1.04 187 |
0.18 1674 |
0.85 879 |
0.69 411 |
1.5 85 69 |
1 5 |
13. 12 61 |
4.95 58 |
74.9 329 |
0.79 929 |
0.28 2754 |
1.47 068 |
0.85 091 |
0.7 01 15 |
1 6 |
47. 26 56 |
2.54 20 |
28.4 651 |
2.87 816 |
0.14 5036 |
0.55 867 |
1.19 396 |
– 0.7 69 9 |
1 7 |
18. 33 12 |
2.56 98 |
18.0 724 |
1.11 625 |
0.14 6621 |
0.35 470 |
0.53 919 |
2.6 82 56 |
1 8 |
14. 70 33 |
10.0 01 |
25.1 976 |
0.89 534 |
0.57 0643 |
0.49 454 |
0.65 351 |
1.8 47 47 |
1 9 |
11. 46 77 |
4.92 73 |
58.5 082 |
0.69 830 |
0.28 1124 |
1.14 832 |
0.70 925 |
1.4 91 99 |
2 0 |
13. 13 55 |
42.5 51 |
23.6 248 |
0.79 986 |
2.42 775 |
0.46 367 |
1.23 043 |
– 0.9 00 5 |
2 1 |
3.4 67 04 |
9.35 2 |
52.1 240 |
0.21 112 |
0.53 3572 |
1.02 302 |
0.58 923 |
2.2 97 08 |
2 2 |
28. 48 89 |
4.65 88 |
13.5 578 |
1.73 478 |
0.26 5805 |
0.26 609 |
0.75 556 |
1.2 17 29 |
2 3 |
15. 08 85 |
2.48 70 |
19.8 142 |
0.91 879 |
0.14 1897 |
0.38 888 |
0.48 319 |
3.1 58 79 |
2 4 |
5.7 98 46 |
89.5 05 |
27.7 410 |
0.35 308 |
5.10 6675 |
0.54 446 |
2.00 141 |
– 3.0 13 3 |
2 5 |
26. 28 92 |
3.56 26 |
39.8 631 |
1.60 084 |
0.20 3266 |
0.78 238 |
0.86 216 |
0.6 44 10 |
2 6 |
6.2 80 53 |
143. 08 |
30.3 476 |
0.38 244 |
8.16 3486 |
0.59 562 |
3.04 718 |
– 4.8 38 9 |
2 7 |
7.5 72 40 |
88.1 65 |
13.0 308 |
0.46 111 |
5.03 0243 |
0.25 575 |
1.91 570 |
– 2.8 23 2 |
Figure 3.7: variation of MRSN
Table 3.8: Level average of MRSN
Level |
Speed (S) |
Feed (F) |
Depth of Cut (D) |
1 |
0.309898 |
0.944874 |
0.743962 |
2 |
1.444788 |
0.53144 |
0.16275 |
3 |
-0.30744 |
-0.02906 |
0.540537 |
Delta (max- min) |
1.752228 |
0.973934 |
0.581212 |
Rank |
1 |
2 |
3 |
Level average for MRSN
2
1
0
-1 S1 S2 S3 F1 F2 F3 D1 D2 D3
Figure 3.8: variation of MRSN of input parameters Table 3.9: ANOVA for multi-response S/N ratio:
Fa |
SS |
DOF |
MS |
PC |
S |
3.4258 |
2 |
1.7129 |
3.41181 |
F |
15.4770 |
2 |
7.7385 |
15.4138 |
D |
7.2379 |
2 |
3.61895 |
7.20834 |
S*F |
16.2841 |
4 |
4.07102 |
16.2176 |
S*D |
3.8167 |
4 |
0.954175 |
3.8011 |
F*D |
12.9914 |
4 |
3.24785 |
12.9383 |
S*F*D |
41.1786 |
8 |
5.147325 |
41.0018 |
Error |
———– |
——– |
———— |
———– |
Total |
100.4115 |
26 |
———— |
100 |
MRSN
50
40
30
20
10
0
S F D S*F S*D F*D S*F*D
Figure 3.9: contribution of parameters
It is observed from above (L27-MRSN) analysis that S2-F1- D1 is the optimal combination for getting best output results and corresponding multi-response signal-to-noise ratio is 0.924494. The PC of speed is 3.41 %, of feed is
-
%, and of depth of cut is 7.20 %. Similarly, the PC of speed and feed is 16.21%, of speed and depth of cut is 3.80%, of feed and depth of cut is 12.93% and the combination of speed, feed, and depth of cut is 41.00%. It indicates that, for the above ranges of input levels, the feed is most (single) effective parameters and as a combination S-F-D is most effective.
Table 3.10: compression of different optimise results
Optimization method
Performance characteristics
Optimized setting
SN ratio
GRA(m)
GRG(m)
S3F1D1
0.547442
WSN(m)
WSN ratio
S2F1D3
0.619715
MRSN(m)
MRSN ratio
S2F1D1
0.924494
From the above table, it is observed that for single response, combination S1-F1-D1 is the best for getting best surface finish. Also it is observed that combinations of input parameters for multi response optimization are different when the different techniques used. Since the SN ratio is highest in MRSN technique, so S2-F1-D1 combination can be chosen for getting best multi response output.
IV. CONCLUSIONS
In present work, turning operation has been optimised and PC of parameters calculated with different optimisation techniques. On the basis of results, the following conclusions can be drawn.
-
In the multi response optimization, feed is effective (single) parameter, which is evaluated by all the three techniques (GRA, WSN, and MRSN).
-
For multi response, optimal parametric settings for GRA, WSN, and MRSN, are S3-F1-D1, S2-F1-D3, and S2-F2-D1 respectively. Hence, there has been considerable difference among the optimal settings yielded by the methods investigated.
-
On the basis of computations performed, MRSN method yielded highest magnitude of S/N response
-
(0.924494dB) and therefore, its outcomes S2-F2-D1 can be recommended for getting best output results.
REFERENCES
-
Phillip J.R., Taguchi Technique for Quality Engineering ,Tata Mc Graw-Hill,2nd Ed., 1996.
-
AgrawalJF., Shrivastava RL. and Agrawal R.S., Optimization of turning Process with Adheshive Bonded Tool Using Taguchi Technique, proceedings of 22nd AIMTDR conf. IIT Rourkee, India,pp 789-794,2006.
-
Rana J.,Suar S. and Bhoi R.K.,Optimization of Process Parameters in Laser Drilling using Taguchi Technique, Manufacturing Technology and Research,Vol-4 No. 1-2,Jan-June 2008.
-
Krishna A.G. and RaoK.M.,Multi objective Optimization of surface grinding operations using scater search approach . The International journal of Advanced Manufacturing Technology ,Vol 29
, No.-5pp475 -480,June 2006.
-
Das S.R. Nayak R.P. and Dhupal D., Optimization of Cutting Parmeters on Tool Wear and Workpiece Surface Temperature in Turning of AISI D2 Steel International Journal of Lean Thinking Volume 3 Issue 2 (Dec. 2012) .
-
Datta S., Bandyopadhyay, A. and Pal, P. K., (2008), Application of Taguchi Philosophy for Parametric Optimization of Bead Geometry and HAZ Width in Submerged Arc Welding Using Mixture of Fresh Flux and Fused Slag, for International Journal of Advanced Manufacturing Technology, Volume 36, pp.689-698.
-
Datta S., Nandi G., Bandyopadhyay A. and Pal P. K., (2009), Application of PCA based hybrid Taguchi method for multi-criteria optimization of submerged arc weld: A case study, For International Journal of Advanced Manufacturing Technology. (Article in press) DOI 10.1007/s00170-009-1976
-
Feng C. X. (Jack) and Wang X., (2002), Development of Empirical Models for Surface Roughness Prediction in Finish Turning, International Journal of Advanced Manufacturing Technology, Volume 20, pp. 348356.
-
Fnides B., Aouici H., Yallese M. A., (2008), Cutting forces and surface roughness in hard turning of hot work steel X38CrMoV5-1 using mixed ceramic, Mechanika, Volume 2, Number 70, pp. 73-78.
-
Lee S. S. and Chen J. C., (2003), Online surface roughness recognition system using artificial neural networks system in turning operations International Journal of Advanced Manufacturing Technology, Volume 22, pp. 498509.
-
Ravinder.k; Jatinder K,(2014), A comparison of the different multi response optimization techniques for turning operation of AISI 01 tool steel journal of engineering research Vol.2 No.(4) 161-184
-
Kohli A. and Dixit U. S., (2005),A neural- network-based methodology for the prediction of surface roughness in a turning process, International Journal of Advanced Manufacturing Technology, Volume 25, pp.118 129.
-
Kumanan S., Saheb S. K. N. and Jesuthanam C. P., (2006), Prediction of Machining Forces using Neural Networks Trained by a Genetic Algorithm Institution of Engineers (India) Journal, Volume 87, pp. 11-15.
-
Kassab S. Y. and Khoshnaw Y. K., (2007), The Effect of Cutting Tool Vibration on Surface Roughness of Work piece in Dry Turning Operation, Engineering and Technology, Volume 25, Number 7, pp. 879-889.