- Open Access
- Total Downloads : 184
- Authors : Pheiroijam Suranjoy Singh
- Paper ID : IJERTV2IS101122
- Volume & Issue : Volume 02, Issue 10 (October 2013)
- Published (First Online): 25-10-2013
- ISSN (Online) : 2278-0181
- Publisher Name : IJERT
- License: This work is licensed under a Creative Commons Attribution 4.0 International License
A Related Fixed Point Theorem of Integral Type on Two Fuzzy 2-Metric Spaces
Pheiroijam Suranjoy Singh Sagolband Takyel Kolom Leikai
Imphal West, Manipur – 795001, India.
Abstract
In this paper, a related fixed point theorem is obtained. It extends a result proved by R.K. Namdeo, N.K. Tiwari, B. Fisher and K. Tas [9]. The notion of fuzzy 2-metric spaces satisfying integral type inequalities is used.
Keywords : Fuzzy 2-metric space, fixed point, related fixed point, integral type inequality.
2000 AMS Subject Classification : 47H10, 54H25.
Intoduction
The concept of fuzzy sets was introduced by L. Zadeh [14] in 1965. Fuzzy metric space was introduced by Kramosil and Michalek [7] in 1975. Then, it was modified by George and Veeramani [4] in 1994. Fuzzy has been studied and developed by many mathematicians for many years. Introduction of fuzzy 2-metric space is one of such developments. Gahler [10, 11] investigated 2-metric spaces in a series of his papers. Fuzzy 2-metric space is studied in [6, 8, 12, 13] and many others. Related fixed point is studied in [1, 2, 3, 5, 9] and many more.
Some definitions are stated as follows:
Definition 1.1 : A binary operation : [0, 1] × [0, 1] [0, 1] is called a t – norm in ( [0, 1], ) if follo- wing conditions are satisfied:
For all a, b, c, d [0, 1],
-
a 1 = a,
-
a b = b a,
-
a b c d whenever a c and b d,
-
a (b c) = (a b) c.
Definition 1.2. The 3-tuple (X, , ) is called a fuzzy 2- metric space if X is an arbitrary set, is a continuous t – norm and is a fuzzy set in X 3 [0, ) satisfying the following conditions:
For all x, y, z, u X and t1, t2, t3 > 0, i. (x, y, z, 0) = 0,
-
(x, y, z, t) = 1, t > 0 and when at least two of the three points are equal,
-
(x, y, z, t) = (y, x, z, t) = (z, x, y, t) ( symmetry about three variables), iv. (x, y, z, t1+t2+t3) (x, y, u, t1) (x, u, z, t2) (u, y, z, t3)
-
(x, y, z,) : [0, ) [0, 1] is left continuous,
-
limt (x, y, z, t) = 1.
Definition 1.3 : Let (X, , ) be a fuzzy 2-metric space. A sequence {xn} X is said to:
-
converge to x in X if and only if
limt (xn, x, a, t) = 1 a X and t > 0.
-
be a Cauchy sequence if and only if limt (xn+p, xn, a, t) = 1 a X, p > 0 and t > 0.
Definition 1.4 : A fuzzy 2-metric space (X, , )
sequence in X is convergent in X.
is aid to be complete if and only if every Cauchy
The following was proved in [9].
Theorem 1.1 : Let (X , d) and (Y, ) be complete metric spaces. Let T be a mapping of X into Y and S
be a mapping of Y into X satisfying the inequalities
d ( Sy, Sy /) d( STx, STx / ) c max{ d (Sy, Sy/ ) (Tx, Tx / ) , d (x / , Sy) ( y / , Tx) ,
d (x, x / ) d (Sy, Sy/ ) , d (Sy, STx) d (Sy/ , STx/ ) }
(Tx, Tx / ) (TSy, TSy/ )
c max{ d (Sy, Sy/ ) (Tx, Tx / ) , d (x / , Sy) ( y / , Tx) ,
( y, y / ) (Tx, Tx / ) , (Tx,TSy) (Tx / , TSy/ ) }
for all x , x / in X and y , y / in Y ,where 0 c < 1. If either S or T is continuous, then ST has a unique fixed point z in X and TS has a unique fixed point w in Y . Further, Tz = w and Sw = z.
Now, theorem 1.1 is extended to two pairs of mappings in integral and fuzzy 2-metric space settings as follows.
Main result
Theorem 2.1 : Let (X, , a, t) and (Y, , a, t) be two complete fuzzy 2-metric spaces. Let A, B be mappings of X into Y and S, T be mappings of Y into X satisfying the inequalities
k(Sy, Ty/ , a, t ) (SAx, TBx/ , a, t)
1
(s) ds 1
min{(Sy, Ty/ , a, t)( Ax, Bx/ , a, t), (x/ , Sy, a, t)( y/ , Ax, a, t) ,
(x, x/ , a, t) (Sy, Ty/ , a, t), (Sy, SAx, a, t) (Ty/ , TBx/, a, t)}
(s) ds
(1)
k( Ax ,Bx/ , a,t)(BSy, ATy/ , a,t)
1
(s) ds
min{(Sy, Ty / , a,t)( Ax, Bx /, a,t), (x /, Sy, a,t)( y /, Ax, a,t),
( y, y /, a,t)( Ax, Bx /, a,t),( Ax, BSy, a,t)(Bx /, ATy /, a,t)}
1
(s) ds
(2)
for all x, x/ in X and y, y/ in Y, where k(0, 1). If A and S or B and T are continuous, then SA and TB have a unique common fixed point z in X and BS and AT have unique common fixed point w in Y. Further, Az = Bz = w and Sw = Tw = z.
Proof : Let x be any arbitrary point in X . We define sequences {xn} and {yn}in X and Y respectively as:
S y2n 1 =
x2n 1 ,
Bx2n 1 y2n ,
Ty2n x2n ,
Ax2n y2n 1 , for n = 1, 2, 3 ,
Applying inequality (1), we get
k(Sy , Ty
, a, t) (SAx , TBx , a, t)
1 2n 1 2n
2n 2n 1
(s) ds
= 1
k 2 (x
2n 1
, x , a, t) 2n
(s) ds
min{(Sy
, Ty
, a,t)( Ax
, Bx
, a,t), (x
, Sy
, a,t)( y
, Ax
, a,t),
2n 1 2n
2n 2n 1
2n 1
2n 1
2n 2n
(x , x
, a,t) (Sy
, Ty
, a,t),(Sy
, SAx
, a,t)(Ty
, TBx
, a,t)}
1
2n 2n1
2n 1 2n
2n 1 2n
2n 2n 1
(s) ds
min{(x
2n 1
, x , a, t)( y
2n
, y
2n 1
, a, t), (x
2n 2n 1
, x
2n 1
, a, t)( y
2n
, y
2n 1
, a, t),
(x
2n
1
, x
2n 1
, a, t) (x
2n 1
, x , a, t), (x
2n 2n 1
, x
2n 1
, a, t) (x
2n
, x , a, t)}
2n
(s) ds
from which it follows that
min{( y
, y , a, t), (x
, x , a, t)}
k(x , x
2n 1 2n
1
, a, t)
(s) ds
1
2n 1 2n
2n 1 2n
(s) ds
(3)
Applying inequality (2), we get
k( Ax , Bx
, a, t)(BSy
, ATy
, a, t)
2n 2n 1
1
2n 1 2n
(s) ds
= 1
k 2 ( y , y
2n 1 2n
, a, t)
(s) ds
min{(Sy
2n 1
, Ty
2n
, a, t)( Ax
2n
, Bx
2n 1
, a, t), (x
2n 1
, Sy
2n 1
, a, t)( y
2n
, Ax
2n
, a, t),
( y , y
2n 1 2n
1
, a, t)( Ax
2n
, Bx
2n 1
, a, t) , ( Ax
2n
, BSy
2n 1
, a, t)(Bx
2n 1
, ATy
2n
, a, t)}
(s) ds
max{(x
, x , a, t) ( y
, y , a, t), (x , x
, a, t)( y , y
, a, t),
2n 1 2n
2n 1 2n
2n 1
2n 1
2n 2n 1
( y
, y , a, t)( y
, y , a, t) ,( y
, y , a, t)( y , y
, a, t)}
1
2n 1 2n
2n 1 2n
2n 1 2n
2n 2n 1
(s) ds
from which it follows that
k( y , y , a, t)
min{( y , y , a, t), (x
, x , a, t)}
2n 1 2n
1
(s) ds
1
2n 1 2n
2n 1 2n
(s) ds
(4)
(3) and (4) can be written as
k(x , x , a, t)
min{( y , y , a, t), (x
, x , a, t)}
n 1 n
1
(s) ds
1
n 1 n
n 1 n
(s) ds
min{( y , y , a, t), (x
, x , a, t)}
k( y , y , a, t)
n 1 n
n 1 n
n 1 n
1
1
(s) ds
which can be again written as
k(x , x , a, t)
min{( y , y , a, t), (x
, x , a, t)}
n 1 n
1
(s) ds 1
n 1 n
n 1 n
(s) ds
(5)
k( y , y , a, t)
min{( y , y , a, t), (x
, x , a, t)}
n 1 n
1
(s) ds 1
n1 n
n 1 n
(s) ds
(6)
From (5) and (6) , by induction, we get
1 min{( y , y , a, t), (x , x , a, t)}
(x , x , a, t)
kn 1 2 1 2
n 1 n
1
( y , y
, a, t)
(s) ds 1
1 min{( y , y , a, t), (x , x , a, t)}
(s) ds
Let
t1
1
t . Now,
p
n 1 n
(s) ds kn 1 2
1
1 2 (s) ds
(xn , xn p , a, t) (xn , xn p , a, t t … p times)
1 (s)ds
1 (s)ds
1 (s)ds
1 (s)ds
1 (s)ds
= 1
1 1 (s)ds
1 (s)ds
1 (s)ds
1
1
1
1
(xn , xn 1, a, t )
(xn1, xn 2, a, t )
(xn p1, xn p , a, t )
1
1
1 min{( y , y , a, t), (x , x , a, t)}
1 min{( y , y , a, t), (x , x , a, t)}
kn 1 2
1
1 2 (s) ds kn p 1 1 2
1
1 2 (s) ds
which implies that
n n p
n n p
(x , x , a, t)
lim (s)ds 1
1
(xn , xn p , a, t) 1
{ xn } is a Cauchy sequence with a limit z in X.
Similarly, { yn } is a Cauchy sequence with a limit w in Y.
Now, on using the continuity of A and S respectively, we get
w = lim y 2n1 = lim Ax 2 n
= Az and z = lim x 2 n
= lim Sy 2 n
= Sw
so that we get
Az = w (7)
Sw = z (8)
From (7) and (8), we get
SAz = z (9)
Again applying inequality (1), we get
k(SAx
2n
1
, TBx
2n 1
, a, t)
(s) ds
min{( Ax , Bx , a, t), ( y
, Ax
, a, t), (x , x , a, t)}
1
2n 2n 1
2n 2n
2n 1 2n
(s) ds
(10)
On letting n , we have
k(Sw, TBz, a, t)
1
( Az , w, a, t)
(s) ds 1
(s) ds
By (7), we have
k(Sw, TBz, a, t)
1
(s) ds 0
k(Sw, TBz, a, t) 1
which implies that
Sw = TBz
and from (8) , we get
z = TBz (11)
From (9) and (11), we get
SAz = z = TBz (12)
Now, (10) gives
k(x
2n 1
1
, Ty
2n
, a, t)
(s) ds
min{( Ax
, Bx
, a, t), ( y
, Ax
, a, t), (x
, x , a, t)}
1
2n 2n 1
2n 2n
2n 1 2n
(s) ds
On letting n , we get
k(z , Tw, a, t)
1
(t) dt 0
k(z , Tw, a, t) 1
which implies that
z = Tw (13)
Again, applying inequality (2), we get
k(BSy
2n 1
1
, ATy
2n
, a, t)
(s) ds
min{(Sy
, Ty
, a, t), (x
, Sy
, a, t), ( y
, y , a, t), ( Ax
, Bx
, a, t)}
1
2n 1 2n
2n 1
2n 1
2n 1 2n
2n 2n 1
(s) ds
(14)
On letting n , we get
k(BSw, ATw, a, t)
1
(s) ds 0
k(BSw, ATw, a, t) 1
which implies that
BSw = ATw (15)
Now, (14) gives
k( y
2n
1
, ATy
2n
, a, t)
(s) ds
min{(Sy
2n 1
1
, Ty
2n
, a, t) , (x
2n 1
, Sy
2n 1
, a, t) , ( y , y
2n 1 2n
, a, t) , ( Ax
2n
, Bx
2n 1
, a, t)}
(s) ds
On letting n , we get
k(w, ATw, a, t)
1
(s) ds 0
k(w, ATw, a, t) 1
which implies that
w = ATw (16)
From (15) and (16), we get
BSw = w = ATw (17)
From (8) and (17) , we get
Bz = w (18)
From (7) and (18), we get
Az = Bz = w (19)
From (8) and (13) , we get
Sw = Tw = z (20)
Similarly, on using the continuity of B and T, the above results hold.
To prove the uniqueness, let SA and TB have a second distinct common fixed point z / in X and BS
and AT have a second distinct common fixed point w / in Y.
Applying inequality (1), we have
k 2 (z , z/ , ,a, t)
1
(s) ds
min{(z , z/ , a, t)( Az , Bz/ , a, t), (z/ , z/ , a, t)(Bz/ , Az, a, t),
(z, z/ , a, t) (z , z/ , a, t), (z/ , z/ , a, t) (z, z, a, t)}
1
(s) ds
k(z , z/ , a, t)
1
(s) ds
min{( Az , Bz/ , a, t), (Bz/ , Az, a, t)}
1 (s) ds
k(z , z/ , a, t)
1
(s) ds
( Az , Bz/ , a, t)
1 (s) ds
(21)
Applying inequality (2), we get
k2 ( Az ,Bz/ , a, t)
1
(s) ds
min{(z, z/ , a, t)( Az, Bz/ , a, t), (z / , z / , a, t)(Bz / , Az, a, t),
( Az, Bz / , a, t)( Az, Bz/ , a, t), ( Az, Bz / , a, t)(Bz / , Az, a, t)}
1
(s) ds
k( Az ,Bz/ , a, t)
1
/
(z , z , a, t)
(z , z , a, t)
(s) ds
1
(s) ds
(22)
From (21) and (22), we get
k2(z, z/ , a, t)
1
(s) ds
(z, z/ , a, t)
1
(s) ds
(z, z/ , a,t)
1
(z, z/ , a,t)
1
(s) ds
(s) ds
1 (z, z/ , a, t)
k 2
1
1 ( z, z/ , a, t)
k 2
1
(s) ds
(s) ds 1
1 (z, z/ , a, t)
k n
(s) ds
(z, z/ , a,t)
1
(s) ds
lim 1
1 (z, z/ , a, t)
k n
(s) ds 1
(z, z/ , a,t) 1
which implies that
z = z / .
This proves the uniqueness of z. Similarly, the uniqueness of w can be proved.
The following corollary is a fuzzy 2-metric space version of theorem 1.1 in integral setting.
Corollary 2.2 : Let (X, , a, t) and (Y, , a, t) be two complete fuzzy 2-metric spaces. Let S be mappings of X into Y and T be mappings of Y into X satisfying the inequalities
k(Ty, Ty/ , a, t ) (TSx, TSx/ , a, t)
1
(s) ds 1
min{(Ty, Ty/ , a, t)(Sx, Sx/ , a, t), (x/ , Ty, a, t)( y/ , Sx, a, t) ,
(x, x/ , a, t) (Ty, Ty/ , a, t), (Ty, TSx, a, t) (Ty / , TSx/ , a, t)}
(s) ds
k(Sx,Sx/ , a, t)(STy, STy/ , a, t)
1
(s) ds 1
min{(Ty,Ty/ , a, t)(Sx, Sx/ , a, t), (x/ , Ty, a, t)( y/ , Sx, a, t),
( y, y/ , a, t)(Sx, Sx/ , a, t), (Sx, STy, a, t)(Sx/ , STy/ , a, t)}
(s) ds
for all x, x/ in X and y, y/ in Y ,where k (0, 1). If either S or T is continuous, then TS has a unique fixed point z in X and ST has a unique fixed point w in Y . Further, Sz = w and Tw = z.
Proof : By putting A = B = S and S = T = T in theorem 2.1, the result easily follows.
References
-
Aliouche A. and Fisher B., A related fixed point theorem for two pairs of mappings on two complete metric spaces, Hacettepe Journal of Mathematics and Statistics, Vol. 34 (2005), 39 – 45.
-
Cho Y.J., Kang S.M. and Kim S.S., Fixed points in two metric spaces, Novi Sad Journal Math., 29 (1) (1999), 47- 53.
-
Fisher B. and Rao K.P.R, A related fixed point theorem on three metric space, Haettepe Journal of Mathematics and Statistics, Vol. 36 (2) (2007), 143 – 146.
-
George A. and Veeramani P., On some result in fuzzy metric space, Fuzzy Set and Systems, Vol. 64, (1994) 395-399.
-
Jain S. and Fisher B., A related fixed point theorem for three metric spaces, Hacettepe Journal of Mathematics and Statistics, Vol. 31 (2002), 19 – 24.
-
Jinkyu Han, A common fixed point theorem on fuzzy 2- metric spaces, Journal of the Chungcheong Mathematical Society, Volume 23, No. 4, December 2010.
-
Kramosil O.and Michalek J., Fuzzy metric and statistical metric spaces, Kybernetica Vol. 11 (1975) 326 – 334.
-
N.Thillaigovindan, S.Anita Shanthi and S.Vijayabalaji, Semigroup actions on intuitionistic fuzzy 2- metric spaces, Int. J. Open Problems Compt. Math., Vol. 3, No. 1, March 2010.
-
R.K. Namdeo, N.K. Tiwari, B.Fisher and K. Tas, Related fixed point theorems on two complete and compact metric spaces, Internat. J. Math. and Math. Sci. ,Vol. 21, No. 3 (1998) , 559 564.
-
S. Gahler, (1965), Uber die uniromisieberkeit 2-metric Raume, Math.Nachr. 28, 235 – 244.
-
S. Gahler, (1963), 2-metric Raume and ihre topologische strucktur, Math. Nachr., 26,115 – 148.
-
Surjeet Singh Chauhan and Kiran Utreja, Fixed point theorem in fuzzy 2- metric space using absorbing maps, Research Journal of Pure Algebra, 2 (2) (2012), 77 – 81.
-
Surjeet Singh Chauhan (Gonder) and Kiran Utreja, A common fixed point theorem in fuzzy 2- metric space, Int. J. Contemp. Math. Sciences, Vol. 8, 2013, no. 2, 85 91, Hikari Ltd, www.m-hikari.com
-
Zadeh, L.A., Fuzzy sets, Information and control, 8 (1965), 338 – 353.