Calculation of Basic Elements of A Radial-type Centrifugal Pump.

DOI : 10.17577/IJERTV13IS010047

Download Full-Text PDF Cite this Publication

Text Only Version

Calculation of Basic Elements of A Radial-type Centrifugal Pump.

A comparative study for blade shape configurations and blade curvature of Impeller and Spiral Shell.

      1. tatharas (corresponding author)

        Professor, General Department of Engineering Science , National & Kapodistrian University of Athens , 34400 Psachna Evias, Chalkis Greece

        P.S.Filiousis

        Mechanical Engineer, External Research Fellow

        V.N.Vlachakis

        Mechanical Engineer, University of Thessaly-Greece, M.Sc.Virginia Tech. Research Fellow

        N.W.Vlachakis Professor, Research Fellow

        Note: Except for the first author's name, the names of the other three authors are in alphabetical order

        AbstractA contribution on centrifugal pump characteristics prediction is presented using relations based on performance maps of known pumps developed by some researchers. The introduced modelling equations based on the blade shape configurations, approximate satisfactorily the geometry of industrial centrifugal pumps elements (vane, shell, meridional section etc.). Also a fast calculation of the distribution of the blade angles in the entire blade curvature is developed using smart algorithms eliminating the need of time-consuming tables of classical methodologies.

        KeywordsCentrifugal pump , Volute casing , algorithms for design, flow characteristics, Velocity triangles, blade shape configurations, Blade Profiles, wrap angle, diagram of the impeller.

        1. INTRODUCTION

Pumps are one of the most interesting devices in mechanical engineering and constitute the heart of a large sector of industrial and public networks, piping networks etc. There is a wide range of pump types quite different from each other in terms of operating principle, structure and the applications they cover. A basic category, however, is centrifugal pumps of radial type.

Centrifugal pumps use the centrifugal force created by a rotating disk on which there are vanes of a special shape and which is known as an impeller or impeller.Fluid flow in centrifugal pumps is created by the centrifugal kinetic energy produced by the rotary motion of the impeller. The aspirated liquid reaches the suction opening and is swept into rotation driven by the vanes. The rotary motion of the impeller imparts rotation to the liquid mass which is driven by the vanes imparting centrifugal force to the liquid. The liquid is forced to flow along the vanes and ejected from the impeller. As soon as the liquid escapes from the impeller, it is collected in an internal space of the pump, which has a spiral shape with an ever-increasing cross-section and finally leaves the pump outlet.

Although there is a wide range of centrifugal pumps there are common comparative advantages of all types of centrifugal pumps over other types of pumps. These are their laminar and smooth operation but mainly their operational flexibility in the sense of the possibility of choosing the desired operating range according to the H-Q (Head-Discharge) diagram. At the same time, centrifugal pumps generally require little space compared to other types of pumps for the same pressure gauge or flow rate. Centrifugal pumps, however, have the ability to offer pump types with very high outputs that other types of pumps cannot achieve and for this reason they are usually preferred in high output lines.

The basic parts of centrifugal pumps are the impeller, the volute and the inlet and outlet ducts (Fig.1.1)

Fig. 1.1. Main parts of a radial-type centrifugal pump

For the design of individual parts of centrifugal pumps, one can find in the literature several methods from the simplest to the most complex (e.g. [1],[2],[3]). In this paper we do not intend to review all these methods but to present a relatively simple but at the same time detailed, precise and practical method for the design of the various parts of a centrifugal pump. This method can be used to design any centrifugal pump.

In chapter II, the proposed design method is presented with its simultaneous application to the design of a pump for the purposes of demonstration of the method. The main purpose of this chapter is the detailed and precise design and drawing of the meridional section of the pump, its impeller as well as the configuration of the inlet and outlet sections and the spiral shell.

In chapter III, some empirical relations are proposed for the prediction of basic performance characteristics of a pump. The predictions of these relations are compared with the experimental ones. The comparison concerns the pressure head, the performance and the NPSHR of some pumps from different manufacturers. This comparison is necessary to confirm that the proposed model actually achieves its intended purpose, i.e. for validation purposes.

  1. MODELLING PUMP GEOMETRY

    In what follows, the design method of a centrifugal pump will be presented. At the same time, for demonstration purposes, the method will be applied to the design of a pump with given characteristics. The characteristics of the pump to be designed are taken from ([1],[2],[3]) and are shown in Table I.

    TABLE I. characteristics values used for the centrifugal pump to be designed.

    manometric Head H (m)

    50

    critical cavitation height Hcr (m)

    3

    Flow rate Q(m3/h)

    300

    Blade angle at outlet 2 (degrees)

    18

    g (m/(s2)

    9,81

    Water density, (Kg/m3)

    1.000

    Water kinematic viscosity *(m2/s)

    0,000001

    Water temperature (0C)

    15

    impeller's number of blades z= 2/3

    6

    1. Centrifugal Pump Structure Design.

      The procedure for designing the centrifugal pump structure is according to ([5],[7],[9],[15]). By knowing the head pump H and the Thomas' cavitation parameter =1,5, we can calculate the critical cavitation parameter cr:

      The variation of km1 and km2 with nq is shown in Fig.2.1 and Fig.2.2 respectively.

      1,5

      cr= cr= 50 = 0.03

      (2.1)

      0,3

      0,25

      Using Bohls formula, we calculate the rotation specific speed nq:

      3

      0,2

      4 ( )4

      cr= 0.077 nq nq= 0.077

      km1 0,15

      3 cr

      nq=

      3

      (0,03)4

      nq= 29.22 rpm

      0.077

      (2.2)

      0,1

      0,05

      0

      By using the formula of specific speed, the pump rotational speed n is obtained:

      3

      0 10 20 30 40 50 60 70 80 90 100

      q= n

      (Q/ 3600)0,5

      3

      H4

      H4

      n= q

      (Q/ 3600)0,5

      nq

      Fig. 2. 1, Inlet flow velocity coefficient km1

      3

      n= 29,22 50

      4

      n= 1903 rpm

      (300/3600)0,5

      It is known that the parameter is defined by the relationship:

      =

      2 2

      = = 1.01

      (2.3)

      km2

      0,25

      0,2

      0,15

      0,1

      n

      0.2

      q

      29,22

      0.2

      (2.4)

      0,05

      0

      The specific pump work Y is:

      TYhe=refogre thHe i=mp9ell.e8r1out5le0t d=iam4e9ter0D.52 isJ: /kg

      (2.5)

      0 10 20 30 40 50 60 70 80 90 100

      nq

      D2= 0.45

      ( Y/ )0.5

      (n/ 60)

      Fig.2.2. Outlet flow velocity coefficient k

      m2.

      ( 490.5/1.01)0.5

      The meridional flow velocity at the impeller inlet is:

      0.5

      D2= 0.45

      = 0.31 m

      1903/ 60)

      V1m= cm1= km1 (2 Y)

      (2.6)

      V = c

      = 0.12 (2 490.5)0.5= 4.02 m/s

      1m m1

      (2.12)

      The impeller inlet diameter is selected to be:

      The meridional flow velocity at the impeller outlet is.

      D1= 0.48 D2= 0.15 m

      V = c = k

      (2 Y)0.5

      Then the outlet tangential velocity u2 is:

      (2.7)

      2m m2

      V = c

      m2

      = 0.11 (2 490.5)0.5= 3.52 m/ s

      u2= 3.14 D2 ( n/ 60)

      2m m2

      (2.13)

      u2= 3.14 0.31 (1903/ 60)= 31m/ s

      and the inlet tangential velocity u1 is:

      u1= 3.14 D1 ( n/ 60)

      (2.8)

      1. Calculation of blades' widths

    The flow rate factors k1 and k2 that are used to determine the blades' widths, are:

    D1

    1

    Tuhe=spe3ci.a1l 4speed0c.o1e5fficie(n1ts9km01 3an/d6km02 )ar=e: 14.8m / s

    (2.9)

    k1=

    s1

    D1 z

    1

    km1= 0.07+ 0.002 nq

    km1= 0.07+ 0.002 29.22= 0.12

    and

    km2= 0.063+ 0.0017 nq

    km2= 0.063+ 0.0017 29.22= 0.11

    (2.10)

    k1=

    sin ( )

    180

    3.14 0.15 = 1.53

    3.14 0.15 6 0.0099

    (2.11)

    sin(3.14 15 )

    180

    (2.14)

    where: 1=150 and s1=D1/15=0.15/15=0.0099 m, is the blade thickness at the inlet,

    and

    k2=

    D2

    s1

    D2 z

    k2=

    sin ( 2 )

    180

    3.14 0.31

    = 1.1

    3.14 0.31 6 0.0062

    )

    sin(3.14 18

    180

    (2.15)

    where: 2=180 and s2=D2/50=0.31/50=0.0062 m, is the blade thickness at the exit. The blade's width in the impeller inlet is:

    c

    b1=

    m1

    k1 Q

    3.14 D1

    b = 1.53 300 /3600 = 0.044 m

    1 4.02 3.14 0.15

    (2.16)

    where:

    Q= cm1 A1

    and A1 is the section area at the impeller inlet.

    The blade's width in the impeller outlet is:

    c

    b2=

    m2

    k2 Q

    3.14 D2

    2 =

    b = 1.1 300 / 3600 0.024 m

    3.52 3.14 0.31

    (2.17)

    where:

    Q= cm2 A2

    and A2 is the section area at the impeller outlet.

    B. Calculation of velocity diagrams.

    Now we can calculate the other speeds in order to form the inlet and outlet velocity diagrams. The inlet velocity co at the suction cross-section is:

    o q

    c = 0.02 n0.66

    (2 Y)0.5

    co= 0.02 29.

    c = 5.81m/ s= c 220.66 (2 490.5)0.5

    o 1 (2.18)

    So the inlet relative velocity w1 is:

    2 2 0,5

    w1= (u1+ co)

    2 2 0,5

    w1= (14.8 + 5.81 )

    = 15.92m/ s (2.19)

    The outlet relative velocity w2 can be calculated as follows:

    cm2

    w2u=

    w2u=

    tan( 2 )

    180

    3.52

    tan( 18 3.14 )

    180

    = 12.51m / s

    (2.20)

    and: wm2 = cm2 =3.52 m/s , so:

    2 2 0.5

    w2= (w2u + wm2)

    2 (2.21)

    w = (12.512+ 3.522)0.5= 13m/ s

    We can now calculate the absolute velocities:

    cu2=u2-w2u=31-12.51=18.52 m/s (2.22)

    or

    V1u= V1m cot (a1)= cu2= cm1 cot (a1) (2.23)

    V2u= cu2= u2 cm2cot ( 2) (2.24)

    2 2 0.5

    2 2 0.5

    c2= ( cu2+ cm2)

    = (18.52 + 3.52 )

    = 18.85 (2.25)

    Fig.2.3. Shows the velocity triangles at impeller inlet and Fig.2.4 for the utlet. A schematic reprsentation of the velocity triangles at impeller is shown in Fig.2.5.

    u1

    =14,8m

    /sec

    7

    6

    5

    m/sec

    c1=5,8m/sec

    w

    =15,9m/sec

    4

    1

    3

    2

    1

    0

    0 2 4 6 8 10 12 14 16

    m/sec

    Fig.2.3. Inlet Velocity Diagram

    u2

    =31m

    /sec

    14

    12

    c

    2

    m/sec

    =13m/sec

    10

    =18,8m/sec

    8

    6

    4

    w

    2

    2

    0

    0 5 10 15 20 25 30 35

    m/sec

    Fig.2.4. Outlet Velocity Diagram

    Fig.2.5. The velocity triangles at the impeller of a centrifugal pump, [9]

    1. Calculation of shaft diameter

      We have first to calculate pump's efficiency. The calculation of the performance efficiencies, is derived according to ([5],[8]) :

      Mechanical efficiency

      nm=

      1 = 1

      = 0.968

      or

      nm=

      1+

      0.287

      n

      0.66

      q

      1 =

      1+

      15.05

      n

      1.8

      q

      1+ 0.287

      29.220.66

      1 = 0.966

      1+ 15.05

      29.221.8

      (2.26)

      (2.27)

      volumetric efficiency

      1 1

      q=

      =

      1+

      0.46

      n

      0.84

      q

      = 0.97 1+ 0.46

      29.220.84

      (2.28)

      while the hydraulic efficiency is:

      h=

      1 0.071

      n

      0.25 =

      q

      3600

      1 0.071

      29.22 0.25 = 0.867

      3600

      (2.29)

      The overall Pump efficiency is: t=qmh=0.8. (2.30)

      The water power N is determined from the relationship:

      N= Y Q

      t

      N= 1000 490.5 (300 /3600 )= 51093Watt

      0.8

      (2.31)

      The methodology for designing the blade geometry and the meridian geometry follows Ref.[6]. According to [6] the torsional moment is estimated to be:

      M = N

      d 2 n

      M = 51093 = 256,47 N m

      d 6.28(1903.3/60)

      The shaft diameter is:

      d = 1000 Md

      w (0.2 )0.33

      w

      d = 1000 256,47

      = 29.4 mm

      (2.32)

      (0.2 50)0.33

      where the volute suction diameter of impeller Ds is:

      Ds=0.42D2=0.13m

      (2.33)

    2. The camber surface of the blade meridional profile of impeller. The meridian section of the pump is calculated for its curved parts (internal and external) from the dimensions of the blades diameters and blades thicknesses for various selected functions shown in Table II.

      TABLE II.

      Walls coordinates and boundary conditions for the camber surface of the blade meridional profile of impeller.

      0,25

      0,2

      0,15

      0,1

      0,05

      A

      B

      D

      C

      xa

      ya

      xb

      yb

      xd

      yd

      xc

      yc

      0,000795

      0,000795

      0

      0,05

      0,11

      0,19885

      0,09

      0,19885

      wall function 1 (=3)

      wall function 2 (=2)

      wall algorithms y=aexp(cx)

      c

      a

      c"

      a"

      1988,433

      0,052496

      3998,65

      0,00079

      x

      y

      x

      y

      0,000795

      0,052496

      0,00079

      0,00079

      0,010429

      0,052614

      0,01307

      0,00080

      0,020062

      0,053345

      0,02536

      0,00084

      0,029695

      0,055301

      0,03764

      0,00098

      0,039328

      0,059245

      0,04993

      0,00130

      0,048961

      0,066295

      0,06221

      0,00208

      0,058594

      0,078316

      0,074

      0,00415

      0,068228

      0,098717

      0,086

      0,01

      0,077861

      0,134196

      0,099

      0,038

      0,087

      0,19885

      0,11

      0,19885

      0

      -0,25 -0,2 -0,15 -0,1 -0,05 0 0,05 0,1 0,15 0,2 0,25

      -0,05

      -0,1

      -0,15

      -0,2

      -0,25

      Fig.2.6. The Meridian section of the pump

      For the meridian section of the impeller we use the following wall algorithms:

      y= a exp(c x )

      obtaining the x and y values shown in Table III.

      (2.34)

      TABLE III. IMPELLER'S MERIDIAN SECTION COORDINATES

      b1

      b2

      xb1

      yb1

      xb2

      yb2

      0,000795

      0,000795

      0,087494

      0,19885

      0,000795

      0,051701

      0,111356

      0,19885

      The resulting meridian section of the impeller is shown in

      0,25

      0,2

      The resulting meridian section of the pump is shown in Fig.2.6.

      0,15

      y

      0,1

      0,05

      0

      0 0,02 0,04 0,06 0,08 0,1 0,12

      x

      Fig.2.7. Meridional profile of impeller

    3. Design of the blades on the impeller

      The design of the impeller's blades follows the procedure described in [4]. The obtained geometrical results are shown in

      y= a ln(ri )+ c (2.36)

      where:

      Table IV.

      TABLE IV. Blade shape configuration using Sigloch methodology.

      0.8 w

      a=

      r i

      ln ( )

      r 2

      and

        1. ln(ri )

          c= w [ 1 r ]

          ln( i )

          r 2

          (I)

          p o i n t s

          rx

          rx

          bx

          wx

          tx

          x

          hx

          hx

          »

          h»

          »

          bx

          »»

          1

          mm

          m m

          m/ se c

          1

          0,

          07

          0,00

          91

          44

          ,3

          15

          ,9

          0,

          07

          15

          ,7

          47,

          6

          0

          0

          44

          ,3

          0

          2

          0,

          08

          0,00

          91

          42

          15

          ,4

          0,

          08

          15

          ,9

          41,

          8

          0,

          41

          0,

          41

          40

          23,5

          3

          0,

          09

          0,00

          91

          39

          ,8

          14

          ,9

          0,

          09

          16

          ,2

          37,

          1

          0,

          36

          0,

          77

          36

          ,6

          44,2

          4

          0,

          1

          0,00

          91

          37

          ,6

          14

          ,5

          0,

          1

          16

          ,4

          33,

          1

          0,

          32

          1,

          09

          33

          ,8

          62,7

          5

          0,

          11

          0,00

          91

          35

          ,3

          14

          0,

          11

          16

          ,7

          29,

          8

          0,

          28

          1,

          38

          31

          ,5

          79,3

          6

          0,

          12

          0,00

          91

          33

          ,1

          13

          ,5

          0,

          12

          17

          27

          0,

          26

          1,

          64

          29

          ,5

          94,2

          7

          0,

          12

          0,00

          91

          30

          ,8

          13

          0,

          13

          17

          ,4

          24,

          6

          0,

          23

          1,

          88

          27

          ,9

          107,

          8

          8

          0,

          13

          0,00

          91

          28

          ,6

          12

          ,6

          0,

          14

          17

          ,7

          22,

          5

          0,

          21

          2,

          09

          26

          ,4

          120,

          2

          9

          0,

          14

          0,00

          91

          26

          ,3

          12

          ,1

          0,

          15

          18

          ,1

          20,

          6

          0,

          19

          2,

          29

          25

          ,1

          131,

          5

          1

          0

          0,

          15

          – 0,15

          24

          ,1

          11

          ,6

          0,

          16

          18

          ,5

          18,

          9

          0,

          18

          2,

          47

          24

          141,

          9

          r ( r )

          r r

          =

          1 1

          r r

          2 ( 2 )

          r 1 r 1

          (2.37)

          where -2 < < 2 ()

          With the first blade showing the calculation arrangement shown in Table V. TABLE V. First blade calculation arrangement

          xa

          ya

          1

          1

          r1

          0,0744

          0

          0°

          0°

          0,0744

          0,0722

          0,0314

          Wrap angle

          23,514°

          0,0787

          0,0601

          0,0585

          141,99°

          44,256°

          0,0839

          0,0413

          0,0799

          62,728°

          0,0899

          0,0181

          0,0954

          79,307°

          0,0971

          -0,008

          0,1052

          94,278°

          0,1055

          -0,035

          0,1098

          107,87°

          0,1153

          -0,064

          0,1097

          120,25°

          0,127

          -0,093

          0,1053

          131,59°

          0,1407

          -0,124

          0,0968

          141,99°

          0,1569

          The geometry of the pump we selected to design, also determines the wrap angle w as follows [12] :

          r 2

          • ln( )

      r 1

      D2

      • ln ( )

      D1

      w = ( 2 1)

      ln (cos

      ) = ( 2 1)

      ln ( cos )

      [ 1 ]

      cos 2

      )

      ln ( 0,31

      0,15

      w= (18 15)

      [ ln( cos15) ]

      cos18

      = 1410

      [ 1 ]

      cos2

      (2.35)

      For a fast track calculation the distribution of the blade curvaturecan also be proposed here with the algorithms:

      The parameter can independently determine the blade shape y or the thickness of y. The two methods (I) and (II) are almost identical.

      hese shape forms are preferred because laboratory tests have shown that the blades are safe against impact or friction. The results obtained using these shape forms are shown in Table VI. The corresponding blade shape is shown in Fig.2.8.

      TABLE VI.

      FAST TRACK CALCULATION OF THE BLADE CURVATURE

      Some proposed functions according to ([13],[14]) for the blade shape are:

      r

      xa

      ya

      1

      1

      r1

      0,0795

      0

      0°

      0°

      0,0795

      0,0818

      0,0438

      Wrap angle

      28,2°

      0,0928

      0,071

      0,0787

      141

      47,963°

      0,1061

      0,0497

      0,1084

      65,396°

      0,1193

      0,0209

      0,1309

      80,989°

      0,1326

      -0,013

      0,1453

      95,096°

      0,1458

      -0,049

      0,1514

      107,97°

      0,1591

      -0,086

      0,1496

      119,82°

      0,1723

      -0,121

      0,1407

      130,79°

      0,1856

      -0,154

      0,1253

      141°

      0,1988

      ln ( r )

      = 2

      r 2

      ln ( )

      r 1

      = ln(r)+c

      and = J1((r/r1)-1)

      with the boundary conditions: r=r1 for =0

      r=r2 for =w

      (2.38)

      (2.39)

      (2.40)

      0,25

      0,2

      0,15

      0,1

      0,05

      The results are shown in Table VII.

      i Sigloch

      i ln

      i alnr+c

      i besselJ1

      0

      0

      0

      0

      25,79029144

      23,74

      28,223

      21,01241572

      47,44841549

      44,304

      48,002

      41,58808522

      66,05705779

      62,444

      65,448

      61,30034879

      82,32884465

      78,67

      81,054

      79,74247507

      96,75664773

      93,348

      95,172

      96,53701991

      109,6948682

      106,75

      108,06

      111,3444756

      121,4064634

      119,07

      119,92

      123,8710021

      132,0916559

      130,49

      130,89

      133,8750534

      141,9062476

      141,11

      141,11

      141,1727423

      TABLE VII. BLADE SHAPE CONFIGURATION FOR DIFFERENT ALGORITHMS

      0

      -0,05

      -0,1

      -0,15

      -0,2

      -0,25

      -0,25 -0,2 -0,15 -0,1 -0,05 0 0,05 0,1 0,15 0,2 0,25

      Fig.2.8. The blade shape can also be specified with other functions

      Fig.2.9 shows the blade profile and the impeller morphology for 6 blades with blade curvature according to Sigloch methodology.

      0,2

      0,15

      TABLE VIII.

      BLADE THICKNESS CONFIGURATION FOR

      EXPONENTIAL FORM FOR THE CURVATURE OF THE BLADES.

      ya

      1

      1

      r1

      0

      0°

      0°

      0,074409

      0,033329

      Wrap angle

      23,51429°

      0,083576

      0,064696

      141,9887°

      44,25575°

      0,092743

      0,090556

      62,72826°

      0,10191

      0,109134

      79,30663°

      0,111077

      0,119917

      94,27784°

      0,120244

      0,123208

      107,8671°

      0,129411

      0,119777

      120,2548°

      0,138579

      0,110618

      131,5881°

      0,147746

      0,096785

      141,9887°

      0,156913

      0,1

      0,05

      0

      -0,05

      -0,1

      -0,15

      -0,2

      -0,2 -0,15 -0,1 -0,05 0 0,05 0,1 0,15 0,2

      Fig.2.9. Blade profile, mpeller morphology for 6 blades with blade curvature according to Sigloch methodology.

      We can obtain an alternative blade thickness by choosing

      an exponential form for the blades' curvature. The results are shown in Table VIII and Fig.2.10.

      0,25

      0,2

      0,15

      0,1

      0,05

      0

      -0,05

      -0,1

      -0,15

      -0,2

      -0,25

      -0,25 -0,2 -0,15 -0,1 -0,05 0 0,05 0,1 0,15 0,2 0,25

      Fig.2.10. Two-dimensional diagram of the impeller [12] , blade thickness morphology by creating another blade of different curvature to the original one -for6 blades- according to the Sigloch or Menny methodology for the same wrap angle.

      With different wrap angle and blade thickness on the outlet side we would have different blade curvature distributions as shown in Tables IX-XI and Figs.2.11-2.12.

      TABLE IX. Blade curvature distribution with different wrap angle and blade thickness on the outlet.

      xa

      ya

      1

      1

      r1

      0,0744

      0

      0°

      0°

      0,0744

      0,0758

      0,0353

      Wrap angle

      24,9699°

      0,0836

      0,0622

      0,0688

      157,33°

      47,9134°

      0,0927

      0,0368

      0,095

      68,8893°

      0,1019

      0,004

      0,111

      87,9635°

      0,1111

      -0,031

      0,1161

      105,206°

      0,1202

      -0,066

      0,1114

      120,689°

      0,1294

      -0,097

      0,099

      134,487°

      0,1386

      -0,123

      0,0813

      146,674°

      0,1477

      -0,145

      0,0607

      157,326°

      0,1569

      0,25

      0,2

      0,15

      0,1

      0,05

      0

      -0,05

      -0,1

      -0,15

      -0,2

      -0,25

      -0,3 -0,2 -0,1 0 0,1 0,2 0,3

      Fig.2.11. Morphologies of blade thickness at the exit with the creation of another

      rx

      rx

      bx

      wx

      cxm

      0,074409

      0

      0,04433

      15,92

      4,02

      0

      0°

      0,083438

      0,009167

      0,042088

      15,45

      3,78

      24,96

      24,9°

      0,092466

      0,009167

      0,039846

      14,97

      3,6

      22,94

      47,9°

      0,101495

      0,009167

      0,037605

      14,5

      3,48

      20,97

      68,8°

      0,110524

      0,009167

      0,035363

      14,03

      3,4

      19,07

      87,9°

      0,119553

      0,009167

      0,033121

      13,56

      3,35

      17,24

      105,2°

      0,128581

      0,009167

      0,03088

      13,09

      3,34

      15,48

      120,6°

      0,13761

      0,009167

      0,028638

      12,62

      3,36

      13,79

      134,4°

      0,146639

      0,009167

      0,026396

      12,15

      3,42

      12,19

      146,6°

      0,155667

      0,009167

      0,024155

      11,68

      3,52

      10,65

      157,3°

      blade with a different curvature from the original, according to the Menny methodology for another wrap angle TABLE X. MENNY METHOD FOR BLADE SHAPE CONFIGURATION

      The camber line profiles of impellers with different blade

      wrap angle w according to [10], are described in Table XI and Fig.2.12.

      TABLE XI. BLADE SHAPE CONFIGURATION USING DIFFERENT ALGORITHMIC FUNCTIONS AND WITH DIFFERENT WRAP ANGLES IN DETERMINING THEIR

      CURVATURE AS A FUNCTION OF THE BLADE ANGLES B.

      r"

      linear

      xa

      ya

      0,07954

      17,29478

      0

      0,079539939

      0

      0,092797

      17,64068

      27,80325

      0,082094294

      0,043264

      0,106053

      17,98657

      50,823124

      0,067032551

      0,082182

      0,11931

      18,33247

      70,185765

      0,040512377

      0,112221

      0,132567

      18,67837

      86,667782

      0,007806968

      0,132336

      0,145823

      19,02426

      100,82799

      -0,02726674

      0,143251

      0,15908

      19,37016

      113,08217

      -0,06222094

      0,146407

      0,172337

      19,71605

      123,74807

      -0,09558327

      0,143401

      0,185593

      20,06195

      133,07401

      -0,12658977

      0,13572

      0,19885

      20,40784

      141,25763

      -0,15494082

      0,12

      0,2

      0,5

      0,15

      0,1

      0,05

      0

      -0,05

      -0,1

      -0,15

      -0,2

      -0,2 -0,15 -0,1 -0,05 0 0,05 0,1 0,15 0,2

      Fig.2.12. Various blades of different algorithmic functions and with different wrap angles in determining their curvature as a function of the blade angles .

    4. Geometry and Coordinates of Spiral Shell and Diffuser For the design of the Spiral Shell and the Diffuser, the procedure described in [6] and [11] is followed. The geometrical results obtained are shown in Tables XII-XIV and Figs. 2.13-2.14.

    0,4

    0,3

    0,2

    0,1

    0

    -0,1

    -0,2

    -0,3

    -0,4

    -0,4 -0,3 -0,2 -0,1 0 0,1 0,2 0,3 0,4 0,5

    Fig.2.14. The diffuser geometry

    The Logarithmic-Shaped Spiral Model

    The Archimedes" Shaped Spiral Model

    Shell in the form

    Shell in the form

    r=aexp(c)

    r=ar2 + c

    with the boundary conditions

    with the boundary conditions

    r=r2 for =360

    r=r2 for =360

    r=2r2 for =720

    r=2r2 for =720

    TABLE XII. Geometry and coordinates' models for the Spiral Shell

    0,3

    0,2

    0,1

    0

    -0,1

    TABLE XIII. Spiral shell geometry

    r

    xr

    yr

    r

    xr

    yr

    360

    0,19

    0,19

    -0,0006

    360

    0,19

    0,19

    -0,00063

    390

    0,21

    0,18

    0,1

    390

    0,22

    0,19

    0,107066

    420

    0,22

    0,11

    0,19

    420

    0,23

    0,11

    0,200478

    450

    0,24

    0,0009

    0,24

    450

    0,24

    0,0009

    0,24856

    480

    0,25

    0,12

    0,21

    480

    0,26

    -0,13

    0,230173

    510

    0,26

    -0,22

    0,13

    510

    0,28

    -0,24

    0,141951

    540

    0,28

    -0,28

    0,0013

    540

    0,29

    -0,29

    0,001425

    570

    0,29

    -0,26

    -0,14

    570

    0,31

    -0,27

    -0,15605

    600

    0,31

    -0,15

    -0,27

    600

    0,33

    -0,16

    -0,28613

    630

    0,33

    -0,0018

    -0,33

    630

    0,34

    -0,0019

    -0,34798

    660

    0,35

    0,17

    -0,30

    660

    0,36

    0,18

    -0,31678

    690

    0,37

    0,323

    -0,18

    690

    0,38

    0,32

    -0,19258

    720

    0,39

    0,39

    -0,002

    720

    0,39

    0,39

    -0,00253

    -0,2

    -0,3

    -0,4

    -0,4 -0,3 -0,2 -0,1 0 0,1 0,2 0,3 0,4 0,5

    Fig.2.13. The spiral shell geometry

    TABLE XIV. Geometry and coordinates of the diffuser (Diffuser angle =4)

    0,4

    A

    B

    C

    D

    x

    y

    x

    y

    x

    y

    x

    r2

    0

    2 r2

    0

    r2-2r2tan

    2 r2

    2r2 +2r2 tan

    0,19885

    0

    0,3977

    0

    0,1710541

    0,3977

    0,425495

    Diffuser walls

    Discharge Nozzles

    AC

    BD

    CD

    x

    y

    x

    y

    x

    y

    0,19885

    0

    0,3977

    0

    0,171054

    0,171054

    0,3977

    0,425495

    0,3976997

    0,425495

    0,4

  2. MODELLING PUMP PERFORMANCE

    Since in the previous section we obtained to design a pump using our model, it would be nice if we could have an estimate of the usual performance characteristics of this pump, ie efficiency, head and cavitation height in relation to the pump's discharge.

    The best way to have an estimate of these critical parameters of the pump we designed is obviously to construct this pump and test it in the test rig. However, this is a quite costly and time-consuming procedure. An alternative way is to use or develop empirical relationships for the performance of our pump based on the performance measurements of a number of commercial pumps from various manufacturers that have published performance measurements. At the end you should compare our model predictions with these measurements. We do this in subchapter A for head and efficiency and in subchapter B for cavitation height.

    1. Head and efficiency prediction

      Based on the logic we described just before we selected 9 pumps whose design features are shown in Table XV. The published performance maps of these pumps digitized using appropriate software. Using the digitized performance maps we proceeded to develop some useful relationships for the efficiency curve (subsection 1) and head (subsection 2). In subsection 3, the predictions of the new relationships we propose are compared with the measurement data of the 9 pumps.

      Pump param eters

      Ref.[ 19]

      Pump

      Ref.[2 0]

      Pump

      Ref.[2 1]

      Pump

      Ref.[ 22]

      Pump

      Ref.[2 3]

      Pump

      Ref.[2 4]

      Pump

      Ref.[ 25]

      Pump

      Ref.[26

      ] Pump

      Ref.[27]

      Pump

      QBEP

      (m3/h)

      40

      10,54

      200

      2,88

      4,8

      550

      50

      144

      4500

      QBEP

      (m3/s)

      0,011

      11

      0,002

      9

      0,0555

      0,000

      8

      0,0013

      0,152

      7

      0,013

      88

      0,04

      1,25

      Qmax

      80

      21,09

      400

      5,78

      9,6

      1100

      100

      288

      9000

      HBEP

      30

      16

      32

      4,8

      11

      50

      35

      60

      60

      Hshut

      0ff

      35,1

      18,7

      37,44

      5,616

      12,87

      58,5

      40,95

      70,2

      70,2

      n

      2850

      2900

      1480

      1500

      2800

      1480

      2850

      1800

      600

      nq

      23,4

      19,62

      25,92

      13,08

      16,92

      30,76

      23,34

      16,69

      31,11

      nspec

      0,39

      0,327

      0,432

      0,218

      46,666

      24,66

      47,5

      30

      10

      D

      0,17

      0,1

      0,3146

      0,06

      0,0707

      0,47

      0,18

      0,2759

      1,0933

      D2

      168

      95

      322

      120

      105

      420

      174

      320

      1100

      D1

      70

      45

      148

      40

      20

      200

      74

      145

      450

      z

      6

      6

      6

      6

      8

      6

      6

      7

      6

      b2

      12

      8

      12

      15

      5,2

      34

      12

      12

      100

      2

      11

      40

      25

      20

      11

      26

      31

      28

      37

      1

      9,32

      33,89

      21,18

      10

      9,32

      22,03

      37

      11,6

      21

      TABLE XV. DESIGN PARAMETERS FOR THE SELECTED PUMPS.

      Where:

      QBEP : Design flow rate

      Qmax : Maximum discharge (m3/h) D: Impeller diameter (m)

      nspec : Specific speed ( r/min) n: Rotational speed (r/min)

      D1: Impeller inlet diameter (mm) D2: Impeller outlet diameter (mm)

      b2: Blade's width in the impeller outlet (mm)

      HBEP: Head at BEP (best efficiency point) in meters

      TABLE XVI. SOME CALCULATED PARAMETERS FOR THE SELECTED PUMPS.

      Pump param eters

      Ref.[1 9]

      Pump

      Ref.[ 20]

      Pump

      Ref.[21

      ] Pump

      Ref.[2 2]

      Pump

      Ref.[2 3]

      Pump

      Ref.[2 4]

      Pump

      Ref.[2 5]

      Pump

      Ref.[2 6]

      Pump

      Ref.[27]

      Pump

      c1m

      2,83

      1,93

      3,05

      1,009

      1,52

      4,11

      4,11

      3,54

      4,53

      c2m

      2

      1,153

      1,995

      0,753

      1,230

      2,602

      2,076

      2,411

      2,763

      0,986

      0,993

      0,991

      0,983

      0,989

      0,991

      0,994

      0,984

      0,989

      c2u

      14,40

      12,94

      20,44

      7,19

      8,88

      26,83

      22,21

      25,15

      30,50

      u2

      25,05

      14,41

      24,93

      9,42

      15,38

      32,53

      25,95

      30,14

      34,54

      u1

      10,44

      6,82

      11,46

      3,14

      2,93

      15,49

      11,03

      13,65

      14,13

      Where:

      c2m: inlet flow velocity (m/s), nq<24 r/min c2u: swirl velocity at the outlet (m/s)

      : the slip value

      1. Proposed relations for predicting head curves

        The calculational procedure for predicting the manometric head curves for the 9 selected pumps of Table XV, has as follows: Hshut off = 1,17HBEP (3.1)

        Where the head at BEP (best efficiency point) HBEP is known from the experiment. However HBEP can also be calculated by the following empirical formula:

        H = 0.575 u2/ g

        BEP 2 (3.2)

        By knowing HBEP in the present work we propose the following formulas for predicting the variation of head vs the flow rate:

        0,5

        H= Hshutoff[cos(0,51,57 j)]

        2

        (3.3a)

        H= Hshutoff[1 0.2 j

        ] (3.3b)

        3

        H= Hshutoff[ 1 0.125 j

        ] (3.3c)

        2

        H= Hshutoff[ 2 exp(0.15 j )] (3.3d)

        H= H erfc(0.17 j2)

        shutoff (3.3e)

        0,72

        H= Hshutoff[Besselj0( j)]

        (3.3f)

        shutoff os(0,5 j ) (3.3g)

        Where erfc is the complementary error function given by:

        erfc(z)=1-erf(z) and j is given by:

        j=Q/QBEP (3.4)

        The discharge at BEP (best efficiency point) QBEP is known from the experiment. However QBEP can also be calculated by the following empirical formula:

        3.695 0.49

        QBEP= 3600(0.1 u2 b2 D2 )

        where:

        QBEP in m3/h u2 in m/sec and D2 and b2 in m

        (3.5)

        a) Calculational results for head predictions.

        For predicting the head-discharge variation of the selected pumps of Table XV we use the formulas (3.3a) to (3.3g). The calculational results are shown in Tables XVIII to XXVI and Figs. 3.1 to 3.17.

        TABLE XVII. PRESENT MODEL PREDICTIONS FOR [19] PUMP CHARACTERISTICS

        Ref.[19] Pump

        Predictions

        Q

        (m3/h

        )

        j= Q/QBEP

        H

        (m)

        Eq.(3.

        3a)

        Eq.(3.

        3b)

        Eq.(3.

        3c)

        Eq.(3.

        3d)

        Eq.(3.

        3e)

        Eq.(3.

        3f)

        Eq.(3.

        3g)

        0

        0

        35,2

        35,1

        35,1

        35,1

        35,1

        35,1

        35,1

        35,1

        10

        0,26

        35

        34,74

        34,64

        35,03

        34,75

        34,66

        34,69

        34,81

        20

        0,5

        34

        33,67

        33,25

        34,51

        33,69

        33,33

        33,45

        33,95

        30

        0,75

        32

        31,85

        30,95

        33,1

        31,84

        31,13

        31,42

        32,54

        40

        1

        29

        29,22

        27,72

        30,37

        29,1

        28,09

        28,64

        30,58

        50

        1,25

        25

        25,67

        23,56

        25,85

        25,29

        24,31

        25,15

        28,13

        TABLE XVIII. PRESENT MODEL PREDICTIONS FOR [20] PUMP CHARACTERISTICS

        Ref.[20] Pump

        Predictions

        Q

        (m3/h)

        j= Q/QBEP

        H

        (m)

        Eq.(3.

        3a)

        Eq.(3.

        3b)

        Eq.(3.

        3c)

        Eq.(3.

        3d)

        Eq.(3.

        3e)

        Eq.(3.

        3f)

        Eq.(3.

        3g)

        0

        0

        17,5

        17,25

        17,26

        17,26

        17,26

        17,26

        17,26

        17,26

        7,2

        0,83

        15,5

        15,35

        14,84

        15,99

        15,34

        14,95

        15,12

        15,77

        14,4

        1,67

        8,3

        8,69

        7,58

        7,13

        8,24

        8,63

        9,13

        11,55

        TABLE XIX. Present model predictions for [21] pump characteristics

        Ref.[21] Pump

        Predictions

        Q

        (m3/h)

        j= Q/QBEP

        H

        (m)

        Eq.(3.

        3a)

        Eq.(3.

        3b)

        Eq.(3.

        3c)

        Eq.(3.

        3d)

        Eq.(3.

        3e)

        Eq.(3.

        3f)

        Eq.(3.

        3g)

        0

        0

        36,3

        37,44

        37,44

        37,44

        37,44

        37,44

        37,44

        37,44

        50

        0,25

        36

        37,07

        36,97

        37,37

        37,09

        36,99

        37,02

        37,15

        100

        0,5

        35

        35,98

        35,57

        36,86

        36,01

        35,65

        35,77

        36,28

        150

        0,75

        33,5

        34,14

        33,23

        35,47

        34,14

        33,41

        33,71

        34,84

        200

        1

        31

        31,48

        29,95

        32,76

        31,38

        30,33

        30,88

        32,86

        250

        1,25

        26,5

        27,91

        25,74

        28,3

        27,55

        26,48

        27,33

        30,36

        275

        1,37

        24

        25,71

        23,28

        25,27

        25,16

        24,32

        25,3

        28,93

        TABLE XX. PRESENT MODEL PREDICTIONS FOR [22] PUMP CHARACTERISTICS

        Ref.[22] Pump

        Predictions

        Q

        (m3/h)

        j= Q/QBEP

        H

        (m)

        Eq.(3.

        3a)

        Eq.(3.

        3b)

        Eq.(3.

        3c)

        Eq.(3.

        3d)

        Eq.(3.

        3e)

        Eq.(3.

        3f)

        Eq.(3.

        3g)

        0

        0

        6

        5,61

        5,62

        5,62

        5,62

        5,62

        5,62

        5,62

        0,72

        0,25

        5,9

        5,56

        5,55

        5,61

        5,56

        5,55

        5,55

        5,57

        1,44

        0,5

        5,7

        5,39

        5,34

        5,53

        5,4

        5,35

        5,36

        5,44

        2,16

        0,75

        5,4

        5,12

        4,98

        5,32

        5,12

        5,01

        5,06

        5,23

        2,88

        1

        4,9

        4,72

        4,49

        4,91

        4,71

        4,55

        4,63

        4,93

        3,6

        1,25

        4,3

        4,18

        3,86

        4,24

        4,13

        3,97

        4,1

        4,55

        4,32

        1,5

        3,5

        3,47

        3,09

        3,25

        3,36

        3,31

        3,47

        4,11

        TABLE XXI. PRESENT MODEL PREDICTIONS FOR [23] PUMP CHARACTERISTICS

        Ref.[23] Pump

        Predictions

        Q

        (m3/h)

        j= Q/QBEP

        H

        (m)

        Eq.(3.

        3a)

        Eq.(3.

        3b)

        Eq.(3.

        3c)

        Eq.(3.

        3d)

        Eq.(3.

        3e)

        Eq.(3.

        3f)

        Eq.(3.

        3g)

        0

        0

        12,4

        12,87

        12,87

        12,87

        12,87

        12,87

        12,87

        12,87

        2

        0,42

        12,1

        12,52

        12,42

        12,75

        12,53

        12,44

        12,47

        12,59

        4

        0,83

        11,2

        11,46

        11,08

        11,94

        11,46

        11,16

        11,29

        11,77

        6

        1,25

        9,2

        9,59

        8,85

        9,73

        9,47

        9,1

        9,4

        10,44

        8

        1,66

        6

        6,55

        5,72

        5,42

        6,22

        6,49

        6,86

        8,65

        TABLE XXII. PRESENT MODEL PREDICTIONS FOR [24] PUMP CHARACTERISTICS

        Ref.[24] Pump

        Predictions

        Q

        (m3/h)

        j= Q/QBEP

        H

        (m)

        Eq.(3.

        3a)

        Eq.(3.

        3b)

        Eq.(3.

        3c)

        Eq.(3.

        3d)

        Eq.(3.

        3e)

        Eq.(3.

        3f)

        Eq.(3.

        3g)

        0

        0

        61,3

        58,5

        58,5

        58,5

        58,5

        58,5

        58,5

        58,5

        200

        0,36

        60

        57,3

        56,95

        58,15

        57,32

        57,01

        57,11

        57,53

        300

        0,55

        58

        55,79

        55,01

        57,31

        55,82

        55,15

        55,38

        56,33

        400

        0,73

        56

        53,64

        52,29

        55,67

        53,65

        52,56

        52,99

        54,66

        500

        0,91

        53

        50,84

        48,8

        52,98

        50,75

        49,25

        49,96

        52,54

        600

        1,09

        49

        47,31

        44,53

        48,95

        47,02

        45,28

        46,31

        49,98

        700

        1,28

        44

        42,97

        39,48

        43,34

        42,34

        40,71

        42,09

        47,01

        800

        1,46

        38

        37,64

        33,66

        35,87

        36,56

        35,67

        37,32

        43,65

        TABLE XXIII. PRESENT MODEL PREDICTIONS FOR [25] PUMP CHARACTERISTICS

        Ref.[25] Pump

        Predictions

        Q

        (m3/h)

        j= Q/QBEP

        H

        (m)

        Eq.(3.

        3a)

        Eq.(3.

        3b)

        Eq.(3.

        3c)

        Eq.(3.

        3d)

        Eq.(3.

        3e)

        Eq.(3.

        3f)

        Eq.(3.

        3g)

        0

        0

        40

        40,95

        40,95

        40,95

        40,95

        40,95

        40,95

        40,95

        10

        0,2

        39,5

        40,7

        40,62

        40,91

        40,7

        40,64

        40,66

        40,75

        20

        0,4

        39,2

        39,94

        39,64

        40,62

        39,96

        39,69

        39,78

        40,13

        30

        0,6

        38,5

        38,66

        38

        39,84

        38,68

        38,13

        38,32

        39,12

        40

        0,8

        37,5

        36,84

        35,71

        38,33

        36,82

        35,94

        36,31

        37,72

        50

        1

        35,5

        34,44

        32,76

        35,83

        34,32

        33,17

        33,77

        35,94

        60

        1,2

        32

        31,41

        29,16

        32,1

        31,08

        29,86

        30,73

        33,8

        70

        1,4

        28

        27,61

        24,9

        26,9

        26,95

        26,11

        27,21

        31,32

        TABLE XXIV. PRESENT MODEL PREDICTIONS FOR [26] PUMP CHARACTERISTICS

        Ref.[26] Pump

        Predictions

        Q

        (m3/h)

        j= Q/QBEP

        H

        (m)

        Eq.(3.

        3a)

        Eq.(3.

        3b)

        Eq.(3.

        3c)

        Eq.(3.

        3d)

        Eq.(3.

        3e)

        Eq.(3.

        3f)

        Eq.(3.

        3g)

        0

        0

        65

        62,01

        62,01

        62,01

        62,01

        62,01

        62,01

        62,01

        72

        0,5

        63

        59,61

        58,91

        61,04

        59,64

        59,04

        59,24

        60,08

        144

        1

        54

        52,15

        49,61

        54,26

        51,97

        50,23

        51,14

        54,42

        216

        1,5

        39

        38,39

        34,11

        35,85

        37,12

        36,5

        38,29

        45,37

        252

        1,75

        27

        27,44

        24,03

        20,47

        25,85

        28,62

        30,25

        39,75

        TABLE XXV. PRESENT MODEL PREDICTIONS FOR [27] PUMP CHARACTERISTICS

        Ref.[27] Pump

        Predictions

        Q

        (m3/h)

        j= Q/QBEP

        H

        (m)

        Eq.(3.

        3a)

        Eq.(3.

        3b)

        Eq.(3.

        3c)

        Eq.(3.

        3d)

        Eq.(3.

        3e)

        Eq.(3.

        3f)

        Eq.(3.

        3g)

        0

        0

        68

        70,2

        70,2

        70,2

        70,2

        70,2

        70,2

        70,2

        2000

        0,46

        67

        67,88

        67,21

        69,34

        67,92

        67,33

        67,52

        68,34

        3000

        0,69

        66

        64,95

        63,47

        67,29

        64,97

        63,76

        64,22

        66,04

        4000

        0,92

        63

        60,75

        58,24

        63,3

        60,63

        58,81

        59,68

        62,86

        5000

        1,15

        57

        55,15

        51,51

        56,73

        54,69

        52,58

        53,96

        58,84

        6000

        1,38

        50

        47,89

        43,29

        46,92

        46,82

        45,28

        47,15

        54,04

        7000

        1,62

        40

        38,34

        33,57

        33,23

        36,58

        37,24

        39,3

        48,53

        Head Prediction for Ref.[19] Pump

        40

        35

        30

        Head (m)

        25

        20

        Measured Eq.(3.3a)

        15 Eq.(3.3b) Eq.(3.3c)

        Eq.(3.3d) Eq.(3.3e)

        10 Eq.(3.3f) Eq.(3.3g)

        5

        0

        0 5 10 15 20 25 30 35 40 45 50

        /h)

        ict [19] pump head

        Q (m^3

        Head Prediction for Ref.[20] Pump

        20

        18

        16

        14

        Head (m)

        12

        10 Measured Eq.(3.3a)

        8 Eq.(3.3b) Eq.(3.3c)

        6 Eq.(3.3d) Eq.(3.3e)

        Eq.(3.3f) Eq.(3.3g)

        4

        2

        0

        0 2 4 6 8 10 12 14 16

        Q (m^3/h)

        Fig.3.2. Using present model to predict [20] pump head

        Fig.3.1. Using present model to pred

        Head Prediction for Ref.[21] Pump

        40

        35

        30

        Head (m)

        25

        20

        Measured Eq.(3.3a)

        15 Eq.(3.3b) Eq.(3.3c)

        Eq.(3.3d) Eq.(3.3e)

        10 Eq.(3.3f) Eq.(3.3g)

        5

        Head Prediction for Ref.[22] Pump

        7

        6

        5

        Head (m)

        4

        Measured Eq.(3.3a)

        3 Eq.(3.3b) Eq.(3.3c)

        Eq.(3.3d) Eq.(3.3e)

        2 Eq.(3.3f) Eq.(3.3g)

        1

        0

        0 0,5 1 1,5 2 2,5 3 3,5 4 4,5

        Q (m^3/h)

        0

        0 50 100 150 200 250 300

        Fig.3.4. Using present model to predict [22] pump head

        Q (m^3/h)

        Fig.3.3. Using present model to predict [21] pump head

        Head Prediction for Ref.[23] Pump

        14

        12

        10

        Head (m)

        8

        6 Measured Eq.(3.3a)

        Eq.(3.3b) Eq.(3.3c)

        4 Eq.(3.3d) Eq.(3.3e)

        2 Eq.(3.3f) Eq.(3.3g)

        0

        0 1 2 3 4 5 6 7 8

        Q (m^3/h)

        Fig.3.5. Using present model to predict [23] pump head

        Head Prediction for Ref.[24] Pump

        70

        60

        50

        Head Prediction for Ref.[25] Pump

        45

        40

        35

        30

        Head (m)

        25 Measured Eq.(3.3a)

        20 Eq.(3.3b) Eq.(3.3c)

        15 Eq.(3.3d) Eq.(3.3e)

        10 Eq.(3.3f) Eq.(3.3g)

        5

        0

        0 10 20 30 40 50 60 70

        Q (m^3/h)

        Fig.3.7. Using present model to predict [25] pump head

        Head Prediction for Ref.[26] Pump

        70

        60

        50

        Head (m)

        40

        Head (m)

        40

        30 Measured Eq.(3.3a)

        Eq.(3.3b) Eq.(3.3c)

        20 Eq.(3.3d) Eq.(3.3e)

        10 Eq.(3.3f) Eq.(3.3g)

        0

        0 100 200 300 400 500 600 700 800

        Q (m^3/h)

        Fig.3.6. Using present model to predict [24] pump head.

        30 Measured Eq.(3.3a)

        20 Eq.(3.3b) Eq.(3.3c)

        Eq.(3.3d) Eq.(3.3e)

        10 Eq.(3.3f) Eq.(3.3g)

        0

        0 50 100 150 200 250 300

        Q (m^3/h)

        Fig.3.8. Using present model to predict [26] pump head

        80 Head Prediction for Ref.[27] Pump

        70

        60

        Head (m)

        50

        40 Measured Eq.(3.3a)

        30 Eq.(3.3b) Eq.(3.3c)

        20 Eq.(3.3d) Eq.(3.3e)

        10 Eq.(3.3f) Eq.(3.3g)

        0

        0 1000 2000 3000 4000 5000 6000 7000

        Q (m^3/h)

        Fig.3.9. Using present model to predict [27] pump head

      2. Proposed relations for predicting efficiency curves

        The calculational procedure for predicting the pump efficiency curves for the 9 selected pumps of Table XV, has as follows:

        The mechanical efficiency is:

        m=

        1

        1.1+ 1

        nq (3.6)

        The volumetric efficiency for nq < 23,5 r/min is:

        1

        q=

        1+

        2

        n

        0.66

        q

        while the volumetric efficiency for nq >23,5 r/min is:

        (3.7)

        The hydraulic efficiency is:

        1

        q=

        1

        1+

        0.2

        n

        0.66

        q

        (3.8)

        h=

        1.1+

        0.9

        n

        0.66

        q

        (3.9)

        As a result the overall efficiency is:

        max=m qh (3.10)

        Summary of calculations is shown in Table XVII.

        TABLE XXVI. EFFICIENCY CALCULATIONS

        Ref.[21] Pump

        Predictions

        Q

        j

        H

        Eq. 3.11a

        Eq. 3.11b

        Eq. 3.11c

        Eq. 3.11d

        Eq. 3.11e

        Eq. 3.11f

        Eq. 3.11g

        0

        0

        0

        0

        0

        0

        0

        0

        0

        0

        50

        0,25

        0,35

        0,32

        0,34

        0,37

        0,37

        0,38

        0,39

        0,37

        100

        0,5

        0,6

        0,59

        0,63

        0,63

        0,65

        0,63

        0,63

        0,63

        150

        0,75

        0,75

        0,77

        0,8

        0,78

        0,78

        0,79

        0,79

        0,78

        200

        1

        0,8

        0,84

        0,85

        0,84

        0,8

        0,84

        0,84

        0,84

        250

        1,25

        0,76

        0,77

        0,77

        0,78

        0,73

        0,79

        0,79

        0,78

        275

        1,38

        0,72

        0,7

        0,69

        0,72

        0,68

        0,72

        0,72

        0,72

        TABLE XXVIII. Present model predictions for [21] pump characteristics

        Pump param eters

        Ref.[1 9]

        Pump

        Ref.[ 20]

        Pump

        Ref.[21

        ] Pump

        Ref.[2 2]

        Pump

        Ref.[2 3]

        Pump

        Ref.[2 4]

        Pump

        Ref.[2 5]

        Pump

        Ref.[2 6]

        Pump

        Ref.[27]

        Pump

        q

        0,8

        0,78

        0,977

        0,731

        0,731

        0,979

        0,975

        0,762

        0,979

        h

        0,96

        0,943

        0,975

        0,932

        0,873

        0,938

        0,901

        0,920

        0,974

        m

        0,88

        0,868

        0,878

        0,850

        0,862

        0,882

        0,875

        0,862

        0,883

        max

        0,67

        0,639

        0,837

        0,579

        0,551

        0,811

        0,769

        0,604

        0,843

        In the present work we propose the following formulas for predicting the variation of pump efficiency vs the flow rate:

        = max sin(1,57 j ) (3.11a) = 3.18 max [ 0.49 j + 1.02 erf (0.89 j )] (3.11b) max (2 j ) (3.11c)

        = [erf (1. j)] [1.14 erf ( 0.12 j3)]

        max (3.11d)

        0.8

        TABLE XXIX. PRESENT MODEL PREDICTIONS FOR [22] PUMP CHARACTERI

        = max[erf (6.28 j)][sin (1.57 j)]

        max

        = [sin(1,57 j)]0.8

        2

        Ref.[22] Pump

        Predictions

        Q

        j

        H

        Eq. 3.11a

        Eq. 3.11b

        Eq. 3.11c

        Eq. 3.11d

        Eq. 3.11e

        Eq. 3.11f

        Eq. 3.11g

        0

        0

        0

        0

        0

        0

        0

        0

        0

        0

        0

        0,25

        0,25

        0,22

        0,24

        0,25

        0,26

        0,26

        0,27

        0,25

        0,72

        0,5

        0,43

        0,41

        0,43

        0,43

        0,45

        0,44

        0,44

        0,43

        1,44

        0,75

        0,53

        0,54

        0,55

        0,54

        0,54

        0,54

        0,54

        0,54

        2,16

        1

        0,56

        0,58

        0,59

        0,58

        0,55

        0,58

        0,58

        0,58

        2,88

        1,25

        0,52

        0,54

        0,53

        0,54

        0,51

        0,54

        0,54

        0,54

        3,6

        1,5

        0,4

        0,41

        0,41

        0,43

        0,42

        0,44

        0,44

        0,43

        (3.11e)

        (3.11f)

        = max[1 (1 j) ] (3.11g)

        Where erf is the error function and the factor j is given by:

        1. Calculational results for efficiency predictions.

          For predicting the efficiency-discharge variation of the selected pumps of Table XV we use the formulas (3.11a) to (3.11g). The calculational results are shown in Tables XVIII to XXVI and Figs. 3.1 to 3.17. The symbols in the first three columns in Tables XVIII to XXVI are:

          Q: Flow rate (m3/h) j=Q/QBEP

          H: Head (m)

          Ref.[19] Pump

          Predictions

          Q

          j

          H

          Eq. 3.11a

          Eq. 3.11b

          Eq. 3.11c

          Eq. 3.11d

          Eq. 3.11e

          Eq. 3.11f

          Eq. 3.11g

          0

          0

          0

          0

          0

          0

          0

          0

          0

          0

          10

          0,26

          0,29

          0,26

          0,28

          0,3

          0,3

          0,31

          0,32

          0,3

          20

          0,51

          0,5

          0,48

          0,51

          0,51

          0,53

          0,52

          0,52

          0,51

          30

          0,77

          0,63

          0,63

          0,65

          0,63

          0,63

          0,63

          0,63

          0,63

          40

          1,03

          0,65

          0,67

          0,67

          0,67

          0,64

          0,67

          0,67

          0,67

          50

          1,28

          0,6

          0,61

          0,6

          0,62

          0,58

          0,62

          0,62

          0,62

          TABLE XXVII. PRESENT MODEL PREDICTIONS FOR [19] PUMP CHARACTERISTICS

          TABLE XXX. PRESENT MODEL PREDICTIONS FOR [23] PUMP CHARACTERISTICS

          Ref.[23] Pump

          Predictions

          Q

          j

          H

          Eq. 3.11a

          Eq. 3.11b

          Eq. 3.11c

          Eq. 3.11d

          Eq. 3.11e

          Eq. 3.11f

          Eq. 3.11g

          0

          0

          0

          0

          0

          0

          0

          0

          0

          0

          2

          0,42

          0,34

          0,34

          0,36

          0,36

          0,38

          0,37

          0,37

          0,36

          4

          0,83

          0,53

          0,53

          0,55

          0,54

          0,53

          0,54

          0,54

          0,54

          6

          1,25

          0,51

          0,51

          0,51

          0,52

          0,48

          0,52

          0,52

          0,52

          8

          1,67

          0,28

          0,28

          0,29

          0,31

          0,34

          0,32

          0,32

          0,31

          TABLE XXXI. PRESENT MODEL PREDICTIONS FOR [24] PUMP CHARACTERISTICS

          Ref.[24] Pump

          Predictions

          Q

          j

          H

          Eq. 3.11a

          Eq. 3.11b

          Eq. 3.11c

          Eq. 3.11d

          Eq. 3.11e

          Eq. 3.11f

          Eq. 3.11g

          0

          0

          0

          0

          0

          0

          0

          0

          200

          0,36

          0,47

          0,48

          0,5

          0,5

          0,5

          0,48

          300

          0,55

          0,68

          0,61

          0,65

          0,64

          0,66

          0,65

          0,65

          0,64

          400

          0,73

          0,77

          0,74

          0,77

          0,75

          0,75

          0,75

          0,75

          0,75

          500

          0,91

          0,81

          0,8

          0,82

          0,81

          0,78

          0,81

          0,81

          0,81

          600

          1,09

          0,82

          0,8

          0,81

          0,8

          0,76

          0,8

          0,8

          0,8

          700

          1,28

          0,77

          0,74

          0,73

          0,75

          0,7

          0,75

          0,75

          0,75

          800

          1,46

          0,67

          0,61

          0,61

          0,64

          0,62

          0,65

          0,65

          0,64

          TABLE XXXII. PRESENT MODEL PREDICTIONS FOR [25] PUMP CHARACTERISTICS

          Ref.[25] Pump

          Predictions

          Q

          j

          H

          Eq. 3.11a

          Eq. 3.11b

          Eq. 3.11c

          Eq. 3.11d

          Eq. 3.11e

          Eq. 3.11f

          Eq. 3.11g

          0

          0

          0

          0

          0

          0

          0

          <>0

          0

          0

          10

          0,2

          0,3

          0,24

          0,26

          0,28

          0,28

          0,28

          0,3

          0,29

          20

          0,4

          0,5

          0,45

          0,48

          0,49

          0,51

          0,5

          0,5

          0,52

          30

          0,6

          0,64

          0,62

          0,65

          0,65

          0,66

          0,65

          0,65

          0,68

          40

          0,8

          0,73

          0,73

          0,75

          0,74

          0,73

          0,74

          0,74

          0,78

          50

          1

          0,77

          0,77

          0,78

          0,77

          0,73

          0,77

          0,77

          0,81

          60

          1,2

          0,75

          0,73

          0,73

          0,74

          0,69

          0,74

          0,74

          0,78

          70

          1,4

          0,67

          0,62

          0,62

          0,65

          0,61

          0,65

          0,65

          0,68

          TABLE XXXIII. PRESENT MODEL PREDICTIONS FOR [26] PUMP CHARACTERISTICS

          Ref.[26] Pump

          Predictions

          Q

          j

          H

          Eq. 3.11a

          Eq. 3.11b

          Eq. 3.11c

          Eq. 3.11d

          Eq. 3.11e

          Eq. 3.11f

          Eq. 3.11g

          0

          0

          0

          0

          0

          0

          0

          0

          0

          0

          72

          0,5

          0,46

          0,44

          0,46

          0,46

          0,48

          0,47

          0,47

          0,46

          144

          1

          0,6

          0,62

          0,62

          0,62

          0,59

          0,62

          0,62

          0,62

          216

          1,5

          0,45

          0,44

          0,44

          0,46

          0,45

          0,47

          0,47

          0,46

          252

          1,75

          0,3

          0,24

          0,26

          0,27

          0,34

          0,29

          0,29

          0,27

          TABLE XXXIV. PRESENT MODEL PREDICTIONS FOR [27] PUMP CHARACTERISTICS

          Ref.[27] Pump

          Predictions

          Q

          j

          H

          Eq. 3.11a

          Eq. 3.11b

          Eq. 3.11c

          Eq. 3.11d

          Eq. 3.11e

          Eq. 3.11f

          Eq. 3.11g

          0

          0

          0

          0

          0

          0

          0

          0

          0

          0

          2000

          0,46

          0,6

          0,56

          0,59

          0,6

          0,62

          0,61

          0,61

          0,6

          3000

          0,69

          0,78

          0,75

          0,78

          0,76

          0,77

          0,76

          0,76

          0,76

          4000

          0,92

          0,87

          0,84

          0,85

          0,84

          0,81

          0,84

          0,84

          0,84

          5000

          1,15

          0,86

          0,82

          0,82

          0,82

          0,77

          0,82

          0,82

          0,82

          6000

          1,38

          0,76

          0,69

          0,69

          0,72

          0,68

          0,72

          0,72

          0,72

          7000

          1,62

          0,59

          0,48

          0,5

          0,52

          0,55

          0,54

          0,54

          0,52

          0,8

          0,7

          0,6

          Efficiency

          0,5

          0,4

          Efficiency Prediction for Ref.[19] Pump

          Efficiency Prediction for Ref.[22] Pump

          0,7

          0,6

          0,5

          Efficiency

          0,4

          0,3

          0,2

          0,1

          0

          Measured Eq.(3.11a)

          Eq.(3.11b) Eq.(3.11c)

          Eq.(3.11d) Eq.(3.11e)

          Eq.(3.11f) Eq.(3.11g)

          0 5 10 15 20 25 30 35 40 45 50

          Q (m^3/h)

          0,3

          0,2

          0,1

          0

          Measured Eq.(3.11a)

          Eq.(3.11b) Eq.(3.11c)

          Eq.(3.11d) Eq.(3.11e)

          Eq.(3.11f) Eq.(3.11g) 0 0,5 1 1,5 2 2,5 3 3,5 4 4,5

          Q (m^3/h)

          Fig.3.10. Using present model to predict [19] pump efficiency.

          Fig.3.12. Using present model to predict [22] pump efficiency.

          Efficiency Prediction for Ref.[21] Pump

          0,9

          0,8

          0,7

          0,6

          Efficiency

          0,5

          0,6

          0,5

          Efficiency

          0,4

          0,3

          Efficiency Prediction for Ref.[23] Pump

          0,4

          0,3

          0,2

          0,1

          0

          Measured Eq.(3.11a)

          Eq.(3.11b) Eq.(3.11c)

          Eq.(3.11d) Eq.(3.11e)

          Eq.(3.11f) Eq.(3.11g)

          0 50 100 150 200 250 300

          Q (m^3/h)

          0,2

          0,1

          0

          Measured Eq.(3.11a)

          Eq.(3.11b) Eq.(3.11c)

          Eq.(3.11d) Eq.(3.11e)

          Eq.(3.11f) Eq.(3.11g)

          0 1 2 3 4 5 6 7 8

          Q (m^3/h)

          Fig.3.11. Using present model to predict [21] pump efficiency.

          Fig.3.13. Using present model to predict [23] pump efficiency.

          0,9

          0,8

          0,7

          0,6

          Efficiency

          0,5

          0,4

          0,3

          Efficiency Prediction for Ref.[24] Pump

          Measured Eq.(3.11a)

          Eq.(3.11b) Eq.(3.11c)

          Efficiency Prediction for Ref.[26] Pump

          0,7

          0,6

          0,5

          Efficiency

          0,4

          0,3

          0,2

          0,1

          0

          Eq.(3.11d) Eq.(3.11e)

          Eq.(3.11f) Eq.(3.11g)

          0 100 200 300 400 500 600 700 800

          Q (m^3/h)

          Fig.3.14. Using present model to predict [24] pump efficiency.

          0,2

          0,1

          0

          Measured Eq.(3.11a)

          Eq.(3.11b) Eq.(3.11c)

          Eq.(3.11d) Eq.(3.11e)

          Eq.(3.11f) Eq.(3.11g)

          0 50 100 150 200 250 300

          Q (m^3/h)

          Efficiency Prediction for Ref.[25] Pump

          0,9

          0,8

          0,7

          0,6

          Efficiency

          0,5

          0,4

          Fig.3.16. Using present model to predict [26] pump efficiency.

          Efficiency Prediction for Ref.[27] Pump

          1

          0,9

          0,8

          0,7

          0,3

          0,2

          0,1

          0

          Measured Eq.(3.11a)

          Eq.(3.11b) Eq.(3.11c)

          Eq.(3.11d) Eq.(3.11e)

          Eq.(3.11f) Eq.(3.11g)

          0 10 20 30 40 50 60 70

          Q (m^3/h)

          Efficiency

          0,6

          0,5

          0,4 Measured Eq.(3.11a)

          0,3 Eq.(3.11b) Eq.(3.11c)

          0,2 Eq.(3.11d) Eq.(3.11e)

          0,1 Eq.(3.11f) Eq.(3.11g)

          0

          Fig.3.15. Using present model to predict [25] pump efficiency.

          0 1000 2000 3000 4000 5000 6000 7000

          Q (m^3/h)

          Fig.3.17. Using present model to predict [27] pump efficiency.

    2. NPSHR Predictions

    NPSH (Net Positive Suction Head) is a measure of the pressure experienced by a fluid on the suction side of a centrifugal pump. It is used to avoid running a pump under conditions which favour cavitation. NPSHR (NPSH Required) and NPSHA (NPSH Available) are two key NPSH values:

    NPSHR is a pump property quoted by pump manufacturers as the suction pressure at which cavitation has already reduced pump performance by 3%.

    NPSHA is a system property calculated from the suction-side system configuration. It is essentially the suction-side pressure less the vapour pressure of the pumped fluid at that point.

    To avoid cavitation, it is necessary to ensure that NPSHA exceeds NPSHR by a sufficient safety margin, for example: NPSHA>NPSHR + 0.5m.

    This margin depends on the type of pump and application and may be quoted as a ratio or a head difference.

    So in order to avoid cavitation problems in a pumping assembly, it is important to calculate the values of NPSHA and NPSHR. In what follows, we present methodologies for estimating both NPSHA and NPSHR as accurately as possible.

    NPSHA calculation [1]

    NPSHA can easily be calculated by the following relation:

    NPSHA = hp hvpa + hst hfs ha (3.12) Where:

    hp: absolute pressure head in meters on the surface of the liquid supply level hvpa: Vapor pressure of the liquid converted to meters

    hst: Static height in meters, difference between liquid level and established pump datum.

    hfs: All suction line losses converted from pressure to meters including piping entrance losses and friction losses through the pipe, valves, etc.

    ha: Acceleration head

    = NPSH/H, Thomas cavitation number

    NPSHR calculation

    Using the pump's affinity law, the cavitation problem is transformed into the following empirical formula used in the present model for estimating the variation of NPSHR,x in relation to the pump's flow rate:

    NPSHR,x=NPSHR,ref (Qx/Qref)0.1 (3.13)

    where the reference values are known from the experiments in the test rig.

    Using Eq. (3.13) we can calculate the variation of NPSHR with respect to Q for the pump we designed in II. The results are shown in Table XXVII and Figure 3.18.

    Q/QBEP

    NPSHR,r

    0

    0

    0,6

    1,67

    0,8

    2,3

    1

    2,9

    1,2

    3,7

    TABLE XXXV. MMMM

    4

    3,5

    3

    NPSHR(m)

    2,5

    2

    1,5

    1

    0,5

    0

    0 0,2 0,4 0,6 0,8 1 1,2 1,4

    Q/QBEP

    Fig. 3.18. Present model test rig centrifugal pump NPSHR variation with discharge flow.

    In order to check the validity of Eq.(3.13) we selected 5 commercial pumps ([29]-[33]) for which the manufacturers provided values for the NPSHR for each pump. We then proceeded to calculate the variation of NPSHR for each pump separately. The results of the calculations are shown in Tables XXVIII to XXXII and Figures 3.19 to 3.23.

    Comparison of cavitation prediction performances for some centrifugal pumps

    Q/QBE

    NPSHR.ref

    Experiment

    Prediction

    0

    0

    0,6

    2,1

    2

    2,09

    0,8

    2,8

    2,65

    2,79

    1

    3,5

    3,3

    3,49

    1,2

    4,2

    4

    4,2

    TABLE XXXVI. PREDICTING NPSHR FOR REF.[29] EXPERIMENT

    NPSHR(m)

    TABLE XXXVII. PREDICTING NPSHR FOR REF.[30] EXPERIMENT

    Q/QBE

    Experiment

    Prediction

    0,67

    1,9

    2,12

    1

    2,65

    2,86

    1,3

    3,44

    3,59

    1,49

    4,1

    4,29

    TABLE XXXVIII. PREDICTING NPSHR FOR REF.[31] EXPERIMENT

    4,5

    4

    3,5

    3

    2,5

    2

    1,5

    1

    0,5

    0

    NPSHRprediction for Ref.[29]pump

    Measured

    Predicted

    Q/QBE

    Experiment

    Prediction

    0,6

    2

    2,09

    0,8

    2,7

    2,79

    1

    3,4

    3,49

    1,2

    4,1

    4,19

    0,5 0,6 0,7 0,8 0,9 1 1,1 1,2 1,3

    Q/QBEP

    Fig. 3.19. Predicting NPSHR for [29] pump.

    TABLE XXXIX. PREDICTING NPSHR FOR REF.[32] EXPERIMENT

    Q/QBE

    Experiment

    Prediction

    0,8

    2

    2,16

    0,92

    2,63

    2,83

    1

    3,3

    3,49

    1,05

    3,94

    4,14

    TABLE XL. PREDICTING NPSHR FOR REF.[33] EXPERIMENT

    Q/QBE

    Experiment

    Prediction

    0,8

    2,4

    2,16

    0,9

    3,05

    2,83

    1

    3,7

    3,49

    1,1

    4,4

    4,16

    5

    4,5

    NPSHR(m)

    4

    3,5

    3

    2,5

    2

    1,5

    1

    0,5

    0

    NPSHRprediction for Ref.[30]pump

    Measured Predicted

    4,5

    4

    NPSHR(m)

    3,5

    3

    2,5

    2

    1,5

    1

    NPSHRprediction for Ref.[32]pump

    Measured Predicted

    0,6 0,7 0,8 0,9 1 1,1 1,2 1,3 1,4 1,5 1,6

    Q/QBEP

    Fig. 3.20. Predicting NPSHR for [30] pump.

    NPSHRprediction for Ref.[31]pump

    0,5

    0

    0,75 0,8 0,85 0,9 0,95 1 1,05 1,1

    Q/QBEP

    Fig. 3.22. Predicting NPSHR for [32] pump.

    Measured Predicted

    4,5

    4

    NPSHR(m)

    3,5

    3

    2,5

    2

    1,5

    1

    0,5

    0

    0,5 0,6 0,7 0,8 0,9 1 1,1 1,2 1,3

    Q/QBEP

    5

    4,5

    4

    NPSHR(m)

    3,5

    3

    2,5

    2

    1,5

    1

    0,5

    0

    NPSHRprediction for Ref.[33]pump

    Predicted

    Measured

    Fig. 3.21. Predicting NPSHR for [31] pump.

    0,75 0,8 0,85 0,9 0,95 1 1,05 1,1 1,15

    Q/QBEP

    Fig. 3.23. Predicting NPSHR for [33] pump.

  3. ESTIMATING PRESENT PUMP PERFORMANCE

    As we said in the previous chapter, the best way to have accurate knowledge of the performance of the pump we designed would be to build it and then measure its performance in the test room. But this is quite difficult, costly and time-consuming. lternatively we can make an estimate of the performances by making use of the empirical relationships we proposed in the previous chapter. This i what we attempt below in A and B.

    1. Estimating present pump head Eq.(2.8) gives: u2=31 m/s.

      By knowing that g=9.81 m/s2, Eq. (3.2) gives:

      BEP 2 2

      H = 0.575 u2/ g= 0.575 312 /9.81= 56.32m

      Therefore, Eq.(3.1) finds:

      Hshut off = 1,17HBEP=1,1756.32=65.9 m

      Eq.(2.6) gives: D2=0.31 m. Eq.(2.17) gives: b2=0.024 m. Therefore, Eq.(3.5) finds:

      3.695 0.49

      QBEP= 3600(0.1 u2 b2 D2 )

      QBEP

      2

      = 3600(0.1 3.1431 0.024 0.313.695)0.49

      3

      QBEP= 211.86m /h

      We can now calculate the pump head via equations (3.3a) until (3.3g). The results of the calculations are shown in the Table XLI where j is calculated according to Eq.(3.4):

      j=Q/QBEP

      In the Table XLI we have divided the interval 0-300 m3/h into intervals of 50 m3/h.

      TABLE XLI. PRESENT PUMP HEAD PREDICTION

      j

      Q

      Eq.(3.

      3a)

      Eq.(3.

      3b)

      Eq.(3.

      3c)

      Eq.(3.

      3d)

      Eq.(3.

      3e)

      Eq.(3.

      3f)

      Eq.(3.3

      g)

      0

      0

      65,9

      65,9

      65,9

      65,9

      65,9

      65,9

      65,9

      0,24

      50

      65,34

      65,17

      65,8

      65,35

      65,2

      65,24

      65,45

      0,47

      100

      63,63

      62,97

      65,04

      63,66

      63,09

      63,28

      64,08

      0,71

      150

      60,74

      59,3

      62,98

      60,76

      59,58

      60,04

      61,82

      0,94

      200

      56,61

      54,16

      58,97

      56,48

      54,72

      55,58

      58,7

      1,18

      250

      51,08

      47,55

      52,37

      50,6

      48,62

      49,98

      54,76

      1,42

      300

      43,88

      39,48

      42,52

      42,78

      41,5

      43,31

      50,06

      A graphical representation of the results of Table XLI is shown in Figure 4.1.

      Head prediction for present pump

      70

      0,9

      0,8

      Efficiency prediction for present pump

      60

      50

      Head (m)

      40

      Eq.(3.3a) Eq.(3.3b)

      30 Eq.(3.3c) Eq.(3.3d)

      Eq.(3.3e) Eq.(3.3f)

      20 Eq.(3.3g)

      10

      0

      0 50 100 150 200 250 300

      Q (m^3/h)

      0,7

      0,6

      Efficiency

      0,5

      0,4

      0,3

      0,2

      0,1

      0

      Eq.(3.11a) Eq.(3.11b)

      Eq.(3.11c) Eq.(3.11d)

      Eq.(3.11e) Eq.(3.11f) Eq.(3.11g)

      0 50 100 150 200 250 300

      Q (m^3/h)

      Fig. 4.1. Predicting head for present pump.

    2. Estimating present pump efficiency

    Fig. 4.2. Predicting efficiency for present pump.

    Now using MAX=0.8 [from Eq.(2.30)] and Equations 3.11 we can construct a Table similar to Table XLI for predicting pump efficiency. The results are shown numerically in Table XLII and graphically in Fig.4.2.j

    TABLE XLII. Present Pump Efficiency Prediction

    j

    Q

    EQ.(3.1 1A)

    EQ.(3.1 1B)

    EQ.(3.1 1C)

    EQ.(3.1 1D)

    EQ.(3. 11E)

    EQ.(3. 11F)

    EQ.(3.1 1G)

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0,24

    50

    0,29

    0,31

    0,33

    0,34

    0,34

    0,35

    0,33

    0,47

    100

    0,54

    0,57

    0,58

    0,59

    0,58

    0,58

    0,58

    0,71

    150

    0,72

    0,74

    0,73

    0,74

    0,73

    0,73

    0,73

    0,94

    200

    0,8

    0,81

    0,8

    0,77

    0,8

    0,8

    0,8

    1,18

    250

    0,77

    0,77

    0,77

    0,72

    0,77

    0,77

    0,77

    1,42

    300

    0,64

    0,64

    0,66

    0,63

    0,67

    0,67

    0,66

  4. DISCUSSION OF RESULTS

Observing the comparison results in Chapter III, we can make the following findings: The present model predicts the efficiency and manometric head curves quite well showing a slight underestimation for large dischargerates.

The prediction of NPSHR is equally satisfactory, showing however a systematic trend of slight overestimation in the majority of cases.

CONCLUSIONS

In the present study, a radial centrifugal pump was numerically investigated. Design models of impeller, volute, and combined impeller-diffuser geometry were developed. The impeller and diffuser geometry was developed in order to analyze the effects of the design parameters, including the blade shape, the blade height, the outlet blade angle, the blade width, the blade number, the impeller outer diameter and the overall efficiency. A good agreement was observed, when comparing the model numerical results with the experimental data obtained by a pump test rig.

Moreover, a group of empirical equations was developed in order to estimate the performance curves (H-Q, Q, NPSHR-Q) of a centrifugal pump, using quite simple geometric data. The development of these equations prove that the prediction of centrifugal pumps performance curves could be accomplished without using complex mathematical models.

Furthermore, all-basic parameters that affect the pump behavior are taken into account resulting on very good approach to some original pump performance curves. The developed empirical formulas satisfactorily provide the ability to approximate the potential performance head, efficiency and cavitation curves of some commercial centrifugal pumps.

Nomenclature

English symbols

A

section area

m2

a1

absolute flow angle

degrees

b

Blade section width

m

D

Impeller diameter

m

d

Shaft diameter

mm

g

gravitational acceleration

m/s2

H

head

m

Q

discharge

m3/h or m3/s

Ms

shaft torque

Nm

N

power

Watts

n

rotational speed

rpm

nq

specific speed

r

impeller radius

m

u

peripheral (or tangential) velocity

m/s

Vm = cm

meridional flow velocity

m/s

Vu=cu

peipheral components of the absolute velocity

m/s

w

angular velocity of rotation

rad/s

z

Number of blades

Greek symbols

Blade angle

degrees

efficiency

temperature

Celcius degrees

Kinematic viscosity

m2/s

flow density

kg/m3

Wrap angle

degrees

Subscripts

1

impeller inlet

2

impeller outlet

Abbreviations

BEP

best efficiency point

NPSH

Net Positive Suction Head

m

MEMORANDA

In memory of our professors and teachers in special education and science:

Prof. D. Papailiou, Department of mechanical engineering, University of Patras, Greece.

Prof. H.Marcinowski, Department of mechanical engineering, University of Karlsruhe,Germany.

[1] K.Menny, Stroemungsmaschinen, Teubner Verlag 1985.

REFERENCES

[2] M.A., El-Naggar, A One Dimensional Flow Analysis for the Prediction of Centrifugal Pump Performance Characteristics, International Journal of Rotating Machinery, Vol. 2013.

[3] J.F. Gülich, Centrifugal Pumps, 2nd edition, Springer: Berlin,2010. [4] .Sigloch, Stroemungsmaschinen ,Hanser Verlag 1984.

[5] W. Bohl, Strömungsmachinen 2, 5th edition, Vogel:Würzburg,1995.

[6] M. Teodor, Impeller Design Using CAD Techniques and Conformal Mapping Method Polytechnic University of Timisoara, Romania, 2012.

[7] V. A.Grapsas, J. S. Anagnostopoulos and D. E. Papantonis, PARAMETRIC STUDY AND DESIGN OPTIMIZATION OF RADIAL FLOW PUMP IMPELLER, Laboratory of Hydraulic Turbomachines School of Mechanical Engineering / Fluids Section National Technical University of Athens, Greece.

[8] J.Kurokawa, Simple formulae for volumetric efficiency and mechanical efficiency of hydraulic machinery, Conference on fluid machinery Osaka 1990. https://ynu.repo.nii.ac.jp/?action=repository_action_common_download&item_id=3858&item_no=1&attribute_id=22&file_no=1

[9] H. Li, H. Lin, W. Huang, J. Li, M. Zeng, J. Ma and X. Hu, A New Prediction Method for the Complete Characteristic Curves of Centrifugal Pumps, Energies 2021, 14.

[10] X. Zhou, Y. Zhang, Z. Ji, and H. Hou, The Optimal Hydraulic Design of Centrifugal Impeller Using Genetic Algorithm with BVF, Hindawi Publishing Corporation ,International Journal of Rotating Machinery Volume 2014.

[11] N. Athanassiadis, Potential flow through spiral Casings, Dissertation 1961, ETH Zuerich.

[12] H. Zhang, L. Tang, and Y. Zhao, Influence of Blade Profiles on Plastic Centrifugal Pump Performance, Hindawi ,Advances in Materials Science and Engineering ,Volume 2020,

[13] Hydraulic design method for low specic speed overload free centrifugal pump impeller, google patent ,2014- 11-26 CN 201410712052 .

[14] J.C. Statharas, E. S. Valamontes, P. Filiousis and N. W. Vlachakis, Strategies for Predicting Centrifugal Pump Performance Characteristics by Validating Blade Shape Configurations. Introducing the Trojan Horse Method, International Journal of Engineering Research & Technology (IJERT), Vol. 8 Issue 06,

June-2019

[15] J. F. Glich, Centrifugal Pumps, Springer Berlin Heidelberg New York 2007

[16] V.N. Vlachakis, Turbulent characteristics in stirring vessels: a numerical investigation, Virginia Tech 2006.

[17] N. Vlachakis, Vergleich zweier Geschwindigkeitansätze für di radiale Spaltstroemung in Bezug auf das Drehmoment der Rotierenden Scheibe, Bericht Universitaet Karlsruhe 1974.

[18] .Siegle, Die Radialspaltstroemung fuer Fluessigkeiten mit grossen Prandtl-Zahlen und Temperaturahhaengiger Viskositaet, Dissertation Universitaet Karlsruhe 1974.

[19] L. Zhou, W. Shi, and S. Wu, Performance Optimization in a Centrifugal Pump Impeller by Orthogonal Experiment and Numerical Simulation, Hindawi Publishing Corporation Advances in Mechanical Engineering Volume 2013.

[20] K. C. Thin, M. M. Khaing, and K. M. Aye, Design and Performance Analysis of Centrifugal Pump, World Academy of Science, Engineering and Technology 46 2008.

[21] T. Lei, Z. Baoshan, C. Shuliang, B. Hao, and W. Yuming, Influence of Blade Wrap Angle on Centrifugal Pump Performance by Numerical and Experimental Study. CHINESE JOURNAL OF MECHANICAL ENGINEERING Vol. 27, No. 1, 2014.

[22] A. K. Omar, A. Khaldi and A. Ladouani, Prediction of centrifugal pump performance using energy loss analysis, Australian Journal of Mechanical Engineering 2017.

[23] W. Li, X. Jiang, Q. Pang, L. Zhou and W. Wang, Numerical simulation and performance analysis of a four-stage centrifugal pump, Advances in Mechanical Engineering, 2016, Vol. 8(10) 18.

[24] X. Han, Y. Kang, D. Li and W. Zhao, Impeller Optimized Design of the Centrifugal Pump: A Numerical and Experimental Investigation, Energies 2018. [25] H. Wang, B. Long, C. Wang, C. Han and L. Li, Effects of the Impeller Blade with a Slot Structure on the Centrifugal Pump Performance, Energies 2020. [26] M. Djerroud, G. D. Ngoma, and W. Ghie, Numerical Identification of Key Design Parameters Enhancing the Centrifugal Pump Performance: Impeller,

Impeller-Volute and Impeller-Diffuser. International Scholarly Research Network ISRN Mechanical Engineering Volume 2011.

[27] J.-H. Kim, H.-C. Lee, J.-H. Kim, S. Kim, J.-Y. Yoon and Y.-S. Choi, Design techniques to improve the performance of a centrifugal pump using CFD, Journal of Mechanical Science and Technology 29 (1) (2015).

[28] A. ALMASLAMANI, M. CONSTANTIN1, N. BARAN and M. M. STOICAN, EXPERIMENTAL STUDY OF THE PERFORMANCE AND PREDICTION OF CAVITATION PHENOMENON FOR A VARIABLE SPEED CENTRIFUGAL PUMP, Journal of Science and Arts Year 20, No. 1(50), pp. 225-238, 2020.

[29] Md Rakibuzzaman, S.-H. Suh, H.-H. Kim and Y.-H. Jang, Relationship between Cavitation Incipient and NPSH Characteristic for Inverter Drive Centrifugal Pumps, The KSFM Journal of Fluid Machinery: Vol. 18, No. 6, December, 2015.

[30] B. Schiavello and F.C.Visser, Pump cavitation, Pump symposium 2009.

[31] J. Pei, M. K. Osman, W. Wang, D. Appiah, T. Yin and Q. Deng, A Practical Method for Speeding up the Cavitation Prediction in an Industrial Double- Suction Centrifugal Pump, Energies 2019, 12.

[32] R. Kliem, Experimentelle und numerische Untersuchung zum Einfluss von Einbaubedingungen auf das Betriebs- und Kavitationsverhalten von Kreiselpumpen, Dissertation 2006, Technische Universität Darmstadt.

[33] M. Kaya and E. Ayder, Prediction of Cavitation Performance of Radial Flow Pumps, Journal of Applied Fluid Mechanics, Vol. 10, No. 5, pp. 1397-1408, 2017.