- Open Access
- Authors : Bala Sindhuri Kandula, Sala Sri Venkata Viswa Sai, Shaik Hameed, Udaya Kumar Nadakuduru, Mokara Venkanna Babu, Sanapala Tejaswini
- Paper ID : IJERTCONV9IS04007
- Volume & Issue : NREST – 2021 (Volume 09 – Issue 04)
- Published (First Online): 10-03-2021
- ISSN (Online) : 2278-0181
- Publisher Name : IJERT
- License: This work is licensed under a Creative Commons Attribution 4.0 International License
Design of Vedic Multiplier based on Logic Gates Employing Multiplexer using Logic Optimization Techniques
Bala Sindhuri Kandula
ECE Dept
SRKR Engineering College Bhimavaram, India
Udaya Kumar Nadakuduru
ECE Dept
SRKR Engineering COllege Bhimavaram, India
Sala Sri Venkata Viswa Sai
ECE Dept
SRKR Engineering College Bhimavaram, India
Mokara Venkanna Babu
ECE Dept
SRKR Engineering College Bhimavaram, India
Shaik Hameed
ECE Dept
SRKR Engineering College Bhimavaram, India
Sanapala Tejaswini
ECE Dept
SRKR Engineering College Bhimavaram, India
Abstract In low power digital electronics era, the multiplier is one of the fundamental elements in many of the applications like Digital Signal Processing (DSP) Systems and Processors. ALU is one of the major elements in many processors which require a computational unit that has to perform the computations in a fast manner adopting fast elements maintaining minimum area and power consumption Thus, the multiplier is one of the key elements in ALU which has a vital role in deciding the performance of the ALU especially in terms of speed, area and power which in accordance determines the cost of the processor. The design units in the developed multiplier here are based on the ancient Vedic mathematics and modified logic gates because Vedic multiplier using Urdhva Tiryagbhyam algorithm is found to be one of the fastest multipliers. To further improve the performance of the multiplier, these modified elements are incorporated in the design and performance analysis for the designed units using Vivado 2017.2 software on an I5, 8th generation processor.
Keywords Urdhva Tiryagbhyam algorithm, Vedic multiplier, Modified Logic Gates, Logic optimization techniques and VLSI multiplier
The basic modifications done here are modified AND gate, modified OR gate and modified XOR gate by using logic optimization technique. Section II describes the Vedic multiplier architecture, modified AND gate, modified OR gate and modified XOR gate.
-
VEDIC MULTIPLIER USING MODIFIED LOGIC GATES
In this section, the basic modules designed for OR gate, XOR gate and AND gate using 2:1 multiplexer andthe basic Vedic multiplier using Uradhva Tiryagbhyam algorithm is explained.
Logic gates such as AND, OR, and XOR gates are designed using multiplexers such that they can reduce the power, and number of LUTs.
-
INTRODUCTION
The multipliers developed based on ancient mathematics consume large area and power and delay is more because the additions performed for the partial products in which carry plays the key role in deciding the speed factor. And also due to more computations while adding the generated partial products, area and power consumption also increased. Therefore, the design by incorporating logic optimization technique to reduce power and area played thekey role in low power VLSI system design. Thus, during the survey on multipliers, multiplier designs based on Vedic mathematics [1]-[4] are more speed efficient designs when compared to most ancient array multipliers [5]. Thus, to further improve the performance of a multiplier, the generated partial products areaddedin an efficientmanner by adoptingvarious adder designs. Different adder designs developed based on modifications in the logical structure of full adder and the performance analysis is explained in [6].
Fig-1: Modified AND gate
The Modified AND gate is designed by using a 2:1 multiplexer for which the inputs to the multiplexer are a and b. Input a also acts as selection line for multiplexer and the obtained output is named as y which is shown in Fig.1.
Fig-2: Modified OR gate
The Modified OR gate is designed by using a 2:1 multiplexer for which the inputs to the multiplexer are a and b. Input a also acts as selection line for multiplexer and the obtained output is named as y which is shown in Fig.2..
Fig-3: Modified XOR gate
The Modified XOR gate is designed by using a 2:1 multiplexer and a NOT gate for which the inputs to the multiplexer are a and ~a. Input b acts as selection line for multiplexer and the obtained output is named as y which is shown in Fig.3.
Fig-4 : Architecture of 16-bit vedic multiplier
The 16-bit Vedic multiplier architecture is designed based on Urdhva Tiryagbhyam principle in which addition is carried out using normal adders and partial products are generated using AND gates is shown in Fig.4. From this architecture, it is observed that the majority components are AND gates, OR gates and XOR gates. Initially. this design is carried out using
conventional gates. Later, this architecture is modified using modified AND gate, modified OR gate and modified XOR gate. The combinations that are designed for vedic multiplier adopting Urdhva Tiryagbhyam Principle are:
-
Vedic Multiplier (VM)
-
Vedic Multiplier using Modified AND(VMMA)
-
Vedic Multiplier using Modified OR(VMMO)
-
Vedic Multiplier using Modified XOR(VMMX)
-
Vedic Multiplier using Modified AND and Modified OR(VMMAMO)
-
Vedic Multiplier using Modified AND and Modified XOR(VMMAMX)
-
Vedic Multiplier using Modified OR and Modified XOR(VMMOMX)
-
Vedic Multiplier using Modified AND and Modified OR and Modified XOR(VMMAMOMX)
-
-
-
SIMULATION RESULTS
Simulation and Synthesis is carried out using Vivado 2017.2 software on an I5 processor with 8GB RAM and 64-bit operating system. Initially 4-bit multiplier for all the above mentioned eight combinations are coded in Verilog HDL. Then, 8-bit multiplier for all the above mentioned eight combinations are coded in Verilog HDL. Finally,16-bit multiplier for all the above mentioned eight combinations are coded in Verilog HDL.
The inputs a[3;0], b[3:0] are given to a 4-bit VMMA and the obtained output c[7:0] alongwith theintermediate results such as q0,q1,q2,q3 is shown in Fig.5.
Fig-5: simulation results of 4-bit vedic multiplier
The inputs a[7;0], b[7:0] are given to a 8-bit VMMA and the obtained output c[15:0] along with the intermediate results such as q0,q1,q2,q3 is shown in Fig.6.
Fig-6: simulation results of 4-bit vedic multiplier
The inputs a[15:0], b[15:0] are given to a 16-bit VMMA and the obtained output c[31:0] along with the intermediate results such as q0,q1,q2,q3 is shown in Fig.7.
Fig-7: simulation results of 4-bit vedic multiplier
-
COMPARISION RESULTS
In this section performance analysis for all the eight combinations using Vivado 2017.2 software is reported by considering the performance metrics such as LUTs, power and delay.
The performance parameters for VM for the data width ranging from 4-bit to 16-bit is reported in Table-1.
Table-1: Parameters reported for VM
Data Width
LUTs
DELAY (SETUP)
DELAY (HOLD)
POWER
4 X 4
16
7.757
2.417
3.886
8 X 8
86
11.082
2.563
13.443
16 X 16
410
17.38
2.685
38.289
The performance parameters for VMMA for the data width ranging from 4-bit to 16-bit is reported in Table-2.
Table-2: Parameters reported for VMMA
Data Width
LTs
DELAY (SETUP)
DELAY (HOLD)
POWER
4 X 4
16
7.521
2.385
3.886
8 X 8
90
11.945
2.487
13.269
16 X 16
407
17.886
2.657
37.922
The performance parameters for VMMO for the data width ranging from 4-bit to 16-bit is reported in Table-3.
Table-3: Parameters reported for VMMO
Data Width
LUTs
DELAY (SETUP)
DELAY (HOLD)
POWER
4 X 4
16
7.652
2.352
3.894
8 X 8
90
11.349
2.545
13.321
16 X 16
410
17.086
2.705
38.344
The performance parameters for VMMX for the data width ranging from 4-bit to 16-bit is reported in Table-4.
Table-4: Parameters reported for VMMX
Data Width
LUTs
DELAY (SETUP)
DELAY (HOLD)
POWER
4 X 4
16
7.547
2.357
3.891
8 X 8
87
10.779
2.502
13.344
16 X 16
412
17.597
2.573
38.411
.The performance parameters for VMMAMO for the data width ranging from 4-bit to 16-bit is reported in Table-5.
Table-5: Parameters reported for VMMAMO
Data Width
LUTs
DELAY (SETUP)
DELAY (HOLD)
POWER
4 X 4
16
7.645
2.406
3.885
8 X 8
90
11.349
2.545
13.321
16 X 16
410
17.086
2.705
38.344
The performance parameters for VMMAMX for the data width ranging from 4-bit to 16-bit is reported in Table-6.
Table-6: Parameters reported for VMMAMX
Data Width
LUTs
DELAY (SETUP)
DELAY (HOLD)
POWER
4 X 4
16
7.5
2.354
3.891
8 X 8
90
11.426
2.598
13.445
16 X 16
410
17.731
2.83
38.254
The performance parameters for VMMOMX for the data width ranging from 4-bit to 16-bit is reported in Table-7.
Table-7: Parameters reported for VMMOMX
Data Width
LUTs
DELAY (SETUP)
DELAY (HOLD)
POWER
4 X 4
16
7.524
2.414
3.89
8 X 8
90
10.822
2.575
13.427
16 X 16
411
17.688
2.244
38.377
The performance parameters for VMMAMOMX for the data width ranging from 4-bit to 16-bit is reported in Table-8.
Table-8: Parameters reported for VMAMOMX
Data Width
LUTs
DELAY (SETUP)
DELAY (HOLD)
POWER
4 X 4
16
7.524
2.414
3.89
8 X 8
90
10.822
2.545
13.427
16 X 16
411
17.688
2.673
38.377
The comparisons for the 4-bit multipliers for different combinations such as VM, VMMA, VMMO, VMMX, VMMAMO, VMMAMX, VMMOMX and VMMAMOMX
are shown in Fig 8.
18
The comparisons for the 16-bit multipliers for different
16 combinations such as VM, VMMA, VMMO, VMMX,
VM
14 VMMA
VMMO
12 VMMX
O
O
VMMAM
10 VMMAM
X
8 VMMOM
X
VMMAMO, VMMAMX, VMMOMX and VMMAMOMX
are shown in Fig 10.
450
VM
400
VMMA
35
6 VMMAMOMX
4
2
0
LUTs DELAY(SETUP) DELAY(HOLD)
POWE
R
Fig-8: Comparison of performance parameters for 4-bit multiplier architectures
The comparisons for the 8-bit multipliers for different combinations such as VM, VMMA, VMMO, VMMX, VMMAMO, VMMAMX, VMMOMX and VMMAMOMX
are shown in Fig 9.
0
300
250
200
150
10
0
50
0 LUT
s
VMMO VMMX VMMAM O VMMAM X VMMOM
DELAY(SETUP) DELAY(HOLD)
POWER
10 60
0
9 50
0 40
8 30
0
20
7
0 10
F
i g
– 1
0
:
C
o m p a r i s o n
o f
p e r
0
LUTs
VM VMMA VMMO VMMX VMMAM O VMMAM X
formance parameters for 16-bit multiplier architectures
From Fig 8, Fig 9 and Fig 10 it is observed that VMMA for the data width rangingfrom 4-bit to 16-bit consumes less area and power when compared to the rest of the architectures.
-
CONCLUSION
In this brief, performance analysis for Vedic multiplier adopting Urdhva Tiryagbhyam principle is done for total eight combinations i.e., for conventional vedic multiplier and for the modified logic gates using multiplexers. AND gate, OR gate and XOR gate are modified using multiplexers and developed total seven combinations by using these modified gates. In the present low power digital era, the multiplier design in many applications impacts the cost of the chip as the area in turn increases the cost. From this result analysis, it has been concluded that VMMA design is carried out by using modified AND gate which reduces area and power. Thus, VMMA design is suited for low power applications as the area and power consumption is reduced by adopting Modified AND gate which leads to reduction in cost of the chip.
REFERENCES
-
G. C. Ram, Y. R. Lakshmanna, D. S. Rani and K. B. Sindhuri, "Area efficient modified vedic multiplier," 2016 International Conference on
Circuit, Power and Computing Technologies (ICCPCT), Nagercoil, 2016, pp. 1-5, doi: 10.1109/ICCPCT.2016.7530294.
-
Shraddha Lad, Varsha S. Bendre, "Design and Comparison of Multiplier using Vedic Sutras", Computing Communication
DELAY(SETUP)
DELAY(HOLD)
POWE
R
Control And Automation (ICCUBEA) 2019 5th International Conference On, pp. 1-5, 2019.
-
G. S. C. Teja, K. B. Sindhuri, N. U. Kumar and A. K. Vamsi,
Fig-9: Comparison of performance parameters for 8-bit multiplier architectures
"Implementa tion of Vedic Multiplier Using Modified Architecture by Routing Rearrangement for High-Optimization," 2018 3rd International Conference on Communication and Electronics Systems (ICCES), Coimbatore, India, 2018, pp. 506 -510, doi: 10.1109/CESYS.2018.8724037.
-
Swami Bharati and Krishna Tirthaji Maharaja, "Vedic Mathematics", Motilal Banarsidass Publishers, 1965.
-
K. S. Gurumurthy and M. S. Prahalad, "Fast and power efficient 16×16 Array of Array multiplier using Vedic Multiplication," 2010 5th International Microsystems Packaging Assembly and Circuits Technology Conference, Taipei, 2010, pp. 1 -4, doi: 10.1109/IMPACT.2010.5699463..
-
K. A. K. Maurya, Y. R. Lakshmanna, K. B. Sindhuri and N. U. Kumar, "Design and implementation of 32-bit adders using various full adders," 2017 Innovations in Power and Advanced Computing Technologies (i-PACT), Vellore, 2017, pp. 1-6, doi: 10.1109/IPACT.2017.8245176. K. Elissa, Title of paper if known, unpublished