- Open Access
- Total Downloads : 331
- Authors : Anita Kanwar, Pritee Mhatre
- Paper ID : IJERTV3IS10714
- Volume & Issue : Volume 03, Issue 01 (January 2014)
- Published (First Online): 25-01-2014
- ISSN (Online) : 2278-0181
- Publisher Name : IJERT
- License: This work is licensed under a Creative Commons Attribution 4.0 International License
Determination of Wada Constant, Rao’ Constant, Compressibility Andviscosity of A Cholesteric Liquid Crystal Solution at Various Temperatures
Determination of Wada Constant, Raos Constant, Compressibility Andviscosity of A Cholesteric Liquid Crystal Solution at Various Temperatures
Anita Kanwar and Pritee Mhatre
VES College of Arts, Science and Commerce, Department of Physics, Sindhi society, Chembur, Mumbai 400071.
ABSTRACT:
The ultrasonic waves having different frequencies propagate through the liquid crystal solution with different velocities at various temperatures. This fact helps in studying physical and chemical properties of Cholesteric liquid crystal (CLC) of different concentration at various temperatures. We in our laboratory have found out Acoustic Impedance, Raos constant, Adiabatic Compressibility,Wada constant,Van der Waals constant, Free Volume, Internal pressure andClassical Absorption Co-efficientof CLC solutionof different concentration. The measurements were made at various temperatures using Ultrasonic interferometer working at the frequencies 3MHz and 5MHz. The results so obtained are analyzedto see the effect temperature, concentration and transition of CLC into various mesophases. It is observed that when the miscibility is high and the solution is highly homogeneousthe values of the parameters change drastically showing the change in the mesophases at phase transition temperatures.
INTRODUCTION:
Cholesteryl Pelargonate (CP) a CLC [1] having molecular formula C36H62O2 and molecular weight of 526.88 g/mol as obtained from Sigma Aldrich is used in preparation of the samples. The phase transition temperatures of CLC, CP were obtained using the Fabryperot scattering studies (FPSS) technique [2]. Homogeneous mixture of Toluene and CP [3] having various concentration is used as a sample to study the effect of temperature and concentration on the physical and chemical parameters. We have determined the Wada constant, Raos constant, compressibility and viscosity [4-5] of the solution at various temperatures by varying concentration of the solution.
Ultrasonic velocities for the solutions of different concentrations were measured by varying the temperature using indigenously designed thermometer. The ultrasonic interferometer (Mittal enterprises, India; Model: F-80X) was used for the measurements of velocity of ultrasonic waves in the solvent and solution. It consists of a high frequency generator and a measuring cell and the measurements were made at two different frequencies viz3MHz and 5MHz. The least count of micrometer measuring cell is 0.01mm. The ultrasonic velocity has an accuracy of ± 0.5%. It is used to find the Acoustic Impedance, Raos constant, Adiabatic Compressibility,and Wada constant. The viscosity was measured by Oswaldsviscometer. It is used to find Van der Waals constant, Free Volume, Internal pressure andClassical Absorption Co-efficient of the five samples prepared in the laboratory.
Experimental details:
The phase transitions in CP using FPSS occurred at 331.6K, 337.8K, 344.5K and 357K respectively. Homogeneous mixture of Toluene and cholesteric liquid crystal Cholesteryl Pelargonate having various concentration is used as a sample to study the effect of temperature and concentration on the physical and chemical parameters. We have determined the Wada constant, Raos constant, compressibility and viscosity of the solution at various temperatures by varying concentration of the solution. Indigenously designed temperature controller using transducer and a digital thermometer was used to maintain the temperature constant and for the measurement with accuracy of 0.10C.
The following formulae were used for the calculation of various parameters.
-
Acoustic Impedance (A)= Ugm/cm2.sec (where U is ultrasonic velocity and is density)
-
Raos constant or Molar sound velocity(R) = 1/3cm10/ 3/sec1/ 3
where M=M1W1+M2W2 (M1 and M2 are molecular weights of CP and toluene respectively and W1 and W2 are weight fractions of CP and toluene respectively in the solution.
2
-
Adiabatic Compressibility (K) = 1
cm2/dyne
-
Wada Constant or Molar compressibility (W) = [] x K-1/7cm 19/7/dyne 1/7
-
Viscous relaxation time (T) = 4
3 2
sec where is viscosity.
-
Van der Waals constant (b) = V 1 1 + 2
1/2
cm3/mole
2
3
Where, R is the gas constant = 8.3143×107 erg × mol-1 ×K-1
f
-
Free Volume (V ) =
3/2
8) Internal Pressure () = 1/2 2/3 where b=2 and K= (93.875+0.375T)x 10-8
9) Classical Absorption Co-efficient =
2
7/6
=
8 2
33
Observations:
The five sample solutions were prepared using Toluene (T) and Cholesteryl Pelargonate (CP) in the following proportionand analyzed to find above physical and chemical parameters. The Table 1 to Table 5 shows the calculated values of the parameters at 3MHz and 5MHz when the temperature is varied from 303K to 343K using above formulae.
-
10ml T + 20 mg CP, Molecular Weight (MW)=710.2gm
-
10ml T + 40 mg CP, Molecular Weight =720.7gm
-
10ml T+ 60 mg CP, Molecular Weight =731.2 gm
-
10ml T+ 80 mg CP, Molecular Weight =741.8gm
-
10ml+ 100 mg CP, Molecular Weight = 752.3 gm
Table1 (a): Sample1: 10ml T + 20 mg CP, =0.761gm/cc, =1.206 dynes.sec/cm2
T(K) |
Velocity (cm/s) |
R (cm10/3/sec1/3) |
K (cm2/dyne ) |
W (cm 19/7/dyne 1/7) |
A (gm/cm2.sec) |
Frequency: 3MHz |
|||||
303 |
129900 |
4.724E+04 |
7.784E-11 |
2.594E+04 |
9.889E+04 |
308 |
128700 |
4.710E+04 |
7.930E-11 |
2.587E+04 |
9.798E+04 |
313 |
129300 |
4.717E+04 |
7.857E-11 |
2.590E+04 |
9.844E+04 |
318 |
128700 |
4.710E+04 |
7.930E-11 |
2.587E+04 |
9.798E+04 |
323 |
129000 |
4.713E+04 |
7.893E-11 |
2.588E+04 |
9.821E+04 |
328 |
128100 |
4.702E+04 |
8.005E-11 |
2.583E+04 |
9.752E+04 |
333 |
128100 |
4.702E+04 |
8.005E-11 |
2.583E+04 |
9.752E+04 |
338 |
127500 |
4.695E+04 |
8.080E-11 |
2.580E+04 |
9.707E+04 |
343 |
127800 |
4.699E+04 |
8.042E-11 |
2.582E+04 |
9.729E+04 |
Frequency: 5MHz |
|||||
303 |
127900 |
4.700E+04 |
8.030E-11 |
2.582E+04 |
9.737E+04 |
308 |
129500 |
4.719E+04 |
7.833E-11 |
2.591E+04 |
9.859E+04 |
313 |
128500 |
4.707E+04 |
7.955E-11 |
2.586E+04 |
9.783E+04 |
318 |
130000 |
4.725E+04 |
7.772E-11 |
2.594E+04 |
9.897E+04 |
323 |
129000 |
4.713E+04 |
7.893E-11 |
2.588E+04 |
9.821E+04 |
328 |
129000 |
4.713E+04 |
7.893E-11 |
2.588E+04 |
9.821E+04 |
333 |
130000 |
4.725E+04 |
7.772E-11 |
2.594E+04 |
9.897E+04 |
338 |
129000 |
4.713E+04 |
7.893E-11 |
2.588E+04 |
9.821E+04 |
343 |
127900 |
4.700E+04 |
8.030E-11 |
2.582E+04 |
9.737E+04 |
Table 1(b)
T(K) |
Viscous relaxation time |
Van der Waals constant |
Free Volume |
Internal Pressure |
Classical Absorption Co- efficient |
Frequency: 3MHz |
|||||
303 |
1.248E-10 |
9.100E+02 |
2.390E-03 |
3.948E+09 |
3.003E+04 |
308 |
1.272E-10 |
9.096E+02 |
2.357E-03 |
4.031E+09 |
3.220E+04 |
313 |
1.260E-10 |
9.096E+02 |
2.373E-03 |
4.087E+09 |
3.264E+04 |
318 |
1.272E-10 |
9.093E+02 |
2.357E-03 |
4.162E+09 |
3.433E+04 |
323 |
1.266E-10 |
9.092E+02 |
2.365E-03 |
4.223E+09 |
3.509E+04 |
328 |
1.284E-10 |
9.089E+02 |
2.340E-03 |
4.303E+09 |
3.721E+04 |
333 |
1.284E-10 |
9.087E+02 |
2.340E-03 |
4.369E+09 |
3.835E+04 |
338 |
1.296E-10 |
9.084E+02 |
2.324E-03 |
4.445E+09 |
4.026E+04 |
343 |
1.290E-10 |
9.083E+02 |
2.332E-03 |
4.505E+09 |
4.107E+04 |
Frequency: 5MHz |
|||||
303 |
1.288E-10 |
9.097E+02 |
2.335E-03 |
3.978E+09 |
3.195E+04 |
308 |
1.256E-10 |
9.098E+02 |
2.379E-03 |
4.019E+09 |
3.141E+04 |
313 |
1.276E-10 |
9.094E+02 |
2.351E-03 |
4.100E+09 |
3.346E+04 |
318 |
1.247E-10 |
9.095E+02 |
2.392E-03 |
4.141E+09 |
3.297E+04 |
323 |
1.266E-10 |
9.092E+02 |
2.365E-03 |
4.223E+09 |
3.509E+04 |
328 |
1.266E-10 |
9.090E+02 |
2.365E-03 |
4.288E+09 |
3.618E+04 |
333 |
1.247E-10 |
9.090E+02 |
2.392E-03 |
4.337E+09 |
3.616E+04 |
338 |
1.266E-10 |
9.087E+02 |
2.365E-03 |
4.419E+09 |
3.842E+04 |
343 |
1.288E-10 |
9.083E+02 |
2.335E-03 |
4.503E+09 |
4.095E+04 |
T(K) |
Velocity (cm/s) |
R (cm10/3/sec1/3) |
K (cm2/dyne ) |
W (cm 19/7/dyne 1/7) |
A (gm/cm2.sec) |
Frequency: 3MHz |
|||||
303 |
127800 |
4.756E+04 |
8.021E-11 |
2.614E+04 |
9.755E+04 |
308 |
127200 |
4.748E+04 |
8.097E-11 |
2.610E+04 |
9.709E+04 |
313 |
127800 |
4.756E+04 |
8.021E-11 |
2.614E+04 |
9.755E+04 |
318 |
127800 |
4.756E+04 |
8.021E-11 |
2.614E+04 |
9.755E+04 |
323 |
127800 |
4.756E+04 |
8.021E-11 |
2.614E+04 |
9.755E+04 |
328 |
127500 |
4.752E+04 |
8.059E-11 |
2.612E+04 |
9.732E+04 |
333 |
127800 |
4.756E+04 |
8.021E-11 |
2.614E+04 |
9.755E+04 |
338 |
129000 |
4.771E+04 |
7.873E-11 |
2.621E+04 |
9.847E+04 |
343 |
128100 |
4.760E+04 |
7.984E-11 |
2.616E+04 |
9.778E+04 |
Frequency: 5MHz |
|||||
303 |
127000 |
4.746E+04 |
8.123E-11 |
2.609E+04 |
9.694E+04 |
308 |
126500 |
4.740E+04 |
8.187E-11 |
2.606E+04 |
9.656E+04 |
313 |
128500 |
4.765E+04 |
7.934E-11 |
2.618E+04 |
9.808E+04 |
318 |
127500 |
4.752E+04 |
8.059E-11 |
2.612E+04 |
9.732E+04 |
323 |
127000 |
4.746E+04 |
8.123E-11 |
2.609E+04 |
9.694E+04 |
328 |
120500 |
4.664E+04 |
9.023E-11 |
2.570E+04 |
9.198E+04 |
333 |
127000 |
4.746E+04 |
8.123E-11 |
2.609E+04 |
9.694E+04 |
338 |
123500 |
4.702E+04 |
8.590E-11 |
2.589E+04 |
9.427E+04 |
343 |
125500 |
4.727E+04 |
8.318E-11 |
2.600E+04 |
9.579E+04 |
Table 2(b)
T(K) |
Viscous relaxation time |
Van der Waals constant |
Free Volume |
Internal Pressure |
Classical Absorption Co- efficient |
Frequency: 3MHz |
|||||
303 |
1.321E-10 |
9.209E+02 |
2.292E-03 |
3.970E+09 |
3.266E+04 |
308 |
1.333E-10 |
9.206E+02 |
2.276E-03 |
4.046E+09 |
3.439E+04 |
313 |
1.321E-10 |
9.206E+02 |
2.292E-03 |
4.102E+09 |
3.485E+04 |
318 |
1.321E-10 |
9.204E+02 |
2.292E-03 |
4.167E+09 |
3.598E+04 |
323 |
1.321E-10 |
9.202E+02 |
4.233E+09 |
3.712E+04 |
|
328 |
1.327E-10 |
9.200E+02 |
2.284E-03 |
4.303E+09 |
3.864E+04 |
333 |
1.321E-10 |
9.199E+02 |
2.292E-03 |
4.364E+09 |
3.945E+04 |
338 |
1.296E-10 |
9.199E+02 |
2.325E-03 |
4.408E+09 |
3.915E+04 |
343 |
1.314E-10 |
9.196E+02 |
2.300E-03 |
4.489E+09 |
4.146E+04 |
Frequency: 5MHz |
|||||
303 |
1.337E-10 |
9.208E+02 |
2.271E-03 |
3.983E+09 |
3.349E+04 |
308 |
1.348E-10 |
9.205E+02 |
2.257E-03 |
4.057E+09 |
3.516E+04 |
313 |
1.306E-10 |
9.207E+02 |
2.311E-03 |
4.090E+09 |
3.410E+04 |
318 |
1.327E-10 |
9.203E+02 |
2.284E-03 |
4.172E+09 |
3.632E+04 |
323 |
1.337E-10 |
9.201E+02 |
2.271E-03 |
4.246E+09 |
3.806E+04 |
328 |
1.485E-10 |
9.187E+02 |
2.099E-03 |
4.426E+09 |
4.843E+04 |
333 |
1.337E-10 |
9.197E+02 |
2.271E-03 |
4.377E+09 |
4.045E+04 |
338 |
1.414E-10 |
9.189E+02 |
2.177E-03 |
4.506E+09 |
4.661E+04 |
343 |
1.369E-10 |
9.191E+02 |
2.231E-03 |
4.536E+09 |
4.501E+04 |
T(K) |
Velocity (cm/s) |
R (cm10/3/sec1/3) |
K (cm2/dyne ) |
W (cm 19/7/dyne 1/7) |
A (gm/cm2.sec) |
Frequency: 3MHz |
|||||
303 |
128100 |
4.817E+04 |
7.963E-11 |
2.648E+04 |
9.803E+04 |
308 |
128100 |
4.817E+04 |
7.963E-11 |
2.648E+04 |
9.803E+04 |
313 |
128100 |
4.817E+04 |
7.963E-11 |
2.648E+04 |
9.803E+04 |
318 |
127500 |
4.809E+04 |
8.038E-11 |
2.645E+04 |
9.758E+04 |
323 |
128400 |
4.820E+04 |
7.926E-11 |
2.650E+04 |
9.826E+04 |
328 |
128100 |
4.817E+04 |
7.963E-11 |
2.648E+04 |
9.803E+04 |
333 |
128400 |
4.820E+04 |
7.926E-11 |
2.650E+04 |
9.826E+04 |
338 |
128400 |
4.820E+04 |
7.926E-11 |
2.650E+04 |
9.826E+04 |
343 |
128700 |
4.824E+04 |
7.889E-11 |
2.652E+04 |
9.849E+04 |
Frequency: 5MHz |
|||||
303 |
141000 |
4.973E+04 |
6.572E-11 |
2.722E+04 |
1.079E+05 |
308 |
128500 |
4.822E+04 |
7.913E-11 |
2.650E+04 |
9.834E+04 |
313 |
131500 |
4.859E+04 |
7.556E-11 |
2.668E+04 |
1.006E+05 |
318 |
127500 |
4.809E+04 |
8.038E-11 |
2.645E+04 |
9.758E+04 |
323 |
133500 |
4.883E+04 |
7.332E-11 |
2.679E+04 |
1.022E+05 |
328 |
129500 |
4.834E+04 |
7.792E-11 |
2.656E+04 |
9.911E+04 |
333 |
128500 |
4.822E+04 |
7.913E-11 |
2.650E+04 |
9.834E+04 |
338 |
134500 |
4.896E+04 |
7.223E-11 |
2.685E+04 |
1.029E+05 |
343 |
129000 |
4.828E+04 |
7.852E-11 |
2.653E+04 |
9.872E+04 |
Table 3(b)
T(K) |
Viscous relaxation time |
Van der Waals constant |
Free Volume |
Internal Pressure |
Classical Absorption Co- efficient |
Frequency: 3MHz |
|||||
303 |
1.342E-10 |
9.321E+02 |
2.271E-03 |
3.952E+09 |
3.279E+04 |
308 |
1.342E-10 |
9.320E+02 |
2.271E-03 |
4.017E+09 |
3.388E+04 |
313 |
1.342E-10 |
9.318E+02 |
2.271E-03 |
4.082E+09 |
3.499E+04 |
318 |
1.354E-10 |
9.315E+02 |
2.255E-03 |
4.157E+09 |
3.680E+04 |
323 |
1.335E-10 |
9.315E+02 |
2.279E-03 |
4.207E+09 |
3.691E+04 |
328 |
1.342E-10 |
9.313E+02 |
2.271E-03 |
4.278E+09 |
3.842E+04 |
333 |
1.335E-10 |
9.312E+02 |
2.279E-03 |
4.338E+09 |
3.924E+04 |
338 |
1.335E-10 |
9.310E+02 |
2.279E-03 |
4.403E+09 |
4.042E+04 |
343 |
1.329E-10 |
9.309E+02 |
2.287E-03 |
4.463E+09 |
4.124E+04 |
Frequency: 5MHz |
|||||
303 |
1.107E-10 |
9.341E+02 |
2.622E-03 |
3.766E+09 |
2.234E+04 |
308 |
1.333E-10 |
9.320E+02 |
2.281E-03 |
4.010E+09 |
3.346E+04 |
313 |
1.273E-10 |
9.323E+02 |
2.362E-03 |
4.029E+09 |
3.151E+04 |
318 |
1.354E-10 |
9.315E+02 |
2.255E-03 |
4.157E+09 |
3.680E+04 |
323 |
1.235E-10 |
9.323E+02 |
2.416E-03 |
4.126E+09 |
3.159E+04 |
328 |
1.313E-10 |
9.315E+02 |
2.308E-03 |
4.254E+09 |
3.679E+04 |
333 |
1.333E-10 |
9.312E+02 |
2.281E-03 |
4.336E+09 |
3.911E+04 |
338 |
1.217E-10 |
9.320E+02 |
2.443E-03 |
4.302E+09 |
3.357E+04 |
343> |
1.323E-10 |
9.309E+02 |
2.295E-03 |
4.458E+09 |
4.086E+04 |
T(K) |
Velocity (cm/s) |
R (cm10/3/sec1/3) |
K (cm2/dyne ) |
W (cm 19/7/dyne 1/7) |
A (gm/cm2.sec) |
Frequency: 3MHz |
|||||
303 |
128100 |
4.873E+04 |
7.942E-11 |
2.680E+04 |
9.829E+04 |
308 |
127500 |
4.866E+04 |
8.017E-11 |
2.677E+04 |
9.783E+04 |
313 |
127500 |
4.866E+04 |
8.017E-11 |
2.677E+04 |
9.783E+04 |
318 |
127800 |
4.869E+04 |
7.979E-11 |
2.678E+04 |
9.806E+04 |
323 |
127500 |
4.866E+04 |
8.017E-11 |
2.677E+04 |
9.783E+04 |
328 |
128100 |
4.873E+04 |
7.942E-11 |
2.680E+04 |
9.829E+04 |
333 |
127800 |
4.869E+04 |
7.979E-11 |
2.678E+04 |
9.806E+04 |
338 |
127800 |
4.869E+04 |
7.979E-11 |
2.678E+04 |
9.806E+04 |
343 |
127800 |
4.869E+04 |
7.979E-11 |
2.678E+04 |
9.806E+04 |
Frequency: 5MHz |
|||||
303 |
126000 |
4.846E+04 |
8.209E-11 |
2.668E+04 |
9.668E+04 |
308 |
125000 |
4.834E+04 |
8.341E-11 |
2.662E+04 |
9.591E+04 |
313 |
126500 |
4.853E+04 |
8.144E-11 |
2.671E+04 |
9.706E+04 |
318 |
128500 |
4.878E+04 |
7.893E-11 |
2.683E+04 |
9.860E+04 |
323 |
128500 |
4.878E+04 |
7.893E-11 |
2.683E+04 |
9.860E+04 |
328 |
123500 |
4.814E+04 |
8.545E-11 |
2.652E+04 |
9.476E+04 |
333 |
127500 |
4.866E+04 |
8.017E-11 |
2.677E+04 |
9.783E+04 |
338 |
127500 |
4.866E+04 |
8.017E-11 |
2.677E+04 |
9.783E+04 |
343 |
127000 |
4.859E+04 |
8.080E-11 |
2.674E+04 |
9.745E+04 |
Table 4(b)
T(K) |
Viscous relaxation time |
Van der Waals constant |
Free Volume |
Internal Pressure |
Classical Absorption Co- efficient |
Frequency: 3MHz |
|||||
303 |
1.345E-10 |
9.433E+02 |
2.303E-03 |
3.902E+09 |
3.205E+04 |
308 |
1.357E-10 |
9.430E+02 |
2.287E-03 |
3.976E+09 |
3.374E+04 |
313 |
1.357E-10 |
9.428E+02 |
2.287E-03 |
4.041E+09 |
3.485E+04 |
318 |
1.351E-10 |
9.427E+02 |
2.295E-03 |
4.100E+09 |
3.563E+04 |
323 |
1.357E-10 |
9.425E+02 |
2.287E-03 |
4.170E+09 |
3.711E+04 |
328 |
1.345E-10 |
9.424E+02 |
2.303E-03 |
4.224E+09 |
3.756E+04 |
333 |
1.351E-10 |
9.422E+02 |
2.295E-03 |
4.294E+09 |
3.907E+04 |
338 |
1.351E-10 |
9.420E+02 |
2.295E-03 |
4.358E+09 |
4.026E+04 |
343 |
1.351E-10 |
9.418E+02 |
2.295E-03 |
4.423E+09 |
4.146E+04 |
Frequency: 5MHz |
|||||
303 |
1.390E-10 |
9.429E+02 |
2.247E-03 |
3.935E+09 |
3.424E+04 |
308 |
1.412E-10 |
9.425E+02 |
2.220E-03 |
4.016E+09 |
3.652E+04 |
313 |
1.379E-10 |
9.426E+02 |
2.260E-03 |
4.056E+09 |
3.596E+04 |
318 |
1.336E-10 |
9.428E+02 |
2.314E-03 |
4.089E+09 |
3.486E+04 |
323 |
1.336E-10 |
9.426E+02 |
2.314E-03 |
4.153E+09 |
3.597E+04 |
328 |
1.447E-10 |
9.416E+02 |
2.180E-03 |
4.302E+09 |
4.347E+04 |
333 |
1.357E-10 |
9.421E+02 |
2.287E-03 |
4.299E+09 |
3.944E+04 |
338 |
1.357E-10 |
9.419E+02 |
2.287E-03 |
4.363E+09 |
4.064E+04 |
343 |
1.368E-10 |
9.417E+02 |
2.274E-03 |
4.437E+09 |
4.251E+04 |
Table 5(a): Sample5: 10ml T + 100 mg CP, =0.769gm/cc, =1.298 dynes.sec/cm2
T(K) |
Velocity (cm/s) |
R (cm10/3/sec1/3) |
K (cm2/dyne ) |
W (cm 19/7/dyne 1/7) |
A (gm/cm2.sec) |
Frequency: 3MHz |
|||||
303 |
128400 |
4.933E+04 |
7.885E-11 |
2.714E+04 |
9.878E+04 |
308 |
129300 |
4.945E+04 |
7.775E-11 |
2.719E+04 |
9.947E+04 |
313 |
128700 |
4.937E+04 |
7.848E-11 |
2.716E+04 |
9.901E+04 |
318 |
129000 |
4.941E+04 |
7.811E-11 |
2.718E+04 |
9.924E+04 |
323 |
128100 |
4.930E+04 |
7.921E-11 |
2.712E+04 |
9.855E+04 |
328 |
128100 |
4.930E+04 |
7.921E-11 |
2.712E+04 |
9.855E+04 |
333 |
128100 |
4.930E+04 |
7.921E-11 |
2.712E+04 |
9.855E+04 |
338 |
128400 |
4.933E+04 |
7.885E-11 |
2.714E+04 |
9.878E+04 |
343 |
125700 |
4.899E+04 |
8.227E-11 |
2.698E+04 |
9.670E+04 |
Frequency: 5MHz |
|||||
303 |
127000 |
4.915E+04 |
2.706E+04 |
9.770E+04 |
|
308 |
123000 |
4.863E+04 |
8.592E-11 |
2.681E+04 |
9.462E+04 |
313 |
134000 |
5.004E+04 |
7.239E-11 |
2.747E+04 |
1.031E+05 |
318 |
128000 |
4.928E+04 |
7.934E-11 |
2.712E+04 |
9.847E+04 |
323 |
139500 |
5.072E+04 |
6.680E-11 |
2.779E+04 |
1.073E+05 |
328 |
140500 |
5.084E+04 |
6.585E-11 |
2.785E+04 |
1.081E+05 |
333 |
135000 |
5.017E+04 |
7.132E-11 |
2.753E+04 |
1.039E+05 |
338 |
129000 |
4.941E+04 |
7.811E-11 |
2.718E+04 |
9.924E+04 |
343 |
130000 |
4.954E+04 |
7.692E-11 |
2.724E+04 |
1.000E+05 |
Table 5(b)
T(K) |
Viscous relaxation time |
Van der Waals constant |
Free Volume |
Internal Pressure |
Classical Absorption Co- efficient |
Frequency: 3MHz |
|||||
303 |
1.361E-10 |
9.544E+02 |
2.293E-03 |
3.878E+09 |
3.196E+04 |
308 |
1.342E-10 |
9.543E+02 |
2.318E-03 |
3.928E+09 |
3.211E+04 |
313 |
1.355E-10 |
9.541E+02 |
2.301E-03 |
4.001E+09 |
3.378E+04 |
318 |
1.348E-10 |
9.539E+02 |
2.310E-03 |
4.060E+09 |
3.455E+04 |
323 |
1.367E-10 |
9.536E+02 |
2.285E-03 |
4.139E+09 |
3.666E+04 |
328 |
1.367E-10 |
9.534E+02 |
2.285E-03 |
4.203E+09 |
3.780E+04 |
333 |
1.367E-10 |
9.533E+02 |
2.285E-03 |
4.267E+09 |
3.896E+04 |
338 |
1.361E-10 |
9.532E+02 |
2.293E-03 |
4.326E+09 |
3.977E+04 |
343 |
1.420E-10 |
9.525E+02 |
2.221E-03 |
4.437E+09 |
4.459E+04 |
Frequency: 5MHz |
|||||
303 |
1.391E-10 |
9.541E+02 |
2.256E-03 |
3.899E+09 |
3.339E+04 |
308 |
1.483E-10 |
9.532E+02 |
2.150E-03 |
4.028E+09 |
3.921E+04 |
313 |
1.250E-10 |
9.549E+02 |
2.445E-03 |
3.921E+09 |
2.875E+04 |
318 |
1.369E-10 |
9.538E+02 |
2.283E-03 |
4.076E+09 |
3.564E+04 |
323 |
1.153E-10 |
9.555E+02 |
2.597E-03 |
3.966E+09 |
2.606E+04 |
328 |
1.137E-10 |
9.554E+02 |
2.625E-03 |
4.013E+09 |
2.612E+04 |
333 |
1.231E-10 |
9.544E+02 |
2.473E-03 |
4.156E+09 |
3.159E+04 |
338 |
1.348E-10 |
9.533E+02 |
2.310E-03 |
4.316E+09 |
3.903E+04 |
343 |
1.328E-10 |
9.533E+02 |
2.336E-03 |
4.363E+09 |
3.897E+04 |
Figure1 shows the Optical Polarizing Microscope images of the sample1 to sample5 respectively at room temperature.
Figure1: Optical Polarizing Microscope images
Sample1 |
Sample2 |
Sample3 |
Sample4 |
Sample5 |
Figure2 to Figure6 showsvariation of ultrasonic velocity with temperature at two different frequencies viz 3MHz and 5 MHz for sample1 to sample5 respectively.
Ultrasonic velocity
Figure2: Sample1
Variation of Velocity with temperature at different frequencies(10ml T + 20mg CP)
130500
130000
129500
129000
128500
128000
127500
127000
3 MHz
5 MHz
300 305 310 315 320 325 330 335 340 345
Temperature
Figure3: Sample2
Variation of Velocity with temperature at different frequencies(10ml T + 40mg CP)
130000
129000
128000
127000
126000
125000
124000
123000
122000
121000
120000
3 MHz
5 MHz
300 305 310 315 320 325 330 335 340 345
Temperature
Figure4: Sample3
Variation of Velocity with temperature at different frequencies (10ml T + 60mg CP)
142000
140000
Ultrasonic
Velocity
138000
136000
134000
132000
130000
128000
126000
3 MHz
5 MHz
300 305 310 315 320 325 330 335 340 345
Temperature
Figure5: Sample4
Variation of Velocity with temperature at different frequencies(10ml T + 80mg CP)
129000
128000
127000
126000
125000
124000
123000
3 MHz
5 MHz
300 305 310 315 320 325 330 335 340 345
Temperature
Figure6: Sample5
Variation of Velocity with temperature at different frequencies(10ml T + 100mg CP)
142000
140000
Ultrasonic
Velocity
138000
136000
134000
132000
130000
128000
126000
124000
122000
3 MHz
5 MHz
300 305 310 315 320 325 330 335 340 345
Temperature
Figure7 to Figure11 shows variation of Viscosity with temperature at two different frequencies viz 3MHz and 5 MHz for sample1 to sample5 respectively.
Figure7: Sample1
Variation of Classical absorption coefficient with temperature at different frequencies(10ml T+20mg CP)
43000
41000
39000
37000
35000
33000
31000
29000
3 MHz
5 MHz
300 305 310 315 320 325 330 335 340 345
Temperature
Figure8: Sample2
temp
Variation of Classical absorption coefficient with erature at different frequencies(10ml T+40mg CP)
50000
48000
46000
44000
42000
40000
38000
36000
34000
32000
3 MHz
5 MHz
Figure9: Sample3
300 305 310 315 320 325 330 335 340 345
Temperature
Variation of Classical absorption coefficient with temperature at different frequencies(10ml T+60mg CP)
45000
3 MHz
5 MHz
40000
35000
30000
25000
20000
300
305
310
315
320
325
330
335
340
345
Temperature
Figure10: Sample4
Variation of Classical absorption coefficient with temperature at different frequencies(10ml T+80mg CP)
45000
43000
41000
39000
37000
35000
33000
31000
3 MHz
5 MHz
300 305 310 315 320 325 330 335 340 345
Temperature
45000
40000
35000
30000
25000
Figure11: Sample5
Variation of Classical absorption coefficient with temperature at different frequencies(10ml T+100mg CP)
50000
3 MHz
5 MHz
300
305
310
315
320
325
330
335
340
345
Temperature
Results and Discussions:
Figure1 shows that as the amount of solute (CP) increases in the solvent (T) the density increases [6] and the effect of CP becomes more prominent in the solution. Table1 to Table5 and Figure2 to Figure6 show that ultrasonic velocity varies with temperature and variation is non linear. The non- linear variation in ultrasonic velocity and other acoustical parameters indicates that there is a strongmolecular interaction between CP in Toluenesolution [1, 4].The variation is much more prominent in case of 5MHz frequency than 3MHz. Acoustic impedance is directly proportional to ultrasonic velocity. Acoustic compressibility and viscous relaxation time varies inversely with square of ultrasonic velocity. These all nonlinear behaviour with molar concentration is may be attributed to molecular association and complex formation. This indicates that the solution is becoming more homogeneous with increasing temperature and such solution generally absorbs more ultrasonic energy [7-9]. The non linear variation in the parameters with temperature can also be related to mesophases of CP, because of which orientation and arrangement of the molecule changes. Internal pressure increases with increasing temperature here the variation is nearly linear [10, 11].Thisshows that binding forces between the CP and toluene insolution are becoming stronger which shows thatthere exists a strong molecular interaction.
Data above Table1 to table5 show that viscosity increases with rise in concentration. This indicates that there exists a stronginteraction between solute and solvent which is alsosupported by ultrasonic velocity [12].
It is found that vanderwalls constant [13] is decreasing with increasing temperature as shown in Table2 to table6. This shows that binding forces between the CP and solvent in solution are becoming weaker as the CP goes from Cholesteric phase to liquid phase.
Acknowledgement
The author is grateful to University grant commission, New Delhi for providing financial support to this work through Major research project letter F.No.41-836/2012 (SR)2012.
References:
-
P. G. de Gennes and J. Prost, The Physics of Liquid Crystals (Oxford University Press, 1993).
-
Gupta S J and et. al., Liquid Crystal Phase Transition using Fabry-Perot Etalon Journal of Optics, India, Vol.29 No.2 pp.53-62 (2000).
-
Anita Kanwar and Gupta Sureshchandra J, Extended blue phases in Polymer Dispersed Cholesteric Liquid Crystals,Journal of Optics Vol. 37, No. 1, Pages 09-15, (2008)..
-
PriyankaTabhane, Omprakash P. Chimankar, Chandragupt M. Dudhe and Vilas A.Tabhane, Ultrasonic studies on molecular interaction in polyvinyl chloride solutionPelagia Research Library, Der ChemicaSinica, 2012, 3(4):944-947.
-
P J Vasoya, N M Mehta, V A Patel, P H Parsania, Effect of temperature on ultrasonic velocity and thermodynamic parameters of cardo aromatic polysulfonate solutions, Journal of Scientific & Industrial Research, Vol.66, pp 841-848, 2007.
-
V.A. Tabhane, S. Agrawal, K.G.Rewatkar, J. Acous. Soc. of Ind., 28, 369, 2000.
-
O.P.Chimankar, D.V. Nandanwar, K.G. Rewatkar& V.A. Tabhane, 18th National Symp. On Ultrason.,2009, 1(107), 353.
-
V.A. Tabhane, S. Agrawal, K.G.Rewatkar, J. Acous. Soc. Of Ind., 2000, 28, 369.
-
V.A. Tabhane, O.P. Chimankar, S. Manjha and T.K. Nambinarayanan, J. Pure Appl. Ultrson., 1999, 21, 67.
-
A. Abubaker, RFort, Trans. Faraday. Soc,61,2102 (1965).
-
M.Thirunavukkarasu, N.Kanagathara, Ultrasonic Studies on Non-Aqueous solutionsof Toluene in Carbon Tetra Chloride, International Journal of ChemTech ResearchIJCRGG ISSN: 0974-4290, Vol.4, No.1, pp 459-463, 2012.
-
C. M. Dudhe, K. C. Patil, Viscosity, Free volume and Internal pressure of aqueous PromethazineHydrochloride, International Journal of Pharmacy and Pharmaceutical Science Research, 2012, 2(4), 76-78.
-
Jatinder Pal Singh, Rajesh Sharma, Variation of Wada Constant, Raos Constant and Acoustic Impedance of Aqueous Cholesteryl Oleyl Carbonate with Temperature, International Journal of Engineering Research and Development, e-ISSN: 2278-067X, p- ISSN: 2278-800X, Volume 5, Issue 11 (February 2013), PP. 48-51.