- Open Access
- Total Downloads : 231
- Authors : Messi Alfred Francois, Koumbe Mbock, Okpwe Mbarga Richard Placide, Madjadoumbaye Jeremie, Miyo T. F
- Paper ID : IJERTV5IS050756
- Volume & Issue : Volume 05, Issue 05 (May 2016)
- Published (First Online): 25-05-2016
- ISSN (Online) : 2278-0181
- Publisher Name : IJERT
- License: This work is licensed under a Creative Commons Attribution 4.0 International License
New Approach for Determining Young Modulus and Poisson Coefficient in the Structural Design of the Pavement
Messi A. F., Madjadoumbaye J., Miyo T. F.
Civil Engineering Department National Advanced School of Engineering
University of Yaounde I Cameroon
Koumbe Mbock, Okpwe Mbarga R. African Center of Excellence in Information and Communication Technologies
University of Yaounde I Cameroon
Abstract The French design method integrate two entry parameters that use the Young modulus and Poisson coefficient often useful for pavement structure. The measurements of these parameters are costly in many tropical countries and the change in materials design can change considerably the prescription obtained from the French method. To design the pavement we present an approach that consists of determining an interval of Young modulus and Poisson coefficient in order to deal with the prescribed value and the change in pavement materials in Cameroon. The usefulness of such interval is demonstrated with local data that make use of the French method.
Keywords Pavement structures; French method; Young modulus; Poisson coefficient
-
INTRODUCTION
Many workers had treated the problematic of roadway and highway design and this can be referred in the literature [5], [8], [18], [19], [24]. The mechanical parameters of both ways play an important role and the estimation of the Young modulus and the Poisson coefficient used in various guidelines ([1], [2], [9], [8], [17], [20], [21], [23]) remains a problem in tropical countries.
Under the traffic, certain methods used to design the pavement are applied to model the behavior of the pavement structures. Such modeling permits to build relationship that make use of Young modulus E and Poisson coefficient in the design of the pavement structures. In tropical regions, theses parameters often recommended by the literature can change. For example, in Cameroon where the infrastructures are not adapted to determine the desired value.
To overcome this limitation, we propose an interval of mechanical values E and that take in account the recommended values and give the possibility to design the pavement structures accuratively. To validate this approach, we have used the data found in [3], [11], [12], [13] [14], [15] to characterize the parameters E and useful to obtain the interval of parameter values.
The section I is the introduction and section II show the procedure accorded to the determination of intervals of parameter values including the materials of the study. In section III, we present these intervals as the main results and
conclude this work in section IV with some important perspectives.
-
PROPOSED APPROACH
-
Input parameters
For this study, we used materials to achieve our goal; namely 18 pavement structures for 3 different types:
-
Type 1 : flexible pavement (bituminous pavement) (Number 1 to 6) ;
-
Type 2 : flexible pavement (bituminous concrete denoted by BC) (Number 7 to 12) ;
-
Type 3: flexible pavement (seal coat denoted by SC) (Number 13 to 18).
The design of these pavements is done with the help of the software ALIZE 3 taking into account the recommended values E and of [22] as it is showed in table I.
TABLE I. YOUNG MODULUS AND POISSON COEFFICIENT
Materials
BCa
BGb
CG/Ci/Poc
NLGd
Ecal (MPa)
2 450
3 500
400
150
cal
0, 35
0,35
0,35
0,35
a. BC. : Bituminous concrete.
b. BG: Bitumen gravel.
c. CG: Crushed grave Ci : Cinder Po: Pouzzolan.
d. NLG: Natural laterite gravel.
Other parameters used in the French method are important in the pavement design namely the traffic and the subgrade parameter. Having the materials defined in the table I above, the additional parameters are showed in the tables II and III below.
Layer
Category
E (MPa)
Subgrade
S1
25
0,35
S2
50
0,35
S3
75
0,35
S4
150
0,35
S5
300
0,35
Layer
Category
E (MPa)
Subgrade
S1
25
0,35
S2
50
0,35
S3
75
0,35
S4
150
0,35
S5
300
0,35
TABLE II. MECHANICAL CHARACTERISTIC OF THE SUBGRADE [3]
In this Table, we denote by S1,, S5 the subgrade material with given E and .
TABLE III. TRAFIC CLASSES DEFINED IN TROPICAL COUNTRIES [3]
EN a
Traffic class
Equivalent number of vehicle per day
< 5×105
T1
< 300
From 5×105 to 1.5×106
T2
300 to 1 000
From 1.5×106
to 4×106
T3
1 000 to 3 000
From 4×106
to 107
T4
3 000 to 6 000
From 107 to 2×107
T5
6 000 to 12 000
a. EN: Equivalent number of axles.
-
-
States of stress and strain
In continuum mechanics, the states of stress and strain at a point in cylindric coordinates are determined by:
-
r, t, z : normal stresses;
-
tz, rz, rt : shear stresses ;
-
r, t, z : linear strains;
-
tz, rz, rt : angular strains.
With known Young modulus and Poisson coefficient given by the formulas:
Ei = µi.(3.i + µi)/(i + µi) (1)
And
i = i/(2.(i + µi)) (2)
We determine the Lame coefficients µ and . According to the model prescribed by Burmister [16], we have the following graphic:
Fig. 1. State of stress at a point in cylindric coordinates
The calculus made with the software ALIZE 3 provides all the information related to the stress and strain tensors for each pavement structure. From these informations, the
following values are chosen and compared to admissible values in order to design the pavement structure.
TABLE IV. NATURE OF MAXIMUM STRESS OR STRAIN TO CONSIDERATE [16]
Material
Stress or strain (max)
Hydrocarbon materials
t
Concrete and hydraulic binder treated
materials
t
Untreated soil and materials
z
We note that the admissible values are found in [3].
TABLE V. ADMISSIBLE DEFLECTIONS IN FUNCTION OF TRAFIC CLASSES [3]
Traffic class
Admissible deflections (in 1/100 mm)
T1
125
T2
90
T3
65
T4
40
T5
35
-
-
Description of the procedure
To determine the interval of value of the parameter E and
, we followed the steps below:
-
The pavement is designed firstly with the recommended values Ecal and cal;
-
The perturbation of both values does not change the structure of the pavement and the mechanism used to find the interval of admissible parameter values is done with the help of ALIZE 3.
A way is given to study the sensitivity of the parameter and some operations are done as it is followed:
X = |Xmax – Xmin| (3)
SX = X/(2.Xcal) (4)
Where Xmax and Xmin are respectively the upper bound and the lower bound value of the proposed interval and Xcal is the recommended value.
-
-
PRESENTATION AND ANALYSIS OF RESULTS
-
Case of the design of pavement n°1
In this case, we have the input data:
-
Traffic: Class II
-
Pavement materials and recommended parameters (Ecal and cal) (Table VI)
-
Subgrade (soil) mechanical characteristics (E and ) (Table VI)
TABLE VI. MECHANICAL CHARACTERISTICS OF THE PAVEMENT N°1
Layer
Material nature/ Category
Ecal (MPa)
cal
Surface course
BC
2 450
0,35
Base course
GB
3 500
0,35
Subgrade
S3
75
0,35
With these entries, the software ALIZE 3 gives us the following thicknesses:
-
Thickness of the surface course: 5 cm;
-
Thickness of the base course: 32 cm.
By perturbing the mechanical parameters Ecal and cal, we obtain an interval of admissible values that does not modify the structure of the pavement as we see in the following figures:
Fig. 2. Thickness of the surface course in function of the Young modulus of the bituminous concrete of the pavement n°1
Fig. 3. Thickness of the surface course in function of the Poisson coefficient of the bituminous concrete of the pavement n°1
Fig. 4. Thickness of the base course in function of the Young modulus of the bitumen gravel of the pavement n°1
Fig. 5. Thickness of the base course in function of the Poisson coefficient of the bitumen gravel of the pavement n°1
a) Intervals of mechanical parameters E and
According to the figures 2 to 5, we obtain specific intervals of values that correspond to a specific pavement structure
TABLE VII. INTERVAL OF VALUES FOR MATERIAL USED IN THE PAVEMENT N°1
Layer
Material nature
Thickness (cm)
Ecal (MPa)
L.E.Va (MPa)
Surface course
BC
5
2 450
[1 950, 3 250] Base course
BG
31
3 500
[3 450, 3 600] Layer
SE (%)
cal
L..Vb
S (%)
Surface course
26.5
0.35
[0.29, 0.43] 20
Base course
2.1
0.35
[0.29, 0.41] 17.1
a. I.E.V : Interval of E values.
b. I..V : Interval of values.
-
-
Application on a finite number of pavement structures
We applied the procedure described in the previous section to design 18 pavement structures as it is show in the next table.
TABLE VIII. DESIGN OF THE 18 STRUCTURES PAVEMENT
Type of Pave ment
Numbered pavement
Surface course
Base course
Material
Thickness (cm)
Material
Thickness (cm)
1
1
BC
5
BG
31
2
BC
5
BG
27
3
BC
6
BG
36
4
BC
5
BG
32
5
BC
7
BG
40
6
BC
6
BG
36
2
7
BC
4
CG/ Ci/ Po
21
8
BC
4
CG/ Ci/ Po
11
9
BC
4
CG/ Ci/ Po
39
10
BC
4
CG/ Ci/ Po
23
11
BC
4
CG/ Ci/ Po
47
12
BC
4
CG/ Ci/ Po
33
3a
13
SC
2
CG/ Ci/ Po
26
14
SC
2
CG/ Ci/ Po
12
15
SC
3
CG/ Ci/ Po
33
16
SC
3
CG/ Ci/ Po
18
17
SC
3
CG/ Ci/ Po
47
18
SC
3
CG/ Ci/ Po
34
a. The seal coat does not take part in the structural design of the
pavement.
Type of pavement
Numbered pavement
Subbase
Subgrade
Trafic class
Matériau
Thickness (cm)
Category
Thickness (cm)
1
1
/
/
S3
T2
2
/
/
S4
T2
3
/
/
S3
T3
4
/
/
S4
T3
5
/
/
S3
T4
6
/
/
S4
T4
2
7
NLG
25
S3
T2
8
NLG
20
S4
T2
9
NLG
24
S3
T3
10
NLG
24
S4
T3
11
NLG
25
S3
T4
12
NLG
21
S4
T4
3
13
NLG
19
S3
T1
14
NLG
19
S4
T1
15
NLG
20
S3
T2
16
NLG
20
S4
T2
17
NLG
25
S3
T3
18
NLG
22
S4
T3
Numbered pavement
cal
I. .V
S (%)
1
0.35
[0.29, 0.41] 0.12
17
2
0.35
[0.00, 0.43] 0.43
61.4
3
0.35
[0.27, 0.41] 0.14
20
4
0.35
[0.33, 0.47] 0.14
20
5
0.35
[0.25, 0.37] 0.12
17
6
0.35
[0.27, 0.43] 0.16
22.8
Average
26.4
Numbered pavement
cal
I. .V
S (%)
1
0.35
[0.29, 0.41] 0.12
17
2
0.35
[0.00, 0.43] 0.43
61.4
3
0.35
[0.27, 0.41] 0.14
20
4
0.35
[0.33, 0.47] 0.14
20
5
0.35
[0.25, 0.37] 0.12
17
6
0.35
[0.27, 0.43] 0.16
22.8
Average
26.4
The next tables show the interval of mechanical parameters values for the 18 pavement structures including recommended values.
TABLE IX. INTERVAL OF VALUES FOR BITUMINOUS CONCRETE USED IN THE SURFACE COURSE
Numbered pavement
Ecal (MPa)
I.E.V (MPa)
E (MPa)
SE (%)
1
2450
[1950, 3250] 1300
26.5
2
2450
[1950, 3050] 1100
22.4
3
2450
[1850, 2850] 1000
20.4
4
2450
[2350, 4250] 1900
38.7
5
2450
[1850, 2550] 700
14.2
6
2450
[2050, 3150] 1100
22.4
7
2450
[1850, 2850] 1000
20.4
8
2450
[1650, 3650] 2000
40.8
9
2450
[1750, 2550] 800
16.3
10
2450
[1850, 3250] 1400
28.5
11
2450
[1750, 2550] 800
16.3
12
2450
[1550, 2550] 1000
20.4
Average
24
Numbered pavement
cal
I. .V
S (%)
1
0.35
[0.31, 0.43] 0.14
20
2
0.35
[0.27, 0.41] 0.14
20
3
0.35
[0.27, 0.39] 0.12
17
4
0.35
[0.33, 0.47] 0.14
20
5
0.35
[0.25, 0.37] 0.12
17
6
0.35
[0.31, 0.41] 0.1
14.3
7
0.35
[0.05, 0.43] 0.38
54.3
8
0.35
[0.05, 0.49] 0.44
63
9
0.35
]0.00, 0.37]
0.37
53
10
0.35
[0.19, 0.45] 0.26
37.9
11
0.35
]0.00, 0.37]
0.37
53
12
0.35
]0.00, 0.37]
0.37
53
Average
35
TABLE X. INTERVAL OF VALUES FOR BITUMEN GRAVEL USED IN THE BASE COURSE
Numbered pavement
Ecal (MPa)
I.E.V (MPa)
E (MPa)
SE (%)
1
3500
[3450, 3600] 150
2
2
3500
[3400, 3600] 200
2.8
3
3500
[3400, 3550] 150
2
4
3500
[3450, 3700] 250
3.6
5
3500
[3400, 3550] 150
2
6
3500
[3450, 3600] 150
2
Average
2.4
TABLE XI. INTERVAL OF VALUES FOR CRUSHED GRAVEL/ CINDER/ POUZZOLAN USED IN THE BASE COURSE
Numbered pavement
Ecal (MPa)
I.E.V (MPa)
E (MPa)
SE (%)
7
400
[370, 420] 50
6.2
8
400
[330, 460] 130
16.2
9
400
[350, 410] 60
7.5
10
400
[370, 430] 60
7.5
11
400
[340, 410] 70
8.7
12
400
[330, 410] 80
10
13
400
[390, 500] 110
13.7
14
400
[360, 470] 110
13.7
15
400
[350, 410] 60
7.5
16
400
[330, 450] 120
15
17
400
[350, 460] 110
13.7
18
400
[320, 410] 90
11.2
Average
11
Numbered pavement
cal
I. .V
S (%)
7
0.35
[0.29, 0.45] 0.16
22.8
8
0.35
[0.25, 0.45] 0.2
28.6
9
0.35
[0.33, 0.5[ 0.17
24.3
10
0.35
[0.29, 0.39] 0.1
14.3
11
0.35
[0.31, 0.5[ 0.19
27.1
12
0.35
[0.33, 0.5[ 0.17
24.3
13
0.35
[0.33, 0.43] 0.1
14.3
14
0.35
[0.29, 0.43] 0.14
20
15
0.35
[0.29, 0.37] 0.08
11.5
16
0.35
[0.31, 0.37] 0.06
8.6
17
0.35
[0.33, 0.37] 0.04
5.7
18
0.35
[0.29, 0.37] 0.08
11.5
Average
17.8
Numbered pavement
Ecal (MPa)
I.E.V (MPa)
E (MPa)
SE (%)
7
150
[145, 180] 35
11.6
8
150
[130, 195] 65
21.6
9
150
[145, 205] 60
20
10
150
[105, 155] 40
13.3
11
150
[120, 170] 50
16.6
12
150
[130, 185] 55
18.3
13
150
[145, 180] 35
11.6
14
150
[110, 220] 110
36.6
15
150
[120, 170] 50
16.6
16
150
[120, 190] 70
23.3
17
150
[120, 175] 55
18.3
18
150
[110, 165] 55
18.3
Average
18.8
Numbered pavement
Ecal (MPa)
I.E.V (MPa)
E (MPa)
SE (%)
7
150
[145, 180] 35
11.6
8
150
[130, 195] 65
21.6
9
150
[145, 205] 60
20
10
150
[105, 155] 40
13.3
11
150
[120, 170] 50
16.6
12
150
[130, 185] 55
18.3
13
150
[145, 180] 35
11.6
14
150
[110, 220] 110
36.6
15
150
[120, 170] 50
16.6
16
150
[120, 190] 70
23.3
17
150
[120, 175] 55
18.3
18
150
[110, 165] 55
18.3
Average
18.8
TABLE XII. INTERVAL OF VALUES FOR NATURAL LATERITE USED IN THE SUBBASE
Numbered pavement
cal
I. .V
S (%)
7
0.35
[0.23, 0.37] 0.14
20
8
0.35
[0.31, 0.37] 0.06
8.5
9
0.35
[0.00, 0.37] 0.37
52.8
10
0.35
[0.29, 0.37] 0.08
11.4
11
0.35
[0.15, 0.50] 0.35
50
12
0.35
[0.33, 0.39] 0.06
8.5
13
0.35
[0.17, 0.37] 0.2
28.5
14
0.35
[0.17, 0.37] 0.2
28.5
15
0.35
[0.19, 0.41] 0.22
31.4
16
0.35
[0.33, 0.27] 0.06
8.5
17
0.35
[0.19, 0.41] 0.22
31.4
18
0.35
[0.31, 0.37] 0.06
8.5
Average
24
-
Summary of the desired sensitivity
The small change of the parameters E and provide with the help of ALIZE 3 a good level of sensitivity of the Young modulus taken between 14% and 41% in the case of a bituminous concrete in surface course while the sensitivity of the Poisson coefficient can be taken between 17% and 54%.
We observe also that the sensitivity of change from 17% to 61% in the case of the bituminous gravel in base course while it decrease from 9% to 53% in the case of laterite gravel in subbase. Another observation is made for the sensitivity of E between 1% and 37% for the natural laterite gravel in subbase.
TABLE XIII. SYNTHESIS OF THE SENSITIVITY OF MECHANICAL PARAMETERS E AND
Layer
Material
SE
(min, %)
SE
(max, %)
S (min, %)
S (max, %)
Surface course
BC
14
41
17
54
Base course
CG/ Ci/ Po
8
16
6
29
BG
2
4
17
61
Subbase
NLG
12
37
9
53
These levels of sensitivity are useful in particular for the countries where the infrastructure to design the pavement fails and give an alternative to recommended design parameters.
-
-
CONCLUSION
This work has been based on the fact that determining an interval of mechanical values E and permits to decide on the desired design of the pavement in tropical regions, for example in Cameroon. Instead of using the recommended values, these intervals open a large zone of application that can involve different kind of materials. This approach opens a new perspective in the design of the pavement structures in tropical countries.
ACKNOWLEDGMENT
I would like to thank the Center of Excellence in Information of Communication Technology at the University of Yaounde I for their support and collaboration.
REFERENCES
[1]. Association of State Highway, Official AASHTO guide for design of pavement structures. Association of State Highway, American, Washington, D. C., 1993. [2]. Austroads, Pavement design. Sydney, 2004. [3]. CEBTP, Guide pratique de dimensionnement des chaussées pour les pays tropicaux. Ministère des relations extérieures, Coopération et Développement, République Française, 1984. [4]. Department of the Environment, RN-29, A guide to the structural design for new roads. Department of the Environment, HMSO, London, 1970. [5]. E. E. Putri, N. S. V. K. Rao, M. A. Mannan, "Evaluation of the modulus of elasticity and resilient modulus for hightway subgrades," EJGE, University of Malaysia Sabah, Kota Kinabaly, Malaysia, 2010. [6]. F. A. Miyo Tchatchouang, Influence de linexactitude des valeurs des paramètres mécaniques (E et ) des matériaux constitutifs des chaussées sur le dimensionnement de celles-ci, simulation par le logiciel Alizé 3. Master in Engineering thesis, National Advanced School of Engineering, Cameroon, 2015. [7]. H. Goacolu et Al. "La méthode française de dimensionnement," LCPC, p. 15, 2003. [8]. H. L. Theyse, M. Beer, F. C. Rust, Overview of the South African mechanistic pavement design analysis method, Transportation Research Record, 1539, TRB, National Research Council, Washington, D.C., 1996, pp.6-17. [9]. IRC, Guidelines for the design of flexible pavements, 2nd revision.IRC, 2001.
[10]. Japan Road Association, Manual for asphalt pavement. Japan Road Association, Japan, 1989. [11]. LABOGENIE, Etudes géotechniques routières en vue de la construction de certaines routes du réseau national-lot 9 : Tronçon (RP19) Dschang-Fontem-Bakebe, Cameroon,. 2012. [12]. LABOGENIE, Etudes géotechniques routières en vue de la construction de certaines routes du réseau national-lot 9 : Road Ring Carrefour Nyos-Weh. LABOGENIE, Cameroon, 2012. [13]. LABOGENIE, Etudes géotechniques routières en vue de la construction de certaines routes du réseau national-lot 9 : Road Ring (RN11) Kumbo-Nkambe-Misaje-Mungong-Kimbi-Nyos-Weh-Wum. LABOGENIE, Cameroon, 2012. [14]. LABOGENIE, Recommandation pour lutilisation des assises de chaussées en graveleux latéritiques. LABOGENIE, Cameroon, 1983. [15]. LABOGENIE, Recommandation pour lutilisation des assises de chaussées en graves concassées. LABOGENIE, Cameroon, 1983. [16]. LCPC, Manuel d'utilisation du logiciel ALIZE- LCPC version 1.3.LCPC, 2010.
[17]. LCPC and SETRA, French design manual for pavement structures. Guide Technique, Union Des Synducates, De L'industrie Routiere, 1997. [18]. M. Kassogue, G. Hebert, M. Massiera, Contrôle de la qualité sur les matériaux des couches de chaussée (revêtement exclu). Faculté dIngénierie (Génie Civil), Université de Moncton, Canada, 2002. [19]. M. Karray, G. Lefebre, "Significance and evaluation of Poissons ratio in Rayleigh wave testing, " Canadian Geotechnical Journal, 2008. [20]. NCHRP, Mechanistic-empirical design of new & rehabilitated pavement structures, 2011. [21]. RstO 2000, Richtlinien für die Standardisierung des Oberbaues von Verkehrsflächen, Entwurf, September 1999. [22]. SETRA-LCPC. Conception et dimensionnement des structures de chaussées. Guide technique, LCPC, 1994. [23]. Shell International Petroleum Company Limited, Shell pavement design manual asphalt pavements and overlays for road traffic, Shell International Petroleum Company Limited, London, 1978. [24]. S. Triaw, Dimensionnement mécaniste-empirique des structures de chaussées: application au tronçon Séo-Diourbel. Master in Engineering thesis. Ecole Supérieure Polytechnique Centre, Senegal, 2006.