- Open Access
- Total Downloads : 269
- Authors : S. Krishnamoorthy And P. S. Meenakshi
- Paper ID : IJERTV2IS70375
- Volume & Issue : Volume 02, Issue 07 (July 2013)
- Published (First Online): 29-07-2013
- ISSN (Online) : 2278-0181
- Publisher Name : IJERT
- License: This work is licensed under a Creative Commons Attribution 4.0 International License
on Sums and Products of K-Tripotent Matrices
S. Krishnamoorthy and P. S. Meenakshi
Head of the Department of Mathematics, Ramanujan Research Centre, Government Arts College (Autonomous), Kumbakonam-612 001, India.
[*]Research Scholar, Ramanujan Research Centre,Government Arts College (Autonomous), Kumbakonam-612 001, India.
Abstract: In this paper, the sums and products of k-Tripotent matrices are discussed and some related results are obtained.
Keywords: Tripotent matrices, k-Tripotent matrices, Sums and Products of k-Tripotent matrices.
Ams Subject Classification number: 15A09; 15A15;15A57
1 Introduction
R.D.Hill and S.R.Waters [1] have developed a theory of k-real and k-hermitian matrices as a generalization of secondary real and secondary hermitian matrices. S.Krishnamoothy and P.S.Meenakshi [2] have studied the basic concepts of k-Tripotent matrices as generalization of k- Tripotent matrices. J.A.Erdos [3] has initiated the study on products of idempotent matrices.
Throughout the paper, let , denote the unitary space of order n and be the space
all complex n×n matrices. Let k be a fixed product of disjoint transportation in the set of all permutation on {1,2n}. Hence it is involutory (i.e. K2=I identity permutation). If Kis the associated permutation matrix of k then it clearly satisfies the following properties.
K2=I and K= KT = =K*
2 Sums and Products of k-Tripotent matrices
Theorem 2.1. Let A and B be two k-Tripotent matrices then A B
A B
is k-Tripotent if and only if
Proof. Let A and B be k-Tripotent matrices, Therefore Assume that A B
KA3K A and KB3K B .
Now A B KA3K KB3K
K A3 B3 K
K(A B)3 K
if A B
Hence A B is k-Tripotent matrices.
Conversely, Assume A B
A B K A B3 K
is k-Tripotent matrices.
K A3 B3 3ABA BK
KA3K KB3K K
3ABA BK
A B K
3ABA BK
Hence K 3ABA BK 0 , which implies that A B .
Generalization. Let
n
n
A1 A2…………….An be k-Tripotent matrices then Ai is k-Tripotent if and only
i1
if Ai Aj At 0 for i , j and t in {1,2.n}.
i jt
Proof. Let
n 3
n n n
K Ai K K Ai Aj At K
i1 i1 j1 t 1
n
n n n
K A3
K K A A2 A A K
i i s j t
i1 i1
s1
j,t 1
j t
n n
n n
n n
K A A A K K
A A2
K K A A A K
j i t
t s
t i j
it i j
it i j
j 1 i,t 1
t 1 s1
t 1 i, j 1
n n n
n n n n
KA3 K K A A2 K K A A A K K A A2 K
i i s
i j t j s
i1
i1
n n
s1
i1
n n
j,t 1
j t
j1
n n
s1
K A A A K K
A A2
K K A A A K
j i t
t s
t i j
it i j
it i j
j 1 i,t 1
t 1 s1
t 1 i, j 1
Since s are k-Tripotent matrices, we have
n 3 n
n n
n n n n
K A K A K
A A2
K K A A A K K A A2 K
i
i i s
i j t j s
i1
i1 i1 s1 i1
n n n n
j,t 1
jt
j 1 s1
n n
K A A A K K
A A2
K K A A A K
j i t
t s
t i j
it i j
it i j
j 1 i,t 1
t 1 s1
t 1 i, j 1
(2.1.)
Here i,j,t {1,2.n}
Assume that
n
n
Ai is k- Tripotent matrices. From (2.1.) we have,
i1
n n n n
n n n n
A A K A A2 K K A A A K K A A2 K
i i i s
i j t j s
i1
i1
i1
n n
s1
i1
n n
j,t 1
j t
j 1
n n
s1
K A A A K K
A A2
K K A A A K
j i t
t s
t i j
it i j
it i j
j 1 i,t 1
t 1 s1
t 1 i, j 1
n n n n
n n n n
A A K A A2 K K A A A K K A A2 K
i i i s
i j t j s
i1
i1
i1
s1
n n
i1
j,t 1
jt
n n
j 1
s1
n n
K A A A K K
A A2
K K A A A K
j i t
t s
t i j
it i j
it i j
j 1 i,t 1
t 1 s1
t 1 i, j 1
n n
n n n n
0 K
A A2 K K A A A K K A A2 K
i s
i j t j s
i1
s1
n n
i1
j ,t 1
j t
n n
j 1
s1
n n
K A A A K K
A A2
K K A A A K
j i t
t s
t i j
it i j
it i j
j 1 i,t 1
t 1 s1
t 1 i, j 1
Hence, it follows that,
n n
n n
n n
n n
K A A2 K K A A A K K A A2 K K A A A K
i s
-
j t
-
s
j i t
j t it
j t it
i1
s1
i1
j ,t 1
j 1
s1
j 1 i,t 1
n n
n n
K A A2 K K A A A K 0
t s t i j
But,
t 1
s1
t 1
i, j 1 i j
n n
n n
n n
n n
K A A2 K K A A A K K A A2 K K A A A K
i s
-
j t
-
s
j i t
j t it
j t it
i1
s1
i1
j ,t 1
j 1
s1
j 1 i,t 1
n n
n n
K A A2 K K A A A K
A A A
t s
t i j
i j t
t 1 s1 t 1
i, j 1 i j
i j t
Hence
Ai Aj At 0 .
i jt
Conversely, Assume that
Ai Aj At 0
i jt
n n
n n n n
But
A A A K
A A2 K K A A A K K A A2 K
i j t
i s
i j t j s
i j t
i1
s1
i1
j,t 1
j t
j 1
s1
n n
n n
n n
K A A A K K
A A2
K K A A A K
j i t
t s
t i j
it i j
it i j
j 1 i,t 1
t 1 s1
t 1 i, j 1
n n
n n
n n
n n
Hence K
A A2 K K A A A K K A A2 K K A A A K
i s
i j t
j i t
i1
s1
i1
j,t 1
j 1
s1
j 1 i,t 1
n n
n n
j t it
K A A2 K K A A A K 0
t s t i j
t 1
s1
t 1
i, j 1 i j
.(2.2.)
Substitute (2.2.) in (2.1.), then we have ,
n 3 n
K Ai
K Ai
i1
n
i1
Hence Ai is k-Tripotent matrices.
i1
1 0 0 1 0 0
Example 2.2. Let
A i 1 i and B i 1 i clearly A and B are k-Tripotent
0 0 1
0 0
1
matrices. Let K be the associated permutation matrix such as,
0 0 1
K 0 1 0 Here A
1 0 0
B . Hence A+B is also a k-Tripotent matrices.
Theorem 2.3. Let A and B be k-Tripotent matrices. If AB BA then A B is also k-Tripotent matrix.
Proof. Let A and B be two k-Tripotent matrices. Since KA3K A and KB3K B . Assume that
AB BA.
AB KA3 KKB3 K
KAAAKKBBBK
KAAABBBK
KAABABBK if AB BA
KABABABK
K AB3 K , Hence the matrix A B is k-Tripotent matrix.
Generalization. If
n
A1 A2…………….An be k-Tripotent matrix belonging to a commuting family of
matrices then
Ai
i1
is a k-Tripotent matrices.
Proof. Let
A1 A2…………….An be k-Tripotent matrices.
n 3
K Ai
K K A1 A2 …………….An A1 A2…………….An A1 A2…………….An
i1
1 2
1 2
n
n
K A3 A3……………A3 K
KA3KKA3 K……………KA3 K
1 2 n
A3 A3……………A3
1 2 n
n
n
Ai
i1
n
n
Hence the matrices Ai
i1
is k-Tripotent .
1 0 0 1 0 0
Example 2.4. Let
A i 1 i and B i 1 i
0 0 1
0 0
1
0 0 1
K 0 1 0 where K is the associated permutation matrix.
1 0 0
Clearly A and B are k-Tripotent matrices.
1 0 0 1 0 0
AB 0 1 0 and BA 0 1 0
i.e AB BA. Hence A B is also a
0 0
1
0 0
1
k-Tripotent matrices.
Remark 2.5. If A and B are two k-Tripotent matrices then, A + B is k-Tripotent if and only if [ A , B ] =3 A B [ A + B ]. A B is k-Tripotent if [ A B ]=0. Where [ A , B ] be the commutator of the matrices A and B.
Lemma 2.6. Let A be a k-Tripotent matrix. Then A is Tripotent if and only if AK KA , where K is the associated permutation matrix of k.
Proof. Let A be a k-Tripotent matrix.
Assume that AK KA
Pre-multiply by K , we have
KAK A,
A3 A
Hence A is Tripotent.
Conversely, Assume that A is Tripotent matrices.
A3 A
KAK A
Pre-multiply by K , AK KA .
if A is k-Tripotent
1/ 2 1/ 2
Example 2.7. Let
A 1/ 2 1/ 2
is a tripotent matrix and it also commutes with the
0 1
1 0
1 0
associated permutation matrix K , i.e AK KA .
Note 2.8. Lemma 2.6. fails if we relax the condition of commutability of matrices A and K . A is not Tripotent then AK KA in such cases.
References
-
R.D Hill, S.R.Waters, On k-real and k-hermitian matrices, Linear.Alg. Appl.169(1992) 17-29.
-
S.Krishnamoorthy and P.S. Meenakshi, On k-Tripotent matrices, International J. of Math. Sci&Engg. Appls. 7 (1)(2013) 101-105.
-
J.A. Erdos, On products of idempotent matrices, Glasgow Math.J. 8(1967) 118-122.