One Modulo N Gracefulness of n-Polygonal Snakes, C (t)n and pa,b

DOI : 10.17577/IJERTV2IS100899

Download Full-Text PDF Cite this Publication

Text Only Version

One Modulo N Gracefulness of n-Polygonal Snakes, C (t)n and pa,b

ONE MODULO N GRACEFULNESS OF

n

n

n-POLYGONAL SNAKES, C(t)

AND P

a,b

V.Ramachandran1 C.Sekar2

1 Department of Mathematics, P.S.R Engineering College (Afliated to Anna University Chennai), Sevalpatti, Sivakasi, Tamil Nadu, India.

2 Department of Mathematics, Aditanar College of Arts and Science (Afliated to MS University Tirunelveli), Tiruchendur, Tamil Nadu, India.

Abstract

| |

| |

{ }

{ }

A function f is called a graceful labelling of a graph G with q edges if f is an injection from the vertices of G to the set 0, 1, 2, . . . , q such that, when each edge xy is assigned the label f (x) f (y) , the resulting edge labels are distinct. A graph G is said to be one modulo N graceful (where N is a positive integer) if there is a function from the vertex set of G to

{0, 1, N, (N + 1), 2N, (2N + 1), . . . , N (q 1), N (q 1) + 1} in such a way that (i) is 1 1 (ii)

induces a bijection from the edge set of G to {1, N + 1, 2N + 1, . . . , N (q 1) + 1} where

(t)

(t)

(uv) = |(u) (v)| . In this paper we prove that the n-Polygonal snakes , Cn and Pa,b are one

modulo N graceful for all positive integers N .

n

n

Keywords : Graceful, modulo N graceful, n -Polygonal snakes, C(t) and Pa,b .

AMS Subject Classifcation (2010):05C78

  1. Introduction

    S.W.Golomb [1] introduced graceful labelling.Odd gracefulness was introduced by R.B.Gnanajothi

    [2] .C.Sekar [6] introduced one modulo three graceful labelling. In this paper we introduce the concept of one modulo N graceful where N is any positive integer.In the case N = 2 , the labelling is odd graceful

    n

    n

    and in the case N = 1 the labelling is graceful.We prove that the n-Polygonal snakes, C(t)

    and P

    a,b

    are one modulo N graceful for all positive integers N .

  2. Main Results

    Defnition 2.1. A graph G with q edges is said to be one modulo N graceful (where N is a positive integer) if there is a function from the vertex set of G to {0, 1, N, (N + 1), 2N, (2N + 1), . . . , N (q 1), N (q 1) + 1} in such a way that (i) is 1 1 (ii) induces a bijection from the edge set of G to {1, N + 1, 2N + 1, . . . , N (q 1) + 1} where (uv) = |(u) (v)| .

    Defnition 2.2. Consider k copies of path Pn .An n -Polygonal snake containing k number of n- Polygons is obtained from a path v1, v2, . . . , vk by identifying the pendant vertices of ith copy of the path Pn with vi1 and vi for i = 1, 2, . . . , k.

    n

    n

    Defnition 2.3. The one point union of t cycles of length n is denoted by C(t) .This graph has t(n1)+1

    vertices and tn edges.

    Defnition 2.4. Let u and v be two fxed vertices. We connect u and v by means of b internally disjoint paths of length a each. The resulting graph is denoted by Pa,b .

    Theorem 2.5. n -Polygonal snakes for n 0(mod4) are one modulo N graceful for every positive integer N .

    Proof: Let n = 4r, r 1 .Let there be k polygons.This graph has 4rk (k 1) vertices and 4rk

    (j) (4r)

    (j) (4r)

    (1)

    edges. For 1 j k let u , j = 1, 2, . . . 4r be the vertices of i th polygon. Identify u with u ,

    u

    u

    (4r) 2

    i 1 2

    3

    3

    with u(1) , and so on.

    Defne

    (u(1)

    2i1

    ) = (u(4r)

    2(i1

    ) = 4Nr(i 1) for i = 1, 2, 3, 4 . . . ,

    (u(1)) = (u(4r)

    ) = 4Nrk (N 1) 2Nr + N 4Nr(i 1) for i = 1, 2, 3, 4 . . . ,

    2i

    (u(j)

    2i1

    (u(j)

    2i1

    (u(j)

    2i1

    (2i1

    N(j2)

    N(j2)

    ) = 4Nrk (N 1) 2 4Nr(i 1) for j = 2, 4, 6, 8 . . . , 4r 2 and i=1,2,3,4. . .

    2

    2

    ) = N + N(j3) + 4Nr(i 1) for j = 3, 5, 7, 9 . . . , 2r 1 and i=1,2,3,4. . .

    2

    2

    ) = 2N + N(j3) + 4Nr(i 1) for j = 2r + 1, 2r + 3, . . . , 4r 1 and i=1,2,3,4. . .

    2i

    2i

    2

    2

    (u(j)) = N (2r + 1) + N(j2) + 4Nr(i 1) for j = 2, 4, 6, 8 . . . , 4r 2 and i=1,2,3,4. . .

    2i

    2i

    2

    2

    (u(j)) = 4Nrk (N 1) 2Nr N(j3) 4Nr(i 1) for j = 3, 5, 7 . . . , 2r 1 and i=1,2,3,4. . .

    2i

    2i

    2

    2

    (u(j)) = 4Nrk(N 1)2NrN N(j3) 4Nr(i1) for j = 2r + 1, 2r + 3, . . . , 4r 1 and i=1,2,3,4. . .

    Clearly is 1 1 and defnes a one modulo N graceful labelling of the n -Polygonal snakes for

    n 0(mod4) .

    Example 2.6. Graceful labelling of the 12 -Polygonal snake. (No.of polygons = 5 )

    58 4 9

    51 46 16 21

    39 34 28

    2 57

    53 10

    14 45

    41 22

    26 33

    59 5

    8 50

    47 17

    20 38 35 29

    1 56 54

    11 13

    44 42

    23 25 32

    60 6 7

    49 48

    18 19

    37 36 30

    0 55 12 43 24 31

    Example 2.7. Odd graceful labelling of the 8 -Polygonal snake. (No.of polygons = 9 )

    141 6

    12 131

    125 22

    28 115

    109 38 44 99

    93 54 60

    83 77 70

    2 139

    135 14

    18

    123

    119

    30

    34 107

    103 46

    50

    87 62

    91 66 75

    143 8

    10 129

    127 240

    26 113

    111 40

    42 97

    95 56

    58 81 79 72

    0 341 40 301 80 261 120 221 160 73

    Example 2.8. One modulo 4 graceful labelling of the 4 -Polygonal snake. (No.of polygons = 4 )

    61 8

    12 49

    45 24 28 33

    0 57 16 41 32

    Theorem 2.9. n -Polygonal snakes for n 2(mod4) are one modulo N graceful for every positive integer N if the number of polygons is even .

    Proof: Let n = 4r + 2 and let there be k = 2s polygon.This graph has 4rk (k 1) vertices and

    (j) (4r)

    (j) (4r)

    4rk edges. For 1 j k let u , j = 1, 2, . . . 4r be the vertices of i th polygon. Identify u with

    u(1) , u(4r)

    i 1

    with u(1) , and so on.

    2 2 3

    Defne

    (u(1)

    2i1

    ) = (u(4r+2)) = N (4r + 3)(i 1) for i = 1, 2, 3, 4 . . . , s

    2(i1

    (u(1)) = (u(4r+2)) = N (4r + 2)k (N 1) 4Nr N (4r + 1)(i 1) for i = 1, 2, 3, 4 . . . , s

    2i

    (u(j)

    2i1

    (u(j)

    2i1

    (2i1

    2

    2

    ) = N + N(j3) + N (4r + 3)(i 1) for j = 3, 5, 7, 9 . . . , 4r + 1 and i=1,2,3,4. . . ,s

    N(j2)

    N(j2)

    ) = N (4r+2)k(N 1) 2 N (4r+1)(i1) for j = 2, 4, 6, 8 . . . , 4r and i=1,2,3,4. . . ,s

    2i

    2i

    2

    2

    (u(j)) = N (4r+2)k(N 1)2NrN(j3) N (4r+1)(i1) for j = 3, 5, 7 . . . , 4r + 1 and i=1,2,3,4. . . ,s

    2i

    2i

    2

    2

    (u(j)) = N (2r + 1) + N(j2) + N (4r + 3)(i 1) for j = 2, 4, 6, . . . , 2r and i=1,2,3,4. . . , s

    2i

    2i

    2

    2

    (u(j)) = N (2r+1)+2N + N(j2)+N (4r+3)(i1) for j = 2r + 2, 2r + 4, . . . , 4r and i=1,2,3,4,. . . , s

    Clearly is 1 1 and defnes a one modulo N graceful labelling of the n -Polygonal snakes for

    n 0(mod2) .

    Example 2.10. One modulo 8 graceful labelling of the 10 -Polygonal snake. (No.of polygons = 4 )

    16 297

    273

    72 104

    225

    201

    160

    305 24 48

    265 233

    112 136

    193

    8 289

    281

    80 96

    217

    209

    168

    313 32

    40 257

    241 120

    128

    185

    Example 2.11. One modulo 5 graceful labelling of the 10 -Polygonal snake. (No.of polygons = 6 )

    10 286

    271

    45 65

    241

    226

    100

    120

    196

    181

    155

    291 15

    30 266

    246 70

    85 221

    201

    125

    140

    176

    5 281

    276 50

    60 236

    231

    105

    115

    191

    186

    160

    296 20

    25 261

    251

    75 80

    216

    206

    130

    135

    171

    0 256 55 211 110 166 165

    Example 2.12. Graceful labelling of the 6 -Polygonal snake. (No.of polygons = 4 )

    1 23

    22 6

    8 18 17 13

    24 2 3 21 19 9 10 16

    0 20 7 15 14

    n

    n

    Theorem 2.13. Let C(t)

    denote the one point union of t cycles of length n . C(t)

    is one modulo N

    n

    n

    graceful when n = 4, 8, t > 2 and n = 6, t even and t 4 for every positive integer N > 1 .

    Proof: Case (i) n = 4, t > 2

    (j)

    (j)

    For 1 i t . Let ui , j = 1, 2, 3, 4 be the vertices of the i th cycle with the one point identifcation

    of u(1), u(1), . . . , u(1) at u0 .

    1 2 t

    Defne

    (u0) = 0

    i

    i

    2

    2

    (u(j)) = 4Nt (N 1) N (j2) 2N (i 1) for j = 2, 4 and i=1,2,3,4. . . ,t

    i

    i

    (u(3)) = 4Nt 2N 4N (i 1) for i = 1, 2, 3, 4 . . . , t

    (t)

    (t)

    Clearly is 1 1 and defnes a one modulo N graceful labelling of Cn

    when n = 4, t > 2 .

    4

    4

    Example 2.14. One modulo 10 graceful labelling of C(6)

    20

    60

    141

    131

    121

    231

    220

    151

    161

    0 211

    221

    100 171

    181

    191

    201

    180

    140

    4

    4

    Example 2.15. Odd graceful labelling of C(4)

    4

    17

    31

    28

    19

    21

    12 23

    29

    0 27

    20

    25

    Case (ii) n = 8, t > 2

    (j)

    (j)

    For 1 i t . Let ui , j = 1, 2, . . . , 8 be the vertices of the i th cycle with the one point identifcation

    of u(1), u(1), . . . , u(1) at u0 .

    1 2 t

    Defne

    (u0) = 0

    (ui ) =

    (j)

    (j)

    (ui ) =

    8Nt (N 1) 2N (i 1) N (j2) if i = 1, 2, 3, . . . , t and j = 2, 8

    6Nt (N 1) 2N (i 1)

    6Nt (N 1) 2N (i 1)

    6

    N ( 4)j

    6

    N ( 4)j

    if i = 1, 2, 3, . . . , t and j = 4, 6

    if i = 1, 2, 3, . . . , t and j = 4, 6

    2N (j3)

    2N (j3)

    2

    2

    6Nt 2N 4N (i 1) if i = 1, 2, 3, . . . , t and j = 5

    6Nt 2N 4N (i 1) if i = 1, 2, 3, . . . , t and j = 5

    4Nt N 4N (i 1) 4 if i = 1, 2, 3, . . . , t and j = 3, 7

    (t)

    Clearly is 1 1 and defnes a one modulo N graceful labelling of Cn

    when n = 8, t > 2 .

    (t)

    Clearly is 1 1 and defnes a one modulo N graceful labelling of Cn

    when n = 8, t > 2 .

    (t)

    Clearly is 1 1 and defnes a one modulo N graceful labelling of Cn

    when n = 8, t > 2 .

    (t)

    Clearly is 1 1 and defnes a one modulo N graceful labelling of Cn

    when n = 8, t > 2 .

    8

    8

    Example 2.16. Odd graceful labelling of C(4)

    20 47 44

    33 30

    2

    45

    49 63

    35

    26

    6 0 61

    51

    59

    53 22

    10 43

    55 57

    37 18

    14

    41 36

    28 39

    8

    8

    Example 2.17. One modulo 7 graceful labelling of C(3)

    56

    85

    7

    120

    77

    112

    113

    92

    21

    134

    127

    162

    0

    63

    155

    141

    35

    148

    49

    99

    106

    84

    Case (iii) n = 6, t is even t 4 let t = 2s

    (j)

    (j)

    For 1 i 2s . Let ui , j = 1, 2, . . . , 6 be the vertices of the i th cycle with the one point identifcation

    of u(1), u(1), . . . , u(1) at u0 .

    1 2 t

    Defne

    (u0) = 0

    (u(j)) =

    i

    (u(j)) =

    i

    6Nt (N 1) 2N (i 1) N (j2)

    4Nt N 4N (i 1)

    4N (j1)

    4Nt N 4N (i 1)

    4N (j1)

    if i = 1, 2, 3, . . . , 2s and j = 2, 6

    2 if i = 1, 2, 3, . . . , 2s and j = 3, 5

    2 if i = 1, 2, 3, . . . , 2s and j = 3, 5

    2N (j3) 4

    4N (j2)

    4Nt (4N 1) 2

    4N (j2)

    4Nt (4N 1) 2

    if i = 2, 4, 6, . . . , 2s and j = 4

    if i = 2, 4, 6, . . . , 2s and j = 4

    (t)

    Clearly is 1 1 and defnes a one modulo N graceful labelling of Cn

    (t)

    Clearly is 1 1 and defnes a one modulo N graceful labelling of Cn

    4Nt (N 1) 2 if i = 1, 3, 5, . . . , 2s 1 and j = 4

    when n = 6, t is even

    when n = 6, t is even

    when n = 6, t is even

    when n = 6, t is even

    and t 4 .

    6

    6

    Example 2.18. One modulo 4 graceful labelling of C(6)

    49

    61 20

    28

    12

    101

    105 97

    4

    92

    93

    141

    109

    113

    0 137 84

    133

    36 117 121

    44

    65 52

    129 76

    125

    60 68

    81

    1

    6

    6

    Example 2.19. One modulo 5 graceful labelling of C(4)

    41 75 76

    5

    65

    81 116

    15

    86

    91

    25

    56 35

    0

    96 101

    111

    106

    55

    45 61

    Theorem 2.20. Pa,b for all a 2 and for all odd b is one modulo N graceful for every positive integer

    N . Here Pm is a path of length m 1 .

    (

    (

    Proof: Let b = 2r + 1, r 1 Defne

    X(t) = 1 if t r

    0 if t > r

    Def ine

    (

    (

    (u) = 0

    Na(2r+1)

    if a is even

    (v) =

    2

    N (ab 1)

    2

    + 1 if a is odd

    For j = 1, 3, 5, . . .

    j

    j

    (v(i)) = N (a(2r + 1) 1) + 1 N (i 1) (2r + 1)(j 1) if i = 1, 2, 3, . . . , 2r + 1

    For j = 2, 4, 6, . . .

    j

    j

    }

    }

    { } {

    { } {

    (v(i)) = X(i) 2N (r + 1) + N (i 1) + (2r + 1)(j 2) + (1 X(i)) N + N (i 1) + (2r + 1)(j 2) if i = 1, 2, 3, . . . , 2r + 1

    Clearly is 1 1 and defnes a one modulo N graceful labelling of Pa,b for all a 2 and for all odd b .

    Example 2.21. One modulo 3 graceful labelling of P6,5

    88 18 73 33 58

    85

    21

    70

    36 55

    82

    9

    67

    24 52

    79

    12

    64

    27 49

    76

    15

    61

    30 46

    85

    21

    70

    36 55

    82

    9

    67

    24 52

    79

    12

    64

    27 49

    76

    15

    61

    30 46

    0 45

    Example 2.22. One modulo 4 graceful labelling of P5,7

    137 32

    109 60

    133 36 105 64

    129 40 101 68

    125 16 97 44

    0 121 20 93 48 69

    117 24 89 52

    113 28 85 56

    xample 2.23. Graceful labelling of P7,7

    49 8

    48 9

    42 15 35 22

    41 16 34 23

    47 10 40 17 33 24

    0 46

    45

    44

    4 39

    5 38

    6 37

    11 32 18 25

    12 31 19

    13 30 20

    43 7 36 14 29 21

    Theorem 2.24. P4,b for all b 2 is one modulo N graceful for every positive integer N .

    Proof:

    Defne

    (u) = 0

    (v) = 2Nb

    j

    j

    (v(i)) = N (ab 1) + 1 b(j 1) N (i 1) for i = 1, 2, . . . , b and j = 1, 3

    2

    2

    (v(i)) = 2Nb N 2N (i 1) for i = 1, 2, . . . , b

    Clearly is 1 1 and defnes a one modulo N graceful labelling of P4,b for all b 2

    Example 2.25. One modulo 3 graceful labelling of P4,9

    106 51 79

    103 45 76

    100 39 73

    97 33 70

    94 27 67

    0

    54

    91 21 64

    88 15 61

    85 9 58

    82 3 55

    Example 2.26. One modulo 5 graceful labelling of P4,6

    116 55 86

    111 45 81

    106 35 76

    0

    60

    101 25 71

    96 15 66

    91 5 61

    Example 2.27. Graceful labelling of P4,4

    16 7 12

    15 5 11

    0 8

    14 3 10

    13 2 9

    Theorem 2.28. P2,b for all b 2 is one modulo N graceful for every positive integer N .

    Proof:

    Defne

    (u) = 0

    (v) = Nb

    1

    1

    (v(i)) = 2Nb (N 1) N (i 1) for i = 1, 2, . . . , b

    Clearly is 1 1 and defnes a one modulo N graceful labelling of P2,b for all b 2

    Example 2.29. One modulo 6 graceful labelling of P2,8

    91

    85

    79

    73

    0 48

    67

    61

    55

    49

    Example 2.30. Graceful labelling of P2,6

    12

    11

    10

    0 6

    9

    8

    7

    Example 2.31. One modulo 8 graceful labelling of P2,10

    153

    145

    137

    129

    121

    0 80

    113

    105

    97

    89

    81

    Theorem 2.32. P4r1,4r for all r 1 is one modulo N graceful for every positive integer N .

    Proof:

    Defne

    (

    (

    (u) = 0

    N [6 + 16{ r21 }] + 1 if r is odd

    r

    r

    (v) =

    2

    2

    N [14 + 16{ 2 1}] + 1 if r is even

    For i = 2, 3, 4, . . . , 4r

    (v

    (i)) = ( N (4r 1)4r (N 1) N (i 2) (4r 1)(j 1) if j = 1, 3, 5, . . . , 2r 1

    2

    2

    N

    N

    N

    j

    j

    N (4r 1)4r (2N 1) N (i 2) 2 (4r 1)(j 1) if j = 2r + 1, 2r + 3, 5, . . . , 4r 3

    For j = 2, 3, 4, . . . , 2r

    (v(i)) = 4Nr + N (i 2) + N (4r 1)(j 2) if i = 2, 4, . . . , 4r 2

    j 2

    For i = 2r + 1, 2r + 2, . . . , 4r

    (v(i)) = 2Nr + N (i 2r 1) + N (4r 1)(j 2) if i = 2, 4, . . . , 4r 2

    j

    2

    j

    2

    (v(i)) = ( 2Nr(4r 1) (N 1) + (j 1) if j = 1, 3, 5, . . . , 4r 3

    1 2Nr(4r 1) N (j 2) if j = 2, 4, 6, . . . , 4r 2

    Clearly is 1 1 and defnes a one modulo N graceful labelling of P4r1,4r for all a 2 and for all odd b .

    Example 2.33. One modulo 3 graceful labelling of P7,8

    82

    166

    163

    81 85

    24 145

    27 142

    78 88 75

    45 121 66

    48 118 69

    160 30 139 51 115 72

    0 157

    154

    151

    12 136

    15 133

    18 130

    33 112 54 91

    36 109 57

    39 106 60

    148 21 127 42 103 63

    Example 2.34. One modulo 5 graceful labelling of P3,4

    26 25

    56 20

    0 31

    51 10

    46 15

    Example 2.35. Graceful labelling of P3,4

    6 5

    12 4

    0 7

    11 2

    10 3

    Theorem 2.36. Pa,b for all even a 4 is one modulo N graceful and for all even b 4 for every positive integer N .

    Proof: Case (i) Let a = 4r, r 1 Let b = 2m,

    Def ine

    (

    (

    x(t) = 1 if t m

    (

    (

    0 if t > m

    y(j) = 1 if j 1(mod 2)

    0 if j 1(mod 2)

    Def ine

    (u) = N (r 1)

    (

    (

    (v) = 4N rm N (r + 1)

    (1)

    N (2r1j) Nj

    y(j){8Nrm (N 1) } + y(j + 1){Nr N } if j = 1, 2, 3, . . . , 2r 1

    (1)

    N (2r1j) Nj

    y(j){8Nrm (N 1) } + y(j + 1){Nr N } if j = 1, 2, 3, . . . , 2r 1

    2

    2

    (vj ) =

    y(j){4Nrm (N 1)

    N (j

    2

    2r1)

    2

    2

    2

    } + y(j + 1){4Nrm N

    N (j 2r) 2

    } if j = 2r, 2r + 1, . . . , 4r 1

    For i = 2, 3, . . . , 2m

    (i) ( 8Nrm (N 1) Nr N (i 2) N (j1)(2m1)

    if j = 1, 3, . . . , 2r 1

    (vj ) =

    8Nrm (2N 1) Nr N (i 2)

    2

    N (j 1)(2

    2

    m1)

    if j = 2r + 1, 2r + 3, . . . , 4r 1

    j

    j

    2

    2

    (v(i)) = x(i){N (2m + r 1) + N (i 2) + N (j2)(2m1)} + (1 x(i)){N (m + r 1) +

    N (j2)(2m1)

    N (j2)(2m1)

    N (i m 1) + 2 } if j = 1, 2, . . . , 4r 2

    Clearly is 1 1 and defnes a one modulo N graceful labelling of Pa,b for for all even a 4 and for all even b 4 .

    Example 2.37. One modulo 5 graceful labelling of P8,6

    231 0

    226 35

    236

    201

    115

    60

    116

    171

    110

    85

    121

    146

    221 40 196 65 166 90 141

    5 105

    216 20 191 45 161 70 136

    211 25 186 50 156 75 131

    206 30 181 55 151 80 126

    Example 2.38. One modulo 7 graceful labelling of P4,4

    106 49 50

    99 28 71

    0 42

    92 14 64

    85 21 57

    Example 2.39. Graceful labelling of P12,4

    46 1

    47 0

    48 23

    24 22

    25 21 26

    45 6

    42 9

    39 12

    35 15

    32 18 29

    2 20

    44 4

    41 7

    38 10

    34 13

    31 16 28

    43 5

    40 8

    37 11

    33 14

    30 17 27

    Case (ii) Let a = 4r + 2, r 1 Let b = 2m,

    (

    (

    Def ine

    x(t) = 1 if t m

    (

    (

    0 if t > m

    y(j) = 1 if j 1(mod 2)

    0 if j 1(mod 2)

    Def ine

    (u) = Nr

    (v) = N (4r + 2)m Nr

    j

    j

    2

    2

    2

    2

    (v(1)) = y(j){2N (4r + 2)m (N 1) N (2r+1j) } + y(j + 1){ N (2rj)} if j = 1, 2, 3, . . . , 2r + 1 .

    (v(1)) = y(j){N (4r+2)m+1+ N (j2r3)}+y(j+1){N (4r+2)m N (j2r2)} if j = 2r + 2, 2r + 3, . . . , 4r + 1

    j 2 2

    For i = 2, 3, . . . , 2m

    j

    j

    2

    2

    (v(i)) = 2Nm(4r + 2) (N 1) N (r + 1) N (i 2) N (j1)(2m1) if j = 1, 3, . . . , 4r + 1 .

    j

    j

    2

    2

    (v(i)) = x(i){N (r + 2m) + N (i 2) + N (j2)(2m1)} + (1 x(i)){N (r + m) +

    N (j2)(2m1)

    N (j2)(2m1)

    N (i m 1) + 2 } if j = 2, 4, . . . , 2r

    j

    j

    2

    2

    (v(i)) = x(i){N (r + 2m + 1) + N (i 2) + N (j2)(2m1)} + (1 x(i)){N (r + m + 1) +

    N (j2)(2m1)

    N (j2)(2m1)

    N (i m 1) + 2 } if j = 2r + 2, 2r + 4, . . . , 4r

    Clearly is 1 1 and defnes a one modulo N graceful labelling of Pa,b for for all even a 4 and for all even b 4 .

    Example 2.40. One modulo 4 graceful labelling of P6,4

    89 0 93 48 49

    85 20 73 36 61

    4 44

    81 12 69 28 57

    77 16 65 32 53

    Example 2.41. One modulo 5 graceful labelling of P10,4

    186 5

    181 30

    191 0

    166 45

    196

    151

    100

    65

    101 95

    136 80

    106

    121

    10 90

    176 20

    171 25

    161 35

    156 40

    146 55

    141 60

    131 70

    126 75

    116

    111

    Example 2.42. Graceful labelling of P6,6

    35 0 36

    18 19

    34 7 29

    13 24

    33 8 28 14 23

    1 17

    32 4 27 10 22

    31 5 26 11 21

    30 6 25

    12 20

    References

    1. S.W.Golomb, How to number a graph in Graph theoy and computing R.C. Read, ed., Academic press, New york (1972)23-27.

    2. R.B.Gnanajothi, Topics in Graph theory, Ph.D. Thesis, Madurai Kamaraj University, 1991.

    3. Joseph A. Gallian, A Dynamic Survey of Graph Labeling, The Electronic Journal of Combinatorics,

      18 (2011), #DS6.

    4. A.Rosa, On certain valuations of the vertices of a graph, Theory of graphs.(International Symposium, Rome July 1966)Gordom and Breach, N.Y and Dunod paris(1967)349-355.

    5. V.Ramachandran and C.Sekar, One modulo N gracefulness of Acyclic graphs, Ultra Scientist of Physical Sciences, Vol.25 No (3) 2013 Dec (Accepted)

    6. C.Sekar, Studies in Graph theory, Ph.D. Thesis, Madurai Kamaraj University, 2002.

    7. V.Swaminathan and C.Sekar, Gracefulness of Pa,b Ars Combinatoria,June 2004.

Leave a Reply