- Open Access
- Total Downloads : 3924
- Authors : P.Satheesh Kumar Reddy, Ch.Nagaraju, T.Hari Krishna
- Paper ID : IJERTV1IS8641
- Volume & Issue : Volume 01, Issue 08 (October 2012)
- Published (First Online): 29-10-2012
- ISSN (Online) : 2278-0181
- Publisher Name : IJERT
- License: This work is licensed under a Creative Commons Attribution 4.0 International License
Optimum Design And Analysis Of Filament Wound Composite Tubes In Pure And Combined Loading
-
atheesh Kumar Reddy1, Ch.Nagaraju 2, T.Hari Krishna3
-
Senior assistant professor, 2.Professor, 3.Assistant Professor Department of Mechanical Engineering,
-
V.R.siddhartha Engineering College, Vijayawada,
Andhra Pradesh INDIA
Abstract
This is the investigation of the design and analysis processes of filament wound composite tubes under pure and combined loading. The problem is studied by using a computational tool based on the Finite Element Method (FEM). Filament wound tubes are modeled as single layered orthotropic tubes. Several analyses are performed on layered orthotropic tubes by using FEM. Results of the FEM are examined in order to investigate characteristics of filament wound tubes under different combined loading conditions. Winding angle, number of layers, level of orthotropy and various combined loading conditions were the main concerns of the study. The results of the FEM analysis are discussed for each loading condition. Both pure loading and combined loading analysis results were consistent with the ones mentioned in literature, such as optimum winding angles, optimum loading and optimum level of orthotropy. Finally, the required data is obtained for the design of filament wound composite tubes under combined loading.
Key words: Filament wound, Winding angle, FEM
-
Introduction
Composites are the materials that are composed of at least two components and form a new material with properties different from those of the components. Most composites are composed of a bulk material and a reinforcement material, generally fibers. The reinforcement materials usually have extremely high tensile and compressive strength. However, these theoretical values are not achieved in structural form. This is due to the surface flaws or material impurities, which results in crack formation and failure of the piece below its theoretical strength [1].
In order to overcome this problem, reinforcement is produced in fiber form, which prevents crack formation through the whole body. However, a matrix should be used to hold these fibers together, and improve material properties in the transverse direction of the fiber. The matrix also protects the fiber from damage, as well as spreading the load equally to each individual fiber.
The material properties of a composite are determined by the properties of matrix and fiber, volumetric ratio and orientation of the fibers. The volumetric ratio of fibers is mainly determined by the manufacturing method used. The higher the volumetric ratio, the closer will be the properties of composite and fiber. Orientations of the fibers are also important, since fibers have superior mechanical properties along their lengths. Composites have an increasing popularity in engineering materials, with their stiffness and strength combined with low weight and excellent corrosion resistance [1]. By studying the variable properties of composite materials, engineers use the advantage of anisotropy included within composite materials. By building a structure by properly selected resin, fiber, layer orientation and curing, optimization is successful in most cases
-
Modeling of composite tubes
Structural analysis is performed in order to investigate the behavior of layered orthotropic tubes with different materials in Table 1. Under pure and combine loading. The model is prepared with Shell 99 element with rigid region at other end with Mass 21 element in Ansys. As shown in Fig.1 this model is constraint with for all degrees of freedom at one end and load applied to the rigid region of the tube at other end as shown in Fig 2. The internal pressure is applied on the inner surface of the tube. Dimensions of the tube used in the study are given in Table 2.
Fig 1. Finite element model of composite tube
Carbon-Epoxy
7 EGlass-Epoxy
Aramid-Epoxy
6
5
4
3
2
1
0
0 10 20 30 40 50 60 70 80 90
Fig.2 Boundary conditioned for composite tube.
-
Materials used for analysis
Fig 3. Axial deformation vs winding angle
Carbon-Epoxy
80 EGlass-Epoxy
Table.1 Materials used for analysis
70
60
50
40
30
Mechanical Properties
of Fiber Glass Epoxy Resins
Carbon / Epoxy (MPa)
E-Glass / Epoxy (MPa)
Aramid / Epoxy (MPa)
Elastic Constants
Elasticity Exx
127700
45600
83000
Elasticity Eyy
7400
16200
7000
Elasticity Ezz
7400
16200
7000
Poisson ratio xy
0.330
0.27
0.41
Poisson ratio yz
0.188
0.27
0.4
Poisson ratio zx
0.188
0.27
0.4
Shear modulus – Gxx
6900
8500
2100
Shear modulus – Gyy
4300
5500
1860
Shear modulus – Gzz
4300
5500
1860
Strength Constants
Tensile stress Sxx
1717
1243
1377
Tensile stress Syy
30
40
18
Tensile stress Szz
30
40
18
Compressive stress xx
1200
525
235
Compressive stress yy
216
145
53
Compressive stress zz
216
145
53
Shear Stress Sxy
33
73
27
Shear Stress Syz
33
73
34
Shear Stress Szx
33
73
34
20
10
0
0.02
0.015
0.01
0.005
0
Aramid-Epoxy
0 10 20 30 40 50 60 70 80 90
Fig 4. Lateral deformation vs winding angle
Carbon-Epoxy EGlass-Epoxy Aramid-Epoxy
0 10 20 30 40 50 60 70 80 90
Fig 5. Angle of twist vs winding angle
Table.2 Dimensions for composite tube
1.5
1
Length of the tube (mm)
400 mm
Fixing length at end
Rigid
Average radius (mm)
25 mm
Tube thickness (mm)
1 mm
0.5
0
Carbon-Epoxy EGlass-Epoxy
Aramid-Epoxy
0 10 20 30 40 50 60 70 80 90
Fig 6. Radial deformation vs winding angle
-
Results and discussion
In this analysis, Carbon/Epoxy, EGlass/Epoxy
350 Carbon-Epoxy
330 EGlass-Epoxy
and Aramid/Epoxy tubes are subjected to loading action in pure and multi-axial loading with magnitudes axial, transverse as 1000 kN, torsional 1000 N.mm and internal pressure 10 bar and the analysis is repeated for varying degrees of winding angles from zero to 900. All deformation and stresses in corresponding directions are collected for pure and combined loading. Multi-axial deformations and stress levels are shown in Figures 3 – 10
310
290
270
250
230
210
190
170
150
Aramid-Epoxy
0 10 20 30 40 50 60 70 80 90
Fig 7. Normal stress vs winding angle
200
150
100
50
0
200
150
100
50
0
500
400
300
200
100
0
Carbon-Epoxy EGlass-Epoxy Aramid-Epoxy
0 10 20 30 40 50 60 70 80 90
Fig 8. Bending stress vs winding angle
Carbon-Epoxy
EGlass-Epoxy
Aramid-Epoxy
0 10 20 30 40 50 60 70 80 90
Fig 9. Shear stress vs winding angle
Carbon-Epoxy
EGlass-Epoxy
Aramid-Epoxy
0 10 20 30 40 50 60 70 80 90
Fig 10. Hoop stress vs winding angle
Table.4 Optimum angles for Bi-axial loadings
Loading Type
Parameter
Carbon
E
Glass
Aramid
Material Selected
Axial Transverse
Stiffness
900
900
900
Carbon
Stiffness
900
900
900
Stress
800
900
900
Stress
00
00
00
Axial Torsional
Stiffness
900
900
900
Carbon
Stiffness
900
900
900
Stress
900
900
900
Stress
00
00
00
Axial Internal Pressure
Stiffness
900
900
900
Carbon
stiffness
00
00
00
Stress
00
00
00
Stress
100
450
00
Transverse Torsional
Stiffness
900
900
900
Carbon
Stiffness
00
00
00
Stress
00
00
00
Stress
00
00
00
Transverse Internal Pressure
Stiffness
900
900
900
Carbon
Stiffness
00
00
00
Stress
00
00
00
Stress
00
00
00
Torsional Internal Pressure
Stiffness
00
800
500
E-Glass
Stiffness
00
00
00
Stress
100
00
100
Stress
100
600
100
Loading
Type
Parameters
Carbon
EGlass
Aramid
Material
Selected
Axial Transverse Torsional
Stiffness
900
900
900
Carbon
Stiffness
900
900
900
Stiffness
800
900
00
Stress
800
900
900
Stress
00
100
00
stress
00
00
00
Axial Transverse Internal Pressure
Stiffness
900
900
900
Carbon
Stiffness
900
900
900
stiffness
00
00
00
Stress
200
450
700
Stress
00
00
00
stress
00
00
00
Axial Torsional Internal Pressure
Stiffness
900
500 900
500 900
Carbon E.Glass
Stiffness
400
500
400
stiffness
900
00
00
Stress
00
00
00
stress
00
900
00
stress
100
450
100
Transverse Torsional Internal Pressure
Stiffness
900
900
900
Carbon E.Glass
Stiffness
400
00
00
stiffness
00
800
00
Stress
00
00
00
stress
00
00
00
stress
00
00
00
Table.5 Optimum angles for Tri-axial loadings
-
Conclusions
In order to investigate the effect of winding angle on pure and combined loading. Analyses are performed separately for pure and combined loadings. In the case of pure loading, the results of the analyses were in agreement with the ones given in the literature. Optimum winding angle and material selected is displayed in Table 3-6.
Table.3 Optimum angles for Uni-axial loadings
Loading
Type
Parameters
Carbon
EGlass
Aramid
Material
Selected
Stiffness
900
900
900
Axial
Stiffness
900
900
900
Stiffness
800
900
00
Transverse Torsional
Internal
Carbon E.Glass
Stiffness
00
00
00
Stress
20
45
70
Stress
00
00
00
Pressure
Stress
00
00
00
Stress
00
00
00
Table.6 Optimum angles for Multi-axial loadings
Loading
Type
Parameter
Carbon
EGlass
Aramid
Material
Selected
Axial
Stiffness
900
900
900
Carbon
Stress
900
900
900
Transverse
Stiffness
900
900
900
Carbon
Stress
00
00
00
Torsional
Stiffness
00 / 900
450
450
E-Glass
Stress
00
900
00
Internal Pressure
Stiffness
00
00
00
Carbon
Stress
00
00
00
-
Recommendations to tube/pipe manufacturer
Pipe (or) Tubes manufacturing industries can look into this work for that there is lots of effect on the winding angle and level of orthotropy on deformation and level of stresses. The Schematic View of a Filament Winding Machineis shown in Fig11. Select by analysis of this type optimum winding angle and material, based on cost economy in mass production for actual loading condition on the pipe (or) tubes requirements. This presented winding angles and level of orthotropy are suitable for all lengths and loading magnitudes for them to be optimum for single layer. Fiber orientation for 450 and -450 are shown on the pipe in Fig 12
Figure 11 Schematic View of a Filament Winding Machine
Figure 12 – Fiber orientation for 450 and -450
-
Scope of Further work
Above work is done only for single layer it can be extended for multi layer for better optimum winding angles and level of orthotropy.
-
References
-
P.D.Soden, R.Kitching, P. C. Tse, Y.Tsavalas. Influence Of Winding Angle On The Stregth And Deformation Of Filament-Wound Composite Tubes Subjected To Uniaxial And Biaxial Loads,
Composites Science and Technology 46 (1993) pp. 363-378
-
Levend Parnas, Nuran Katrc. Design Of Fiber-Reinforced Composite Pressure Vessels Under Various Loading Conditions,
Composite Structures, 58 (2002) pp. 83-95
-
M. Xia, H. Takayanagi, K. Kemmochi. Bending Behaviour Of Filament- Wound Fiber-Reinforced Sandwich Pipes, Composite Structures 56 (2002) pp.201-210
-
C. Cazeneuve, P. Joguet, J. C. Maile and C. Oytana, Predicting The Mechanical Behavior Of Kevlar/Epoxy And Carbon/Epoxy Filament Wound Tubes. Composites, Volume 23, Number 6, (November 1992) pp. 415-424
-
M. F. S. Al-Khalil, P. D. Soden, Theoretical Through Thickness Elastic Constants For Filament Wound Composite Tubes, Int. J.
Mech. Sci. Vol. 36, No. 1, (1994) pp. 49-62
-
Olli Saarela, Computer Programs for Mechanical Analysis And Design of Polymer Matrix Composites, Prog. Polym. Science Vol.19, pp. 171-201, 1994
-
D. W. Jensen and T. R. Pickenheim, Compressive Behavior of Undulations in Filament Wound Composites, AIAA-93-1516-CP,
American Institute of Aeronautics and Astronautics, pp. 1796-1806, 1993
-
L. Dong, J. Mistry, An Experimantal Study of the Failure of Composite Cylinders Subjected to Combined External Pressure and Axial Compression, Composite Structures, Vol. 40, No:1, pp. 81-94, 1998
-
B. Fiedler, M. Hojo, S. Ochiai, The Influence of thermal Residual Stresses on the Transverse Strength of CFRP using FEM,
Composites: Part A 33 (2002), pp. 1323-1326
-
M. Xia, H. Takayanagi, K. Kemmochi, Analysis of Multi Layered Filament Wound Composite Pipes Under Internal Pressure,
Composite Structures 53 (2001), pp. 483-491
-
Jinbo Bai, Philippe Seeleuthner, Philippe Bombard, Mechanical Behavior of For ±55° filament wound Glass Fibre, Epoxy Resin Tubes: I. Microstructural Analyses, Mechanical Behavior and Damage Mechanisms of Composite Tubes under Pure Tensile Loading, Pure Internal Pressure, And Combined Loading,
Composites Science and Technology 57 (1997), pp. 141-153
-
G. Hu, Jinbo Bai, Ekaterina Demianouchko, Philippe Bombard, Mechanical Behavior of Filament wound Glass Fibre, Epoxy Resin Tubes: III.Macromechanical Model of the Macroscopic Behavior of Tubular Structures with Damage and Failure Envelope Prediction,
Composites Science and Technology 58 (1998), pp. 19-29
-
J. M. Lifshitz, H. Dayan, Filament Wound Pressure Vessel with Thick Metal Liner, Composite Structures 32 (1995), pp. 313-323
-
L. Zhao, S. C. Mantell, D. Cohen, R. McPeak, Finite Element Modeling of the Filament Winding Process, Composite Structures 52 (2001), pp. 499-510
-
J. S. Park, C. S. Hong, C. G. Kim, C. U. Kim, Analysis of Filament Wound Composite Structures Considering the Change of Winding Angles Through the Thickness Direction, Composite Structures 55 (2002), pp. 63-71
-
J. Rousseau, D. Perreux, N. Verdiere, The Influence of Winding Patterns on The Damage Behaviour of Filament Wound Pipes,
Composites Science and Technology 59 (1999), pp. 1439-1449
-
A. Beakou, A. Mohamed, Influence of Variable Scattering on the Optimum Winding Angle of Cylindrical Laminated Composites,
Composite Structures 53(2001), pp. 287-293
-
A. A. Krikanov, Composite Pressure Vessels with Higher Stiffness, Composite Structures 48 (2000), pp. 119-127
-
S. Li, P. D. Soden, S. R. Reid, M. J. Hinton, Indentation of Laminated Filament Wound Composite Tubes, Composites Volume 24, Number 5 (1993), pp.407-421
-
J. Scholliers, H. V. Brussel, Computer Integrated Filament Winding: Computer Integrated Design, Robotic Filament Winding and Robotic Quality Control, Composites Manufacturing Vol 5 No 1 (1994), pp. 15-23
-
A. M. Marom, S. Shkolnik, S. Kirah, Y. Elizov, Hydrothermal Effects During The Manufacture of Filament Wound Kevlar / Epoxy Pressure Vessels, Composites Manufacturing Vol 2 No 2 (1991), pp. 15-23
-
G. A. Kardomates, Thermoelastic Stresses In a Filament Wound Orthotropic Composite Elliptic Cylinder due to a uniform Temperature Change, Int. J. Solids Structures Vol. 26 No. 5/6, pp. 527-537, 1990
-
K. L. Alderson, K. E. Evans, Failure Mechanisms During The Transverse Loading of Filament Wound Pipes Under Static and Low Velocity Impact Conditions, Composites Volume 23, Number 3 (1992), pp. 167-173
-
D. Cohen, S. C. Mantell, L. Zhao, The Effect of Fiber Volume Fraction on Filament Wound Composite Pressure Vessel Strength,
Composites: Part B 32 (2001), pp. 413-429
-
T. K. Hwang, C. S. Hong, C. G. Kim, Size Effect on The Fiber Strength of Comosite Pressure Vessels, Composite Structures 59 (2003), pp. 489-498
-
P. Mertiny, F. Ellyin, Influence of the Filament Winding Tension on Phtsical and Mechanical Properties of Reinforced Composites,
Composites: Part A 33(2002), pp. 1615-1622
-
S. Aleçakr, Structural Design and Experimental Analysis of Filament Wound Composite Tube Under Combined Loading, Master of Science Thesis, Middle East Technical University, Ankara, 1999
-
C. Kaynak, O. Mat, Uniaxial Fatigue Behavior of Filament Wound Glass- Fiber/Epoxy Composite Tubes, Composites Science and Technology 61 (2001) 1833-1840
-
ANSYS 6.0 Documentation, ANSYS INC.