
2FA (Factor Authentication) for Cloud Storage

System

Manoj K
VIII Semester,

Dept. of Computer Science and Engineering

Siddaganga Institute of Technology

Tumkur, India.

Jaishankar K V
VIII Semester,

Dept. of Computer Science and Engineering

Siddaganga Institute of Technology

Tumkur, India.

Venugopal S A
VIII Semester,

Dept. of Computer Science and Engineering

Siddaganga Institute of Technology

Tumkur, India.

Chandraprabha K S
Assistant Professor,

Dept. of Computer Science and Engineering

Siddaganga Institute of Technology

Tumkur, India.

Abstract— Storing data in a cloud is very much important to

assist user in many ways. To ensure the security to the stored

data is much more crucial. So, here we introduce a two-way

authentication for data protection with a revocability of the

device used for cloud storage system. Our system allows the

sender to send his information in cloud with dual encrypted

format. The sender has to aware of the receiver’s information

(such as his email). The receiver needs to possess two things in

order to decrypt the cipher text. The first thing is his/her secret

key is sent to his/her email-id. The second thing is a unique

personal security device (such as USB) which will be connected

to the computer. It is impossible to decrypt the cipher text

without either piece. More importantly, revocability factor for

the device is provided if the device is lost, it cannot be possible to

decrypt any cipher text. This can be done by the proxy server

which will immediately execute DES algorithms to change the

existing plain text to be un-decrypt-able form. This process is

not known to sender because of unaware of the secret key and

unique device. Furthermore, the cloud server cannot decrypt

any cipher text at any time. The security and efficiency analysis

shows that our system is not only secure but also practical.

 Keywords— Secret key, double encryption, unique security

device, revocability, unique security device id

I. INTRODUCTION

Cloud storage [5], [4], [6], [5], [1] is a model of

networked storage system where data is stored in pools of

storage which are generally hosted by third parties. There are

many advantages to use cloud storage. The most important is

data accessibility. Data stored in the cloud can be accessed at

any time from any place as long as there is network access.

Storage maintenance tasks, such as purchasing additional

storage capacity, can be offloaded to the responsibility of a

service provider. Another advantage of cloud storage is data

sharing between users.

In a normal asymmetric encryption, there is a single secret

key corresponding to a public key or an identity. The

decryption of cipher text only requires this key. The key is

usually stored inside the proxy trusted server, and may be

protected by a password. The security protection is sufficient

if the computer/server is isolated from an opening network.

Unfortunately, this is not what happens in the real life. When

being connected with the world through the Internet, the

computer/server may suffer from a potential risk that hackers

may invade into it, to compromise the secret key without

letting the key owner know. In the physical security aspect,

the computer storing a user decryption key may be used by

another user when the original computer user (i.e. the key

owner) is away. In an enterprise or college, the sharing usage

of computers is also common. For example, in a college, a

public computer in a copier room will be shared with all

students staying at the same floor. In these cases, the secret

key can be compromised by some attackers who can access

the victim’s personal data stored in the cloud system.

Therefore, there exists a need to enhance the security

protection. The purpose of using two factors is to enhance the

security protection for the access control. As cloud

computing becomes more mature and there will be more

applications and storage services provided by the cloud, it is

easy to foresee that the security for data protection in the

cloud should be further enhanced [6], [4], [2], [3]. They will

become more sensitive and important. Actually, we have

found that the mechanism of dual-factor encryption, which is

one of the encryption mechanism for data protection1, has

been spread into some real-world applications, for example,

full disk encryption with Ubuntu system, AT&T two factor

encryption for Smartphones2, electronic vaulting and druva -

cloud-based data encryption3. However, these system suffer

from a potential risk about mechanism device revocability

that may limit their practicability functionality. A flexible and

scalable two factor encryption mechanism is really desirable

in the era of cloud computing. That motivates our work.

Here we have some naive approaches for

enhancement of security protection and explain why they are

not the best candidate to achieve the goal of flexibility.

1) Double encryption: A security device (with an additional

public key or serial number) is still required. The encryption

process is executed twice. First encrypt the plaintext with the

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

NCETEIT - 2017 Conference Proceedings

Volume 5, Issue 20

Special Issue - 2017

1

public key or identity of the user. Then encrypt it again

corresponding to the serial number of the unique device. For

the decryption stage, the unique device first decrypts once.

The partially decrypted cipher text is then passed to the

computer which uses the user secret key to further decrypt it.
Without either part (user secret key or security device) one

cannot decrypt the cipher text. It seems that this naive

approach can achieve our goal. However, there exist many

practical issues that it cannot solve. For example,

 If the user has lost his security device, then his/her

corresponding cipher text in the cloud cannot be

decrypted forever! That is, the approach cannot

support security device update/ revocability.

 The sender has to be aware of serial number of the

security device, in additional to the user’s identity.

That makes the encryption process more

complicated. In the case of identity-based

encryption, the concept of “identity-based” has been

totally lost as the sender needs to know not only the

identity but another serial number! 2)divide the

secret key into two parts: Another naïve way to

think of is to just divide the secret key into two

parts.

2) Split the secret key into two parts: Another naïve way to

think of is to simply split the secret key into two parts. The

first part is stored in the computer while the second part is

embedded into a security device. Similar to the above

approach, without either part one cannot decrypt the cipher

text.

Again it seems that this approach can achieve our

goal. However, note that the security of a normal encryption

scheme cannot be guaranteed if part of the secret key has

been exposed. The security is only guaranteed if the secret

key has not exposed to the vulnerability. In other words, if we

just divide the secret key into two parts, the effect is with

either part may have non negligible chance to decrypt (or at

least to know some information about the plaintext).

II. RELATED WORKS

There exists another cryptographic primitive called
“leakage-resilient encryption” [1], [6], [3]. The security of the
scheme is still guaranteed if the leakage of the secret key is
up to certain bits such that the knowledge of these bits does
not help to recover the whole secret key. However, though
using leakage resilient primitive can safeguard the leakage of
certain bits, there exists another practical limitation. Suppose
we put part of the secret key into the security device.
Unfortunately the device is stolen. The user needs to obtain a
replacement device so that he can continue to decrypt his
corresponding secret key. The trivial way is to copy the same
bits (as in the stolen device) to the new device by the private
key generator (PKG). This approach can be easily achieved.
Nevertheless, there exists security risk. If the adversary (who
has stolen the security device) can also break into the
computer where the other part of secret key is stored, then it
can decrypt all cipher text corresponding to the victim user.
The most secure way is to cease the validity of the stolen
security device.

III. ASSUMPTIONS

In this paper, we consider the following threats:

1) Type-I: Decrypt without security device: The adversary

tries to decrypt the cipher text without the security device, or

using a revoked security device, or using another security

device belonging to others. It can have its own secret key.

2) Type-II: Decrypt without secret key: The adversary tries

to decrypt the cipher text without any secret key. It can have

its own security device. Note that the above threat model has

already captured the semi-trust behavior of the cloud server.

IV. PROBLEM FORMULATION

Construction Roadmap: We leverage two different

encryption technologies: one is IBE and the other is

traditional Public Key Encryption (PKE). We first allow a

user to generate a first level cipher text under a receiver’s

identity. The first-level cipher text will be further transformed

into a second level cipher text corresponding to a security

device. The resulting cipher text can be decrypted by a valid

receiver with secret key and security device. Here, one might

doubt that our construction is a trivial and straightforward

combination of two different encryptions. Unfortunately, this

is not true due to the fact that we need to further support

security device revocability. A trivial combination of IBE and

PKE cannot achieve our goal. To support revocability, we

perform re-encryption mechanism such that the entire secret

key for an old security device can be flashed for a new device

if the old device is revoked. Meanwhile, we need to generate

a special key for the above cipher text conversion. We also

guarantee that the cloud server cannot achieve any knowledge

of message by accessing the special key, the old cipher text

and the updated cipher text. We further use hash-signature

method to “sign” cipher text such that once a component of

cipher text is tempered by adversary, the cloud and cipher

text receiver can tell. From the above presentations, we can

see that our two factor protection system with security device

revocability cannot be obtained by trivially combining an IBE

with a PKE. We present the system description as shown in

the fig 1.

Fig. 1: Structure chart of two factor data security mechanism.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

NCETEIT - 2017 Conference Proceedings

Volume 5, Issue 20

Special Issue - 2017

2

The Design of the proposed method contains several

phases.

1) Setup Phase: the setup phase generates all public

parameters and master secret key used throughout the

execution of system. The public parameters are shared with

all parties participating into the system (including data

sender/receiver, cloud server and a PKG), while the master

secret key is given to the PKG.
2) Key and Device Issued Phase: A SDI (Security Device

ID) and a PKG will respectively generate a security device

and a secret key for a registered user IDi in secure channel

such that the user can combine the security device with the

secret key to recover message from its encrypted format.

3) First-Level Cipher text Generation Phase: a data sender

encrypts a data under the identity of a data receiver, and

further sends the encrypted data to the cloud server

4) Second-Level cipher text Phase: after receiving the first-

level cipher text of a data from the data sender, the cloud

server generates the second-level cipher-text. Knowing public

parameters, a first level encryption for the user, and the

information (IDi, tpki) stored in List, the cloud server

encrypts C1 = (c1, c2, c3, c4) to a second-level cipher text.

5) Device Updated Phase: Once a device of a user needs to

be updated due to some incidences (e.g. it is either lost or

stolen), the user first reports the issue to the SDI. The SDI

then issues a new device for the user.

6) Cipher text Updated Phase: The SDI notifies the cloud

server to update the cipher text of the user by sending a

special piece of information.

a) The SDI first sends a piece of information to the cloud

server so as to inform the cloud to execute the cipher text

updated process.

b) After receiving the information, the cloud server updates

the cipher text C2.

7) Data Recovery Phase. A data receiver uses a decryption

key and a device to recover the data.

IV. IMPLEMENTATION

The implementation work flows contains sender module and

receiver module.

Sender Module:

This module is responsible for Registration (Setup Phase),

Secret Key Generation, KDC Request and then File

Uploading to the Amazon Cloud Server.

• Registration :

– Functionality : Sender details are registered

– Input : EmailId, Phone Number, UserName, Password

– Output : Upon registering, successful message is displayed

and secret key is sent to the Receiver EmailId.

If the user is a new user, then secret key is also generated.

• KDC Device Request :

– Functionality : USB Security device is registered using key

distribution center.

– Input : USB Security device

– Output : Flashing of USB Security device

Using SHA Algorithm(Secured Hash Algorithm), Device

identity is generated.

• File Upload :

– Functionality : Sender uploads the file to the Amazon

Cloud Server by encrypting the file content by two time.

– Input : Filename

– Output : File uploaded to Amazon Cloud Server bucket.

Fig 2. Flow chart for user Registration with a Secret key

generation.

Receiver Module:
This module is responsible for File Download and File

Decryption.

• File Download :
– Functionality : File is downloaded from Amazon Cloud

Server to local machine and then decrypted by two time.

– Input : Filename

– Output : File is downloaded to local machine

Before decrypting the file, USB device is checked for the

authenticity and similarly secret key is also checked for

whether it is valid or not. Afterwards, File is decrypted two

times.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

NCETEIT - 2017 Conference Proceedings

Volume 5, Issue 20

Special Issue - 2017

3

Fig.3 Flow chart for KDC device request

Fig 4. Flow chart for File Upload

Fig 5. Flow chart for File Download.

V. CONCLUSION

High valuable sensitive data can be protected by using this

Two-factor authentication system. Company’s commercial

secret or Personal genome information etc can be protected

very well using this system. In this system, sender needs to

know only the identity of the receiver like EmailId, Phone

number etc. Using this identity, sender encrypts the data

twice and uploads the data to cloud server. The receiver then

uses USB security device issued by security device issuer and

secret key to decrypt the downloaded data. The project also

supported the revocability of the device. If the USB security

device is lost, then it can be replaced with the new USB

security device. The computation time taken to convert the

plaintext to ciphertext is also very less compared to other

system. Around 0.00548 seconds was taken to convert the

plaintext to ciphertext, using 64-bit length of secret key size.

REFERENCES

[1] D. Boneh and M. Franklin. Identity-based encryption from the weil

pairing. In CRYPTO ’01, volume 2139 of LNCS, pages 213– 229.

Springer, 2001.
[2] R. Canetti and S. Hohenberger. Chosen-ciphertext secure proxy re-

encryption. In P. Ning, S. D. C. di Vimercati, and P. F. Syverson,

editors, ACM Conference on Computer andCom-munications Security,
pages 185–194. ACM, 2007.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

NCETEIT - 2017 Conference Proceedings

Volume 5, Issue 20

Special Issue - 2017

4

[3] S. S. M. Chow, C. Boyd, and J. M. G. Nieto. Security-mediated

certificateless cryptogra-phy. In Public Key Cryptography, volume
3958 of Lecture Notes in Computer Science, pages 508–524. Springer,

2006.

[4] C.-K. Chu, S. S. M. Chow, W.-G. Tzeng, J. Zhou, and R. H. Deng.
Key-aggregate cryp-tosystem for scalable data sharing in cloud storage.

IEEE Trans. Parallel Distrib. Syst., 25(2):468–477, 2014.

[5] C. Gentry. Certificate-based encryption and the certificate revo- cation

problem. In EU-ROCRYPT, volume 2656 of Lecture Notes in
Computer Science, pages 272–293. Springer, 2003.

[6] J. K. Liu, M. H. Au, and W. Susilo. Self-generated-certificate public

key cryptography and certificateless signature/encryption scheme in the
standard model: extended abstract. In ASIACCS, pages 273–283.

ACM, 2007.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

NCETEIT - 2017 Conference Proceedings

Volume 5, Issue 20

Special Issue - 2017

5

