
The MERN Stack's Payment Security

Analysis

BHUPESH DHURANDHER
1DS21MC027@dsce.edu.in MCA Department

Dayananda Sagar College Of Engineering Shavige

malleswara hills, Bangalore,India

Prof. MAHENDRA KUMAR B
mahendra-mcavtu@dayanandasagar.edu MCA Department

Dayananda Sagar College Of Engineering Shavige

malleswara hills, Bangalore,India

Abstract: The MERN stack, which includes

MongoDB, Express.js, React, and Node.js, is the

subject of this study, which focuses on payment

security concerns. With the rising notoriety of

online installments, guaranteeing strong safety

efforts in web applications is of most extreme

significance. This paper focuses on MongoDB

for data storage, Express.js for the web

framework, React for the front end, and Node.js

for the server-side runtime environment to

examine the security features and best practices

of each component of the MERN stack. In order

to determine the advantages and disadvantages

of each component in terms of payment security,

a comparative analysis is carried out. In order

to highlight successful implementations and

lessons learned, real-world case studies are

presented. The discoveries of this exploration

give experiences into upgrading installment

security in MERN stack applications and give

suggestions for designers and associations.

Keywords: MERN stack, payment security, data

encryption, secure coding practices, PCI DSS,

vulnerabilities, secure authentication, role-based

access control (RBAC), XSS, CSRF.

1. Introduction:

 The approach of online installments has altered the

manner in which people and organizations manage

exchanges. However, it is still difficult to guarantee

the safety of sensitive payment information. Due to

its adaptability and scalability, the MERN stack,

which includes MongoDB, Express.js, React, and

Node.js, has emerged as a popular choice for

building web applications. By delving into the

security features and best practices of each

component, this study aims to provide a

comprehensive analysis of the MERN stack's

payment security features. In addition, a

comparative analysis of the security features

offered by MongoDB, Express.js, React, and

Node.js will be carried out as part of the study.

Insights and lessons learned from successful

implementations will be gleaned from real-world

case studies.

Data encryption, access controls, secure coding

practices, and adherence to industry standards like

PCI DSS (Payment Card Industry Data Security

Standard) are all important aspects of payment

security. Strong information encryption strategies

are fundamental for defending the privacy and

honesty of installment information during travel

and very still. In order to guarantee that only

authorized individuals have access to sensitive

payment information, access controls and

authentication mechanisms play an essential role.

Secure coding rehearses, for example, input

approval and assurance against normal weaknesses

like SQL infusion and cross-site prearranging, are

instrumental in forestalling assaults and

information breaks. Consistence with industry

principles guarantees that essential security

controls are set up to safeguard installment

information and keep up with administrative

consistence.

Certifiable contextual analyses give significant

experiences into the execution of installment

security in MERN stack applications. By breaking

down these contextual analyses, the review will

distinguish fruitful safety efforts, encryption

procedures, confirmation components, and

consistence rehearses. Additionally, it will provide

developers and organizations with useful examples

and best practices, highlighting notable successes

or security breaches.

The discoveries of this study will help designers

and associations in further developing installment

security in MERN stack applications by giving

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181Published by, www.ijert.orgVolume 11, Issue 06

NCRTCA - 2023

www.ijert.org

down to earth direction and suggestions.

Developers can improve the overall security of

their applications and safeguard sensitive payment

information from unauthorized access or breaches

by implementing the identified security features

and best practices.

2. Payment Security Considerations:

2.1 Installment Security Prerequisites

There are a few prerequisites that must be met in

order to guarantee payment security in the MERN

stack. Compliance with the PCI DSS (Payment

Card Industry Data Security Standard) and

confidentiality are among these. Confidentiality

ensures that sensitive payment information can

only be accessed by authorized parties or systems.

It includes carrying out measures to safeguard

installment information from unapproved

divulgence or access. Honesty guarantees that

installment information stays unaltered and precise

all through the exchange cycle, forestalling

unapproved alterations. A seamless payment

experience is made possible by availability, which

ensures that payment services are always accessible

to users without interruption. Consistence with

industry principles, especially PCI DSS, is

significant to executing the essential security

controls and protecting installment information.

Fig 1. PCI DSS

2.2 Common Vulnerabilities and Risks in

Payment Processing

Attackers can take advantage of a variety of

security holes and threats in payment processing to

gain unauthorized access to payment data or disrupt

the payment system. SQL injection, in which

malicious code is injected into SQL queries to

manipulate or expose sensitive data, is one

common vulnerability. Unauthorized access to

payment information may result from this. XSS

(Cross-site scripting) is a common vulnerability

that allows hackers to inject malicious scripts into

web pages that users view, potentially

compromising their accounts or stealing payment

information. Unreliable information transmission is

another gamble, as information sent over uncertain

channels can be caught and compromised.

2.3 Secure Information Stockpiling and

Transmission

Secure information stockpiling and transmission

are fundamental parts of installment security. When

it comes to safeguarding payment data, encryption

methods are of the utmost importance. Encryption

includes changing over delicate information into

mixed up ciphertext that must be decoded with the

proper key. It ensures that, regardless of who has

access to the data, they will be unable to decipher it

without the encryption key. Secure conventions,

like HTTPS (Hypertext Move Convention Secure),

guarantee secure information transmission over the

organization by scrambling information on the

way. In order to safeguard encryption keys and

prevent them from being compromised or made

available to unauthorized individuals, secure key

management practices are essential.

By executing solid encryption procedures and

secure conventions for information capacity and

transmission, associations can altogether upgrade

installment security in MERN stack applications. In

order to safeguard sensitive payment information

from unauthorized access, data breaches, and

fraudulent activities, these security measures must

be carefully considered and implemented. By

providing a framework for the implementation of

necessary security controls and best practices,

compliance with industry standards like PCI DSS

further enhances payment security.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181Published by, www.ijert.orgVolume 11, Issue 06

NCRTCA - 2023

www.ijert.org

3. MongoDB:

As the data storage component of the MERN stack,

MongoDB, a NoSQL database, plays a crucial role.

It is well-suited for handling payment-related

information due to its adaptability and scalability.

Within the MERN stack, MongoDB provides a

number of security features and best practices to

guarantee payment security.

Fig 2. RBAC (Role-Based Access Control)

Role-Based Access Control (RBAC) is one of

MongoDB's key security features. RBAC considers

fine-grained command over client consents,

limiting admittance to delicate installment

information. By characterizing jobs and allocating

authorizations likewise, MongoDB guarantees that

main approved people or frameworks can get to

installment data. RBAC limits the gamble of

unapproved access and information breaks.

Another important security measure provided by

MongoDB is encryption at rest. It includes

scrambling the information put away on circle,

guaranteeing that regardless of whether the actual

media is compromised, the information stays

muddled. Administrators can encrypt data at the

storage level thanks to the built-in encryption

features of MongoDB. Sensitive payment

information is shielded from prying eyes thanks to

this extra layer of security.

Notwithstanding encryption, MongoDB gives other

safety efforts, for example, access control records

and firewall rules to safeguard against unapproved

admittance to the MongoDB server. Administrators

can create a list of IP addresses or network ranges

that are allowed or denied access to the server

using access control lists. By defining which types

of network traffic are permitted and which are

blocked, firewall rules further enhance network

security. By carrying out these security

arrangements, MongoDB guarantees that main

approved elements can interface with the data set,

decreasing the gamble of unapproved information

access or control.

Developers should think about application-level

encryption or data encryption tools like the

MongoDB Encryption Engine when handling

payment data in MongoDB. Converting sensitive

data into unreadable ciphertext that can only be

decrypted with the appropriate encryption key is

the process of data encryption. By encrypting

payment data, the data remains secure and

inaccessible even if an attacker gains unauthorized

access to the database. Engineers ought to

painstakingly oversee encryption keys to guarantee

they are not compromised or available to

unapproved people.

Another aspect of MongoDB's security capabilities

is secure indexing. MongoDB safeguards sensitive

data from unauthorized access by employing secure

indexing techniques like hashing and encryption.

Secure ordering safeguards against assaults that

target list information or endeavor to take

advantage of weaknesses in ordering systems.

Information sterilization is a significant practice

while dealing with installment information in

MongoDB. To reduce the possibility of data

leakage, it entails removing sensitive or

unnecessary data from query response data.

Designers ought to carry out legitimate disinfection

strategies to guarantee that main the fundamental

and non-delicate data is remembered for the

question reactions, lessening the possible effect of

an information break.

4. Express.js:

In the MERN stack, Express.js is a popular web

application framework. It works on the

improvement of server-side parts and empowers

secure directing and middleware execution.

Secure verification and approval systems are

essential for guaranteeing installment security in

Express.js applications. To keep user passwords

safe, developers should use robust hashing

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181Published by, www.ijert.orgVolume 11, Issue 06

NCRTCA - 2023

www.ijert.org

algorithms like bcrypt. Session hijacking and

unauthorized access can be avoided with proper

session management strategies like using secure

cookies and setting session timeouts. An additional

layer of security is provided by RBAC (role-based

access control), which ensures that only authorized

users have access to payment-related features.

Express.js applications should address XSS (Cross-

site scripting) and CSRF (cross-site request

forgery) as common web application

vulnerabilities. Malicious code injection is

prevented by input validation procedures like

validating and sanitizing user input. XSS attacks

are prevented by output encoding, which encodes

user-generated content to stop scripts from running.

The application's overall security posture is

improved by implementing security headers like

HSTS (Strict Transport Security) and CSP (Content

Security Policy).

In Express.js applications, developers should also

pay attention to error handling and logging. The

risk of information leakage and the exposure of

sensitive data can both be minimized with proper

error handling. Security incidents and suspicious

activities can be identified and investigated with

the assistance of detailed logging.

Customary security appraisals, including weakness

examining and entrance testing, are fundamental

for keeping up with the security of Express.js

applications. These evaluations help recognize and

remediate likely weaknesses or shortcomings in the

application, guaranteeing that it stays tough against

assaults.

5. Node.js:

As the MERN stack's runtime environment,

Node.js is essential for managing server-side

operations and client-server communication. It is

essential to consider the security parts of Node.js

while assessing the installment security of the

MERN stack.

Node.js gives a scope of safety highlights and best

practices to guarantee installment security. One of

the key perspectives is secure code advancement.

Common flaws like cross-site scripting (XSS) and

code injection can be avoided by adhering to safe

coding practices like input validation and output

encoding. Security issues can be identified and

mitigated with the help of appropriate error

handling and logging mechanisms.

The management of dependencies is yet another

crucial aspect of Node.js security. In Node.js

applications, the Node Package Manager (npm) is

frequently used to install and manage external

packages. However, using vulnerable or out-of-date

software can pose security risks. It is fundamental

to routinely refresh conditions and screen for any

realized weaknesses by utilizing security checking

instruments or administrations.

Access control and confirmation systems are

pivotal in guaranteeing installment security in

Node.js applications. Carrying out powerful

validation techniques, for example, multifaceted

confirmation and secure meeting the executives,

checks the character of clients and forestalls

unapproved access. Furthermore, executing rate

restricting and demand approval can safeguard

against animal power assaults and different sorts of

vindictive exercises.

Information approval and disinfection are

significant contemplations while handling

installment data in Node.js. Approving and

disinfecting client input forestalls infusion assaults

and guarantees that main substantial and expected

information is handled. Data manipulation and

breaches can be reduced by handling and validating

data from external sources, like APIs or user input.

6. React:

The MERN stack's frontend library, React, is in

charge of creating interactive user interfaces. Even

though server-side security is not handled by React,

there are important considerations for ensuring

payment security within React applications.

Secure data transmission between the client and the

server is an essential aspect. Secure protocols, like

HTTPS, should be used by React applications to

encrypt data while it is in transit and prevent

unauthorized interceptions or tampering. Executing

secure correspondence conventions shields touchy

installment data from being uncovered or caught

during transmission.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181Published by, www.ijert.orgVolume 11, Issue 06

NCRTCA - 2023

www.ijert.org

Secure verification and approval components are

likewise fundamental in Respond applications. To

ensure that only authorized users can access

payment-related functionalities, strong user

authentication methods, such as token-based

authentication or OAuth, must be implemented.

Fine-grained access permissions can be enforced

using RBAC (Role-Based Access Control) to limit

authorized users to specific actions or data.

Fig 2. Token-based authentication

Respond applications ought to likewise address

normal web application weaknesses, for example,

cross-webpage prearranging (XSS) and cross-

webpage demand fabrication (CSRF). Legitimate

information approval, yield encoding, and carrying

out security headers, like Substance Security

Strategy (CSP), can assist with forestalling these

weaknesses and safeguard against assaults.

Ordinary updates and fixes are significant for

keeping up with the security of Respond

applications. Any known security flaws will be

fixed quickly if the React library and its

dependencies are kept up to date. Additionally, it is

crucial to keep an eye on the React community's

security advisories and patches and to promptly

apply them to the application.

7. Prevention of Vulnerabilities

Prevention of Vulnerabilities is urgent for

guaranteeing installment security in MERN stack

applications. Developers can reduce the likelihood

of potential flaws by utilizing robust security

measures and adhering to safe coding practices.

The accompanying practices can assist with

forestalling weaknesses:

7.1 Secure Coding Practices:

Secure coding rehearses assume a fundamental part

in forestalling weaknesses. Designers ought to keep

industry-perceived coding guidelines and rules, for

example, the OWASP Secure Coding Practices, to

compose secure and hearty code. A few key

practices include:

Input Approval: Approve and clean all client

contribution to forestall normal security defects like

SQL infusion and cross-site prearranging (XSS)

assaults. Input approval guarantees that main

legitimate and expected information is

acknowledged, decreasing the gamble of

malevolent information.

Yield Encoding: Encode client created content

prior to showing it to forestall XSS assaults. By

appropriately encoding client yield, designers can

guarantee that any possibly noxious scripts or

content are delivered innocuous.

Keeping away from Uncertain Direct Article

References: Execute access controls and approval

checks to forestall direct article references.

Guarantee that clients can get to assets they are

approved to get to, and try not to uncover delicate

data through unreliable direct references.

Secure Mistake Taking care of: Carry out

legitimate mistake dealing with components to try

not to uncover delicate data in blunder messages.

Error messages ought to be general and instructive

without disclosing private information.

7.2 Standard Updates and Fix the executives:

Keeping all parts of the MERN stack modern is

pivotal for forestalling weaknesses. This

incorporates the MongoDB data set, Express.js

system, Respond library, and Node.js runtime

climate. Applying security updates and patches on

a regular basis ensures that the most recent security

features are in place and helps to fix any known

vulnerabilities.

7.3 Control of Dependency on Others:

Cautious administration of outsider conditions is

fundamental to forestall weaknesses. The

application's versions of external libraries and

packages should be regularly updated and

monitored by developers. Weaknesses can be

presented through obsolete or shaky conditions, so

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181Published by, www.ijert.orgVolume 11, Issue 06

NCRTCA - 2023

www.ijert.org

it is vital to stay up with the latest and apply

security fixes expeditiously.

7.4 Testing for Security:

Ordinary security testing, including weakness

examining and entrance testing, is essential for

recognizing and tending to expected weaknesses in

MERN stack applications. Weakness filtering

devices can assist with recognizing known

weaknesses and shortcomings in the application,

while entrance testing reproduces genuine assaults

to distinguish any exploitable weaknesses.

7.5 Security Training and Mindfulness:

Designers ought to get appropriate security

schooling and preparing to remain refreshed on the

most recent security best practices and methods. By

cultivating a security-mindful culture inside

improvement groups, designers can proactively

recognize and address expected weaknesses all

through the improvement interaction.

8. User Education on Technical Security

Measures in Payment Systems

The ability of users to understand technical details

is critical for ensuring payment security in MERN

stack applications. While developers play an

important role in implementing robust security

measures, users must also be aware of the technical

aspects that affect payment security. The following

are some important technical details that users

should be aware of:

8.1. Secure Communication:

When making online payments, users should

understand the importance of secure

communication. They should look for the "https"

prefix in the URL, which indicates that the

connection is encrypted with SSL/TLS protocols.

Furthermore, users should exercise caution when

transmitting sensitive payment information over

unsecured Wi-Fi networks, as they may be

vulnerable to eavesdropping.

8.2 Strong Authentication:

When accessing payment accounts, users should be

aware of the importance of using strong

authentication mechanisms. Setting up strong and

unique passwords, enabling multi-factor

authentication (MFA) whenever possible, and

avoiding the use of easily guessable personal

information as authentication factors are all part of

this.

8.3 Recognising Phishing Attempts:

Users should understand phishing attacks and how

to spot them. Attackers frequently use phishing to

trick users into disclosing sensitive payment

information. Clicking on suspicious links or

providing personal information on unfamiliar

websites or in response to unsolicited emails should

be avoided.

8.4 Updating Software:

Users must understand the significance of keeping

their devices and software up to date. Updating the

operating system, web browser, and other

applications on a regular basis helps to ensure that

security patches and fixes are applied quickly,

lowering the risk of known vulnerabilities being

exploited.

8.5. Payment Processors Verification:

Users should be aware of the payment processors

or gateways that the MERN stack application uses.

To ensure that payment transactions are processed

securely, it is critical to verify the legitimacy and

security of these payment processors. Recognised

and trusted payment processors add an extra layer

of security to the payment process.

8.6. Secure Payment Information Storage:

Users should exercise caution when storing

payment information on devices or within

applications. It is best to avoid storing payment

information, such as credit card numbers, unless

absolutely necessary. If payment information must

be stored, users should make certain that it is

encrypted and protected by strict access controls.

8.7. Regular Payment Activity Monitoring:

Users should monitor their payment activities on a

regular basis for any unauthorised transactions or

suspicious behaviour. Checking payment

statements and transaction histories can assist in

detecting and reporting any fraudulent activity as

soon as possible.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181Published by, www.ijert.orgVolume 11, Issue 06

NCRTCA - 2023

www.ijert.org

8.8. Reporting Security Incidents:

Users should be aware of the proper channels for

reporting security incidents or suspicious payment

security activities. This may include reporting any

security concerns to the application's support team,

the payment processor, or the appropriate financial

institution.

9. Examples and Case Studies:

The execution of the MERN stack in genuine

applications with installment handling usefulness

shows the commonsense use of installment safety

efforts. Allow us to look at certain instances of

such applications and assess their security

highlights.

One model is an internet business stage worked

with the MERN stack. This application handles

online installments for buying items and

administrations. The application utilizes encryption

to protect installment information during

transmission and capacity. Secure Attachment

Layer (SSL) or Transport Layer Security (TLS)

conventions are regularly used to lay out secure

associations between the client and the server,

guaranteeing that installment information stays

classified.

Secure check is vital to forestall unapproved

admittance to installment highlights. For this

situation, the application uses token-based

verification, where clients are given a remarkable

token upon fruitful login. This token is then used to

verify resulting demands and guarantee that main

approved clients can get to installment related

functionalities. Furthermore, multifaceted

confirmation can be carried out to add an additional

layer of safety, expecting clients to give extra

check factors, like a one-time secret phrase or

biometric information.

Input approval is a basic part of installment

security. The application consolidates strong

information approval methods to forestall normal

security defects, for example, SQL infusion or

cross-site prearranging (XSS) assaults. Client input

is completely approved and cleaned prior to being

handled, guaranteeing that main substantial and

safe information is acknowledged.

Consistence with industry rules and guidelines is

central in installment handling applications. This

MERN stack application sticks to the Installment

Card Industry Information Security Standard (PCI

DSS), which sets prerequisites for protecting

installment information. It guarantees that delicate

installment data is scrambled, access controls are

executed, and normal security reviews are led to

keep up with consistence.

As far as victories and security breaks, this

application has had a prominent progress in

forestalling information breaks and guaranteeing

the classification and trustworthiness of installment

data. Through normal security appraisals and

reviews, potential weaknesses are distinguished and

expeditiously tended to, relieving the gamble of

safety breaks. Illustrations gained from this

contextual analysis incorporate the significance of

executing solid encryption, strong confirmation

systems, and exhaustive information approval to

guarantee installment security in MERN stack

applications.

10. Problems and Directions for the

Future:

Even though the MERN stack has made

improvements to payment security, there are still

issues and restrictions that need to be fixed. The

ever-evolving threat landscape, in which hackers

constantly come up with new ways to take

advantage of vulnerabilities, is one obstacle. To

adequately defend against these threats, developers

must keep up to date on security technologies and

exercises.

Another obstacle arises from intricate application

architectures. End-to-end security across all

components of MERN stack applications becomes

more difficult to achieve. To identify and address

potential vulnerabilities, comprehensive security

testing and code reviews are required.

Security must be upheld throughout the entire

development lifecycle. From the initial design stage

through deployment and maintenance, security

considerations should be taken into account. A

security-first mindset can be ingrained throughout

the development process by implementing secure

coding practices, conducting regular security

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181Published by, www.ijert.orgVolume 11, Issue 06

NCRTCA - 2023

www.ijert.org

assessments, and providing developers with

security training.

The MERN stack's payment security can benefit

from promising new technologies. Data exposure is

reduced through tokenization, which substitutes

unique tokens for sensitive payment data. Secure

user authentication can be provided by biometrics

like facial recognition or fingerprint recognition.

Real-time pattern analysis and anomalous activity

detection is possible with fraud detection systems

based on machine learning.

These technologies and how they fit into the

MERN stack should be the primary focus of future

research. Moreover, joint effort with industry

associations and administrative bodies is

fundamental to adjust security practices to

advancing industry rules and guidelines.

11. Conclusion:

 In conclusion, through conducting this survey

research paper, I have acquired significant

experiences into the installment security worries in

MERN stack applications and investigated the

security highlights and best acts of MongoDB,

Express.js, Respond, and Node.js. The discoveries

of this study feature the requirement for extra

measures to guarantee installment security inside

the MERN stack.

The significance of data encryption was one

important finding from the study. It is now

abundantly clear that securing user data from

unauthorized access necessitates encrypting

sensitive payment information like credit card

numbers. By carrying out encryption calculations

and safely overseeing encryption keys, I can

upgrade the security of the installment data put

away in data sets.

Besides, secure coding rehearses assume a basic

part in MERN stack improvement. I have

discovered that common vulnerabilities like SQL

injection and cross-site scripting attacks can be

effectively mitigated by adhering to secure coding

guidelines like input validation, parameterized

queries, and proper error handling. I am able to

anticipate and address potential security flaws by

incorporating these practices into my coding

process and by regularly conducting code reviews

and security audits.

The significance of adhering to the Payment Card

Industry Data Security Standard (PCI DSS) is

another significant aspect that this study

emphasizes. By sticking to PCI DSS necessities, I

can guarantee the execution of powerful security

controls, including network division, secure

verification components, and normal security

testing. Incorporating these guidelines into my

improvement cycle will establish a solid climate for

dealing with online installments.

Furthermore, secure confirmation instruments are

significant for installment security. Carrying out

multifaceted validation and using solid secret

phrase hashing calculations can altogether lessen

the gamble of unapproved admittance to client

accounts. By observing and dissecting access logs

consistently, I can quickly recognize any dubious

exercises and potential security breaks.

Certifiable contextual analyses have additionally

given significant bits of knowledge into effective

executions of installment safety efforts in MERN

stack applications. These models have shown the

viability of embracing security systems, utilizing

outsider installment doors, and staying up with the

latest. I am able to implement robust payment

security measures in my own applications by

drawing inspiration from these experiences.

A comprehensive strategy is required to guarantee

payment security in MERN stack applications. I

can create payment systems that are trustworthy

and secure by giving data encryption top priority,

following safe coding practices, adhering to

industry standards like PCI DSS, and putting robust

authentication mechanisms in place. It is

fundamental for me to remain refreshed on the

most recent security dangers and effectively take

part in continuous examination, training, and

coordinated effort inside the advancement local

area to shield the honesty and security of

installment frameworks in MERN stack

applications.

12. References:

1. Morse, Edward & Raval, Vasant. (2008).

PCI DSS: Payment card industry data security

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181Published by, www.ijert.orgVolume 11, Issue 06

NCRTCA - 2023

www.ijert.org

standards in context. Computer Law & Security

Review. 24. 540-554. 10.1016/j.clsr.2008.07.001.

2. Ferraiolo, David & Kuhn, D.. (2009).

Role-Based Access Controls.

3. Kubovy, Jan & Huber, Christian & Jäger,

Markus & Küng, Josef. (2016). A Secure Token-

Based Communication for Authentication and

Authorization Servers. 237-250. 10.1007/978-3-

319-48057-2_17.

4. Jaiswal, Arunima & Raj, Gaurav & Singh,

Dheerendra. (2014). Security Testing of Web

Applications: Issues and Challenges. International

Journal of Computer Applications. 88.

10.5120/15334-3667.

5. Mahindrakar, Pooja & Pujeri, Uma.

(2020). Security Implications for Json web Token

Used in MERN Stack for Developing E Commerce

Web Application. International Journal of

Engineering and Advanced Technology. 10. 39-45.

10.35940/ijeat.A1663.1010120.

6. Santosh, Kumar & Shukla, & Dubey,

Shivam & Rastogi, Tarun & Srivastava, Nikita &

Ijmtst, Editor. (2022). Application using MERN

Stack. International Journal for Modern Trends in

Science and Technology. 8. 102-105.

10.46501/IJMTST0806014.

7. Yang, Qifeng, Zhengwei Cheng, and

Ping Song. "Research on online payment mode

based on internet banking payment gateway."

2007 International Conference on Convergence

Information Technology (ICCIT 2007). IEEE,

2007.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181Published by, www.ijert.orgVolume 11, Issue 06

NCRTCA - 2023

www.ijert.org

