
 A Brief Introduction to Memcached with its

Limitation

1.
Hely Shah,

2.
Mohammed Husain Bohara

1,2.
 Department of Computer Science

and Engineering, Parul Institute of Engineering and Technology, Limda,Vadodara, Gujarat, India.

Abstract— Scalability is one of the major issues to be

addressed for Software as a Service. It can be achieved by using

proper object caching mechanism. Memcached is one of the

available distributed cache which is used for internet

applications. memcached uses scale out approach, that is adding

more servers to system for dealing with increasing load. This

paper explains basics of memcached. It covers its architecture,

data structures, operations and process flow. Some limitations

are also addressed in this paper so that it can be studied and used

to develop more scalable architectures of memcached which can

give better performance.

I. INTRODUCTION

 Memcached[6] was designed by Danga interactives to reduce

the number of database hits by caching the most commonly

used objects. Originally developed at Danga Interactive for

LiveJournal, the Memcached system is designed to reduce

database load and speed page construction by providing a

scalable key/value caching layer available to all

webservers[4]. For increasing scalability memcached is used

by many websites with heavy traffic like facebook, youtube,

twitter, raddit etc. In next section memcached architecture is

described with its basic usage. The data structures used in

memcached are described in detail. How these data structures

are proper for memcached is also described. In Basic

Operations section get, set and delete are described and some

other operations are also listed in the same. In the next section

process flow of memcached is explained with example. While

memcached already offers excellent performance, memcached

architecture can be studied on some of its limitations and can

give better results than of now. These limitations are related to

data structures and some characteristics of memcached. These

limitations are caused due to which characteristics of

memcached is also discussed in the same section with logical

reasons.

II. MEMCACHED ARCHITECTURE

Memcached is designed to scale from a single server to many

servers using horizontal scaling approach also known as scale.

It uses ‘c’ programming language. It has mainly two

components. Memcached client and memcached server.

A. Memcached Server Instance

In distributed caching, Memcached server is a standalone

process that basically handles three tasks [1].

 It manages memory allocation and restoration

 It keeps track of objects stored in memory

 It serves client requests regarding object retrieval and

storage

B. Memcached Client Instance

Memcached client are intended for providing a common way

of accessing the memcached server. Their main objective is to

serialize objects, which will be stored in the cache. As the

caching system is meant to be distributed, a client can connect

to multiple servers by specifying their IP addresses and ports.

Multiple clients accessing the same objects must have the

same list of servers because the location of an object is

determined by hashing the list of servers together with the

object’s key.[1] Simple and lightweight client libraries have

been implemented in different programming languages like C,

Java, Python, Perl etc. There are number of client and server

instances are possible at one time for large data set.

III. DATA STRUCTURES

Memcached has four main data structures.

A. Hash table

The hash table data structure is an array of buckets as show in

figure 1. Each bucket is a single linked list which stores data

item. To determine the hash value quickly bitwise end is

executed between hash_value and hash_mask. Hash mask is

2^k-1, where k is size of the array. Hash function is used to

accelerate table lookup or data comparison tasks such as

finding items in a database.

1941

International Journal of Engineering Research & Technology (IJERT)

Vol. 3 Issue 2, February - 2014

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS21081

Fig.1 Hash table in memcached [2]

B. Least recently used (LRU) list

 Memcached has a structure that is known as an LRU(Least

Recently Used) cache, so that stored data that is the oldest and

least accessed will be replaced with newer items when

memcached’s memory capacity is reached[3]. LRU list is

stored in form of doubly linked list. When an item is requested

from the memcached it is removed from its LRU list and

putting it on the head of LRU list. Thus by above procedure

the least recently used item will come to tail of LRU.

Fig 2: LRU list for cache item eviction [2]

So when there is a need to remove some item from

memcached the item at tail is removed as least recently used.

Figure 2 explains cache item eviction using LRU in

memcached.

C. Cache item data structure

The cache item data structure holds the key-value pair data[2].

Information like The key, value, length of the value, pointers

used in hash table and LRU, counter that determines how

many threads are accessing cache item etc are stored in this

data structure.

D. Slab allocator

Instead of conventional memory allocation like malloc and

free, memcached uses slab allocator for memory management.

Memory management in memcached is described in [5]. As

shown in figure 3, let us imagine 2048 bytes of memory

available for the distributed cache. We can divide this memory

in 4 slab classes of 512 bytes each. The first slab class is

intended for slabs with 64 bytes, second for 128 bytes and so

on. The object will be stored into the first slab where it fits in

and will occupy the whole slab. In this case an object of 50

bytes will actually use up 64 bytes, as 14 bytes will remain

unused. As soon as the object is deleted, its slab is added to

the freelist. Space is wasted in this concept but it saves time

and avoid thrashing.

Fig 3. Slab allocator in memcached [1]

IV. BASIC OPERATIONS

There many operations in memcached to deal with data.

Memcached provides a simple set of operations (set, get, and

delete) that makes it attractive as an elemental component in a

large-scale distributed system [5].

Set : Value which is to be stored on cache is passed with an

key with help of this function. Memcached client node wants

to set the key "test_key" with the value "test_value".

Memcached client node takes the list of available memcached

server nodes and performs hash operation on them in order to

find the memcached server node to store particular value for

particular data.Proper Memcached server node is selected.

Memcached client node directly connects to memcached

server node and sets key "test_key" with the value

"test_value".

Get : Memcached client node wants to get key "test_key".

Memcached client node is able to use the same hashing

process to determine that key "test_key" is on which server.

Memcached client node directly requests key "test_key" from

memcached server node and gets back "test_value".

Delete : Memcached client node wants to delet key "test_key".

Memcached client node is able to use the same hashing

process to determine that key "test_key" is on which server.

Memcached client node directly requests key "test_key" from

memcached server node and deletes vallue "test_value".

Replace, increment, decrement are some other important

operations of memcached used for different purposes.

1942

International Journal of Engineering Research & Technology (IJERT)

Vol. 3 Issue 2, February - 2014

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS21081

V. PROCESS FLOW

Memcached servers seat between web browser and database

as shown in figure below.

Fig 4. Memcached as layer between client and database [8]

Client checks on memcached for the value. If the value is

available then it is sent back to client. If the vale is not

available on memcached then it is fetched from database,

stored on memcached and then returned to client. Thus

memcached speeds up the read write operation for client.

Request arrives and is processed by libevent client library.

VI. LIMITATIONS IN MEMCACHED

Memcached has provided very efficient solution for scalability

issue, but still there are some of its characteristics which can

be reviewed so that more efficient caching solution can be

developed.

A. Non-persistent Cache

Sudden failure or offline maintenance will cause the data loss

from memcached server node.This causes unpredictable

degradation of application performance because of loss of

data. Since the new memcached server node is empty at the

start, all data requests need to be serviced by the database

servers in the RDBMS layers until that cache node warms

up[7]. On failure of memcached server node storing all the

data once again on it could be costly and results in

performance degradation.

B. Limitations Due To Scale Out Approach

When more storage capacity is required for the cache scale out

approach is used instead of scale up that is adding more

number of servers then adding more memory to available

servers. While using this scale out approach in memcached

tier can cause unpredictable application performance

degradation due to increasing pressure on the RDBMS layer.

If a new node is added to an existing N node memcached tier,

around 1/(N+1) th of the keys need to be remapped to different

nodes[7]. Additionally, clients need to be updated with this

remapping of keys to avoid loss of data or incorrect data

delivery, else the application may query another memcached

node that does not have the data or has a old version of it. This

may force the application to send the query to the RDBMS

layer, or return incorrect data to the user.

C. Lack Of Unified View And Monitoring Problems

 Memcached nodes are independent and unaware of the

presence or state of other memcached nodes. Due to this non-

grouping approach it is tough to manage some operations,

provide some monitoring solution for all the nodes. Also no

unified view of all the nodes is not available as the nodes are

not behaving as a cluster.

D. Old Data Access [7]

There is no provision of up-to-date key-server remapping info.

Due to this limitation clients might read or write a key from a

wrong memcached server and that will lead to inconsistent

data. For example, if there is any network disruption, and one

or more clients decide that a particular memcached server is

not available anymore, they will automatically rehash some

data into the rest of the nodes even if the original one is still

available [7]. When the node containing original value

eventually returns to service after the network outage is

resolved, the data on that node will be stale and the clients

without updated key-server remapping info will read stale

data.

VII. CONCLUSION

Memcached is an open-source caching technology that is used

by top most trafficked websites like facebook, twitter,

Livejournal in the world as well as several other high demand

online applications. It is primarily used as a performance

enhancing mechanism to the database layer and over last ten

years it has been widely adopted owing to its two main

properties: low latency and ease of programming

methodology. However, there are several data storage and

operational challenges that still affect memcached users. In

this paper all those limitations of memcached are described

with an explanation that why they are part of memcached.

Future work includes various ways to be found to deal with

these problems.

REFERENCES

[1] Petrovic, Jure. "Using Memcached for Data Distribution in Industrial

Environment." ICONS. 2008.

[2] Wiggins, Alex, and Jimmy Langston. "Enhancing the scalability of
memcached." Intel Software Network (2012).

[3] Galbraith, Patrick. “Developing Web Applications With Apache, Mysql,
Memcached, and Perl”. John Wiley & Sons, 2009.

[4] Talaga, Paul G., and Steve J. Chapin. "Exploring non-typical memcache

architectures for decreased latency and distributed network usage."
(2011).

[5] Nishtala, Rajesh, et al. "Scaling memcache at facebook." Proceedings of

the 10th USENIX conference on Networked Systems Design and
Implementation. USENIX Association, 2013.

[6] Fitzpatrick, Brad. "Memcached." Computer Program, available via

http://www. memcached. org (2010).
[7] Brown, Martin C. “ Developing with Couchbase Server”. O'Reilly

Media, Inc., 2013.

[8] Bakar, Khairina Abu, Mohd Hafiz Md Shaharill, and Mohiuddin
Ahmed. "Performance evaluation of a clustered memcache." Information

and Communication Technology for the Muslim World (ICT4M), 2010

International Conference on. IEEE, 2010.

1943

International Journal of Engineering Research & Technology (IJERT)

Vol. 3 Issue 2, February - 2014

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS21081

