
A Brief Overview On Frequent Pattern Mining Algorithms

Dr. N.V.E. S Murthy

Professor, CSE Department,

 Andhra university, A.P, India,

P. Pushpa Latha

Asst.professor, CSE Department,

GMR Institute of Technology, A.P, India,

Abstract

Frequent pattern mining is one of the most

researched areas of data mining and has recently

received much attention from the database

community. They are proved to be quite useful in the

marketing and retail communities as well as other

more diverse fields. This survey study aims at giving

an overview of the previous researches done in the

field of frequent pattern mining algorithms and other

related issues available in the literature.

Index Terms: Frequent pattern minincg, parallel

mining, constraint mining, vertical format pattern

mining

1. Introduction:

Frequent pattern mining has been formulated in 1993

as the computational essential step in the process of

association rule mining and has been a focused theme

in data mining research. Copious literature has been

devoted to this study and incredible progress has

been made to numerous research frontiers, such as

sequential pattern mining, structured pattern mining,

correlation mining, associative classification and

frequent pattern-based clustering, as well as their

broad applications.

Frequent patterns are pattern set of items,

subsequences, subgraphs, etc. that occurs frequently

in a data set with frequency no less than a user-

specified threshold. For example, a set of items, such

as milk and bread, which appear frequently together

in a transaction data set is a frequent itemset. A

subsequence, such as buying first a Computer, then a

printer, if it occurs frequently in a database, is a

(frequent) sequential pattern. A substructure can refer

to different structural forms, such as subgraphs,

subtrees, or sublattices, which may be combined with

itemsets or subsequences. If a substructure occurs

frequently in a graph database, it is called a

(frequent) structural pattern. Therefore, frequent

pattern mining helps in finding inherent regularities

(associations) in data. Moreover, it helps in data

indexing, classification, clustering and other data

mining tasks as well. Thus, frequent pattern mining

plays an essential role in mining associations and has

become an important data mining task.

One important task of frequent pattern mining is

association rule mining which was first proposed

by Agrawal et al. in 1993 for market basket analysis

in the form of association rule mining. It analyses

customer buying behavior by finding associations

between the different items that customers place in

their shopping baskets. Many people have proposed

several enhanced algorithms for generating frequent

itemsets and all these algorithms differ in some or

other ways such as traversing the itemset, satisfying

the properties of itemset support and confidence,

number of times to scan the entire database and how

they reduce the size of the processed database in each

pass and so on….Based on the above issues,

following sections present an overview of the current

status of frequent pattern mining algorithms and

some challenging research issues.

2. Basic Algorithms:

In this section we provide some basic frequent

pattern mining algorithms. Most algorithms used can

be classified as either sequential or parallel. In most

cases, it is assumed that the itemsets are identified

and stored in lexicographic order (based on item

name) which provides a logical manner in which

itemsets can be generated and counted. This is the

normal approach with sequential algorithms. On the

other hand, parallel algorithms focus on how to

parallelize the task of finding large itemsets. In the

following subsections we describe important features

of previously proposed algorithms.

Fig.1 classification of frequent pattern mining

algorithms

1671

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 4, April - 2013
ISSN: 2278-0181

www.ijert.org

IJ
E
R
T

IJ
E
R
T

2.1. Sequential Pattern Mining Algorithms

There are different algorithms used to mine frequent

itemsets. All these algorithms vary mainly in terms of

properties of itemset support and confidence, number

of times to scan the entire database and how they

reduce the size of the processed database in each pass

2.1.1 AIS:

The real buzz in 1990’s was about how to emulate

the biological immune system. The capacity of the

immune system to proliferate cells that produce

antibodies whenever it detects a high degree of

matching with an antigen is. A series of algorithms

were invented and new systems called artificial

immune systems were designed. [20] AIS was the

first algorithm that introduced by agrawal et al. in the

year 1993, it was proposed to address the problem of

association rule mining. This is a multi-pass

algorithm in which candidate itemsets are generated

while scanning the database by extending known-

frequent itemsets with items from each transaction.

The two major drawback of the AIS algorithm is that

it generates too many candidates that later turn out to

be infrequent and the data structures required for

maintaining frequent and candidate itemsets were not

specified.

2.1.2 SETM:

[17] The desire to use SQL to generate frequent

itemsets results in the introduction of another new

algorithm known as SETM. This algorithm was

actually created by Houtsma and Swami in October

1993 and included in a research report while they

were working in the IBM Almaden Research Center

but for some reason it was officially released only in

1995. The algorithm also generates candidates on the

fly based on the transaction read from the database,

just like AIS algorithm. But SETM was more created

for SQL computing and uses relational operations. To

use standard SQL join operation for candidate

generation, SETM separates candidate generation

from counting. It first generates the candidates using

equi-joins and then it sorts them all and removes the

ones that don't meet the minimum support. Like AIS,

SETM also makes multiple passes over the database

and generates many candidate itemsets that in the end

turn out not be frequent.

2.1.3APRIORI:
The AIS and SETM algorithm was followed by the

Apriori algorithm that was shown to perform better

than AIS and SETM by an order of magnitude.

Agrawal and srikanth in 1994 observed that the main

problem that arises in SETM is due to the number of

candidates itemsets. Since, for each candidate itemset

there is a TID associated with it, it requires more

space to store a large number of TIDs. Furthermore,

Sarawagi et al. in 1998 has also mentioned that

SETM is inefficient. [21] Apriori algorithm was

proposed by Agrawal and srikanth in 1994 that was

shown to perform better than AIS and SETM. The

authors became the legends in the data mining area.

They both received masters and PhDs from

University of Wisconsin, Madison and both worked

for IBM. The IBM's Intelligent Miner was created

mainly by them. The most important property of

Apriori is that it does not process any itemset whose

subset is known to be infrequent (downward closure

property). This implies that frequent itemsets can be

mined by first scanning the database to find the

frequent 1-itemsets, then using the frequent 1-

itemsets to generate candidate frequent 2-itemsets

and check against the database to obtain the frequent

2-itemsets. This process iterates until no more

frequent k-itemsets can be generated for some k. It

utilizes a data structure called hash tree to store the

counters of candidate itemsets and alternatives to this

algorithm is Mannila et al., 1994.

The two major drawbacks with this algorithm is that

it performs n passes over the database, where n is the

length of the longest frequent itemset and it follows a

tuple-by-tuple approach that is, it updates counters of

candidate itemsets after reading in each transaction

from the database. Hence it suffers from the

drawback that much redundant is performed after

each and every transaction.

2.1.3.1 Improving the efficiency of Apriori

Since, the Apriori algorithm was proposed there have

been many studies on the improvements or

extensions of Apriori. Following section describes

some important variations of Apriori algorithm.

DHP(Direct Hashing and Pruning): [11] As its

name suggests, DHP uses a hash technique that

makes it very efficient for the generation of candidate

itemsets, in particular for the large two-itemsets, thus

greatly improving the performance bottleneck of the

whole process. In addition, DHP employs effective

pruning techniques to progressively reduce the

transaction database size.

 Partitioning technique: [1] The algorithm is

fundamentally different from all the previous

algorithms in that it reads the database at most two

times to generate all significant association rules. In

the first scan of the database, it generates a set of all

potentially large itemsets by scanning the database

once and dividing it in a number of non-overlapping

partitions. This set is a superset of all frequent

itemsets so it may contain itemsets that are not

1672

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 4, April - 2013
ISSN: 2278-0181

www.ijert.org

IJ
E
R
T

IJ
E
R
T

frequent. During the second scan, counters for each

of these itemsets are set up and their actual support is

measured.

Sampling approach: [8] This algorithm was

proposed by Toivonen in the year 1996 which

reduces the database activity. The idea is it first

mines a random sample of the database to obtain

itemsets that are frequent within the sample. The

algorithm thus produce exact association rules, not

approximations based on a sample. The approach is,

however, probabilistic, and in those rare cases where

our sampling method does not produce all association

rules, the missing rules can be found in second pass

over the entire database. The sampling algorithm too

follows a tuple-by-tuple approach and hence, like

Apriori, suffers from the above mentioned drawback.

Parthasarathy [19] presented an efficient method to

progressively sample for association rules. Chuang et

al. [3] explore another progressive sampling

algorithm, called Sampling Error Estimation (SEE),

which aims to identify an appropriate sample size for

mining association rules.

DIC (Dynamic Itemset Counting): [23] The DIC

algorithm was proposed by Brin et al., in the year

1997 also known as non-level-wise algorithm. In

DIC, candidates are generated and removed after

every M transaction, where M is a parameter to the

algorithm. Although, it is a multi-pass algorithm, it

was shown to complete within two passes typically. It

however, suffers from the drawbacks of tuple-by-

tuple approaches. This algorithm is considered as a

closer to the sampling approach proposed

by Toivonen, 1996.

Mining with RDBMS: [24] Data mining on large

data warehouses is becoming increasingly important.

In this regard the association rule algorithms were

studied with the twin goals of finding the trade-offs

between architectural options and the extensions

needed in a DBMS to efficiently support mining.

Many experiments were conducted in different ways

for implementing the association rules mining

algorithm in SQL to find if it is at all possible to get

competitive performance out of SQL

implementations.

CARMA(Continuous Association Rule Mining

Algorithm): [10] This is a novel algorithm which is

proposed to compute large itemsets online. Being

online, the user is free to change the support

threshold parameters such as minimum support and

minimum confidence, at any time during the first

scan of the transaction sequence. After at most 2

scans the algorithm terminates with the precise

support for each large itemset. Although this

algorithm did not perform consistently better than

Apriori, but by order of magnitude memory

utilization is more efficient than Apriori or DIC.

2.1.4 FP-GROWTH:

The Apriori algorithm significantly reduces the size

of candidate sets using the Apriori property.

However, it can suffer from two-nontrivial costs: (1)

generating a huge number of candidate sets and (2)

repeatedly scanning the database and checking the

candidates by pattern matching. So to overcome these

two drawbacks Han et al., devised an FP-growth

algorithm [12] based on divide and conquer principle

that mines the complete set of frequent itemsets

without candidate generation.

It adopts a divide-and-conquer strategy and a FP-

Tree[9]. The frequent itemsets are generated with

only two passes over the database and without any

candidate generation process. In the first pass, the

algorithm counts occurrence of items in the dataset,

and stores them to 'header table'. In the second pass,

it builds the FP-tree structure by inserting instances.

Items in each instance that do not meet minimum

coverage threshold are simply discarded.

2.1.4.1 Improvements in FP growth algorithm

There are many alternatives and extensions to the FP-

growth approach such as:

[28] pascal, by Bastide et al.,(2000) which is named

after the French mathematician Blaise Pascal it is

basically an optimization of the Apriori algorithm.

The authors introduce the notion of key patterns and

show that other frequent patterns can be inferred

from the key patterns without access to the database.

The algorithm finds both frequent and closed sets and

it is twice as fast as Close and 10 times as fast as

Apriori but is only practical when the pattern length

is short.

[14] H-Mine(Hyper-Structure Mining of Frequent

Patterns in Large Databases), by Pei et al.

(2001) which introduces the concept of hyperlinked

data structure (H-struct) and uses it to dynamically

adjust links in the mining process and explores a

hyper-structure mining of frequent patterns.

MAFIA(Maximal frequent itemset algorithm) [6] for

transactional databases, by DougBurdick et al., is an

algorithm where search strategy integrates a depth-

first traversal of the itemset lattice.

An array-based implementation of prefix-tree-

structure for efficient pattern growth mining

by Grahne and Zhu in 2003 is an efficient array-

based algorithm for mining frequent itemsets that

greatly reduces the need to traverse FP-trees, thus

obtaining significantly improved performance for FP

tree based algorithms. This algorithm suits well for

sparse datasets. This method outperforms not only

1673

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 4, April - 2013
ISSN: 2278-0181

www.ijert.org

IJ
E
R
T

IJ
E
R
T

the existing methods that use the FP-tree structure,

but also all existing available algorithms in all the

common data mining problems. [2] RELIM

(Recursive Elimination), by Christian Borgelt in 2005

algorithm is strongly inspired by FP-growth and very

similar to H-mine. It doesn't use prefix trees and any

other complicated structures. The work is done in one

simple recursive function, which can be written with

relatively few lines of code.

2.2 Parallel Frequent pattern mining

algorithms
The algorithms which adopt the parallelism paradigm

can be classified into two categories such as data and

task. The algorithms relating to data parallelism

include:

2.2.1 CD:

[22] In CD, the database D is partitioned into {D
1
,

D
2
, …, D

p
} and distributed across n processors. In

this algorithm it involves three steps. In step 1, local

support counts of the candidates Ck in the local

database partition D
i
 are found. In step 2, each

processor exchanges the local support counts of all

candidates to get the global support counts of all

candidates. In step 3, the globally large itemsets Lk

are identified and the candidates of size k+1 are

generated by applying an algorithm on each

processor independently.

2.2.2 PDM (parallel Data Mining):

[13] PDM is a modification of CD with inclusion of

the direct hashing technique proposed in [Park1995].

The hash technique is used to prune some candidates

in the next pass. It is especially useful for the second

pass, as Apriori doesn't have any pruning in

generating C2 from L1.

2.2.3 DMA (Distributed Mining Algorithm) :

[5] DMA is also based on the data parallelism

paradigm with the addition of candidate pruning

techniques and communication message reduction

techniques introduced.

2.2.4 CCPD (Common Candidate Partitioned

Database):

[18] CCPD implements CD on a shared-memory SGI

Power Challenge with some improvements. It

proposes techniques for efficiently generating and

counting the candidates in a shared-memory

environment. It groups the large itemsets into

equivalence classes based on the common prefixes

and generates the candidates from each equivalence

class.

The algorithms relating to task parallelism include:

2.2.5 DD (Data Distribution):
[22], in DD the candidates are partitioned and

distributed over all the processors in a round-robin

fashion. There are three steps. In step one, each

processor scans the local database partition to get the

local counts of the candidates distributed to it. In step

two, every processor broadcasts its database partition

to the other processors and receives the other

database partitions from the other processors, then

scans the received database partitions to get global

support counts in the whole database. In the last step,

each processor computes the large itemsets in its

candidate partition, exchanges with all others to get

all the large itemsets, and then generates the

candidates, partitions and distributes the candidates

over all processors. These steps continue until there

are no more candidates generated.

2.2.6 IDD (Intelligent Data Distribution):

IDD is an improvement over DD [7]. It partitions the

candidates across the processors based on the first

item of the candidates, that is, the candidates with the

same first item will be partitioned into the same

partition. Therefore, each processor needs to check

only the subsets which begin with one of the items

assigned to the processor.

2.2.7HPA(Hash-based Parallel mining of

Association rules):

[25] HPA uses a hashing technique to distribute the

candidates to different processors [Shintani1996],

i.e., each processor uses the same hash function to

compute the candidates distributed to it.

2.2.8 PAR (Parallel Association Rules):

[16] PAR consists of a set of algorithms, which use

different candidate partitioning and counting. They

all assume a vertical database partition (tid lists for

each item), contrast to the natural horizontal database

partition (transaction lists). By using the vertical

organization for the database, the counting of an

itemset can simply be done by the intersection of the

tid lists of the items in the itemset.

There are some other parallel algorithms which

cannot be classified into the two paradigms if strictly

speaking. Although they share similar ideas with the

two paradigms, they have distinct features. These

parallel algorithms include Candidate Distribution

[22], SH(Skew Handling) [15] and HD(Hybrid

Distribution) [7].

2.3. Constraint based frequent pattern

mining
In order to improve the efficiency of existing mining

algorithms, constraints were applied during the

1674

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 4, April - 2013
ISSN: 2278-0181

www.ijert.org

IJ
E
R
T

IJ
E
R
T

mining process to generate only those patterns that

are interesting to users instead of all the patterns.

Very often users want to restrict the set of patterns to

be discovered by adding extra constraints on the

structure of patterns. Data mining systems should be

able to exploit such constraints to speedup the mining

process. Wojciechowski and Zakrzewicz [27] focus

on improving the efficiency of constraint-based

frequent pattern mining by using dataset filtering

techniques. Dataset filtering conceptually transforms

a given data mining task into an equivalent one

operating on a smaller dataset. Tien Dung Do et al

[26] proposed a specific type of constraints called

category-based as well as the associated algorithm for

constrained rule mining based on Apriori. The

Category-based Apriori algorithm reduces the

computational complexity of the mining process by

bypassing most of the subsets of the final itemsets.

An algorithm, ExAnte, was proposed by Bonchi et al.

(2003) to further prune the data search space with the

imposed monotone constraints. Gade etal.

(2004) proposed a block constraint which determines

the significance of an itemset by considering the

dense block formed by the pattern’s items and

transactions. An efficient algorithm is developed to

mine the closed itemsets that satisfy the block

constraints. Bonchi and Lucchese (2004) proposed an

algorithm for mining closed constrained patterns by

pushing deep monotonic constraints as well. Yun and

Leggett (2005) proposed a weighted frequent itemset

mining algorithm with the aim of pushing the weight

constraint into the mining while maintaining the

downward closure property.

2.4 Incremental Frequent Pattern Mining
[4] An incremental updating technique is developed

for maintenance of the association rules discovered

by database mining. There have been many studies

on efficient discovery of association rules in large

databases. However, it is nontrivial to maintain such

discovered rules in large databases because a

database may allow frequent or occasional updates

and such updates may not only invalidate some

existing strong association rules but also turn some

weak rules into strong ones. The various algorithms

include:

2.4.1 FUP algorithm(Fast Update algorithm)

(Cheung et al., 1996) FUP is the first algorithm in the

field of incremental mining. It operates on an

iterative basis and makes a complete scan of the

current database. In each scan, the increment is

processed first and the results obtained are used to

guide the mining of the original database. An

important point to note about the FUP algorithm is

that it requires k passes over the entire databse, where

k is the cardinality of the longest frequent itemset.

Further, it does not generate the mining results for

solely the increment.

2.5 Frequent Pattern Mining with Vertical

Data Format
 Most of the algorithms discussed earlier generate

frequent itemsets from a set of transactions in

horizontal data format (i.e., {TID: itemset}), where

TID is a transaction- id and itemset is the set of items

contained in transaction TID. Alternatively, mining

can also be performed with data presented in vertical

data format (i.e., {item: TID_set}). Algorithms which

use vertical data format are MAXECLAT, CLIQUE,

MAXCLIQUE, TOP-DOWN but ECLAT remained

the best known. Few algorithms that supports vertical

data format are:

2.5.1 MaxClique:

 While the above mentioned algorithms were

primarily horizontal (tuple) based approaches, the

MaxClique (Zaki et al., 1997) algorithm is designed

to efficiently mine databases that are available in a

vertical layout.

2.5.2Eclat(Echivalence Class Clustering and

Bottom-up Lattice Traversal):

[16] It is the first algorithm that uses a vertical data

(inverted) layout. ECLAT is very efficient for large

itemsets but less efficient for small ones. The

frequent itemsets are determined using simple tid-list

intersections in a depth-first graph. Zaki

(2000) proposed Equivalence CLASS

Transformation (Eclat) algorithm by exploring the

vertical data format. The first scan of the database

builds the TID_set of each single item. Starting with

a single item (k = 1), the frequent (k+1)-itemsets

grown from a previous k-itemset are generated by

Apriori property, with a depth-first computation order

similar to FP-growth (Han et al., 2004). The

computation is done by intersection of the TID_sets

of the frequent k-itemsets to compute the TID_sets of

the corresponding (k+1)-itemsets. This process

repeats, until no frequent itemsets or no candidate

itemsets can be found.

2.5.3VIPER:

Unlike earlier vertical mining algorithms which were

subject to various restrictions on the underlying

database size, shape, contents or the mining process,

the viper (Shenoy et al., 2000) algorithm does not

have any such restrictions. It includes many

optimizations to enable efficient processing and was

shown to outperform earlier vertical mining

algorithms.

1675

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 4, April - 2013
ISSN: 2278-0181

www.ijert.org

IJ
E
R
T

IJ
E
R
T

3. Comparison of algorithms
The comparison of various algorithms is based upon

several metrics. Space requirements can be estimated

by looking at the maximum number of candidates

being counted during any scan of the database. We

can estimate the time requirements by counting the

maximum number of database scans needed and the

maximum number of comparison operations.

Comparison of various algorithms is:

4. Challenging Issues in FP-Mining:
The main research issues with regard to frequent

pattern mining are:

 A lot of attention was focused on the

performance and scalability of the algorithms, but not

enough attention was given to the issues related to

ease, flexibility and reusability for generating frequent

patterns.

 Most of the algorithms for discovering

frequent patterns available in the literature require

multiple passes over the database resulting in a large

number of disk reads and placing a huge burden on

the I/O subsystem. This calls for the introduction of

mining algorithms that offers single database scan.

 Various algorithms are available that can

help reveal patterns and relationships, but they does

not tell the user the value or significance of these

patterns.

 Most of the algorithms available in the

literature do not offer flexibility for testing the

validity of Meta rules.

 There is a requirement for the development

of parallel and/or distributed algorithms in order to

speed up the computation activity

 Most of the algorithms available in the

literature for mining frequent itemsets do not offer

flexibility for reusing the computation during mining

process.

 Much research is still needed to substantially

reduce the size of derived patterns and enhance the

quality of retained patterns (compact high quality

pattern set).

Conclusion

Data mining has importance regarding finding the

patterns, forecasting, discovery of knowledge etc., in

different business domains.In this paper, we

presented a brief overview of the status of frequent

pattern mining algorithms. Over a decade there have

been a extensive research, many publications,

development and application activities in this

domain. It is impossible to give a overall

developments on this topic with limited space.

Hopefully, this short overview may provide a rough

outline to the people a general view of the field.

References

[1] Ashok Savasere, Edward Omiecinski, Shamkant

Navathe,” An efficient algorithm for mining

association rules in large databases” proc.

The21stVLDBConference,1995.

[2] ChristianBorgelt, “Keeping Things Simple:

Finding Frequent ItemSets by Recursive Elimination

“, Workshop Open Source Data Mining Software

(OSDM'05, Chicago,IL), in 2005.

[3] Chuang, K., Chen, M., Yang, W., “Progressive

Sampling for Association Rules Based on Sampling

Error Estimation”, Lecture Notes in Computer

Science, Volume 3518, Jun 2005, Pages 505 – 515.

[4] David W. Cheung , Jiawei Han , Vincent T. Ng ,

C. Y. Wong “Maintenance of Discovered Association

Rules in Large Databases: An Incremental Updating

Technique “, 1996.

[5] David Wai-Lok Cheung, Jiawei Han, Vincent Ng,

Ada Wai-Chee Fu, and Yongjian Fu, A Fast

Distributed Algorithm for Mining Association Rules,

Proceedings of PDIS, 1996.

1676

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 4, April - 2013
ISSN: 2278-0181

www.ijert.org

IJ
E
R
T

IJ
E
R
T

[6] DougBurdick,ManuelCalimlim,JohannesGehrke,

”MAFIA: A maximal frequent itemset algorithm for

transactional databases”, Proceedings of the 17th

International Conference on Data Engineering,

Heidelberg, Germany, in 2001.

[7] Eui-Hong Han, George Karypis, and Vipin

Kumar, Scalable Parallel Data Mining For

Association Rules, Proceedings of the ACM

SIGMOD Conference, pp. 277-288, 1997.

[8] Hannu Toivonen , “Sampling Large databases for

association rules approach”proc. of the 22
nd

 VLDB

conference Mumbai, India, 1996.

[9] Han, J. and Pei, J., “Mining frequent patterns by

pattern-growth: methodology and implications”,

ACM SIGKDD Explorations Newsletter 2, 2, 14-20,

in 2000.

[10] Hidber , “online association rule mining”, 1999.

[11] J.S.Park,M. Chen, P.S. Yu., “An effective hash

based algorithm for mining association rules” proc.

ACM SIGMOD International Conference on

Management of Data, 1995.

[12]JiaweiHan,JianPei,YiwenYin,“MiningFrequentP

atterns without Candidate Generation”, Proc. of

ACM SIGMOD International Conference on

Management of Data, Dallas, Texas, USA, May 16-

18, 2000.

[13] Jong Soo Park, Ming-Syan Chen, and PhilipS.

Yu, Efficient Parallel Data Mining for Association

Rules, Proceedings of the International Conference

on Information and Knowledge Management, pp. 31-

36, Baltimore, Maryland, 22-25 May 1995.

[14] Jian Pei, Jiawei Han Lu, Shojiro Nishio, Shiwei

Tang, Dongqing Yang, “H-Mine: Hyper-Structure

Mining of Frequent Patterns in Large Databases”,

IEEE International Conference on Data Mining,

2001.

[15] Lilian Harada, Naoki Akaboshi, Kazutaka

Ogihara, and Riichiro Take, Dynamic Skew Handling

in Parallel Mining of Association Rules, Proceedings

of the 7
th

 International Conference on Information

and Knowledge Management, pp.76-85, Bethesda,

Maryland, USA, 1998.

[16]Mohammed Javeed Zaki, Srinivasan

Parthasarathy, Mitsunori Ogihara, Wei Li, “New

Algorithms for Fast Discovery of Assoctiation

Rules”, proc.of the 3rd International Conference on

Knowledge Discovery and Data Mining, 1997.

[17] Maurice Houtsma, Arun Swami, ”Set-oriented

mining for association rules in relational databases”,

proc. Of the11th International Conference on Data

Engineering, 1995.

[18] Mohammed Javeed Zaki, Mitsunori Ogihara,

Srinivasan Parthasarathy, and Wei Li, “Parallel Data

Mining for Association Rules on Shared-Memory

Multiprocessors”, Technical Report TR 618,

University of Rochester, Computer Science

Department, May 1996.

[19]Parthasarathy, S., “Efficient Progressive

Sampling for Association Rules”, ICDM 2002:354-

361

[20] Rakesh Agrawal, Tomasz Imielinski, Arun

Swami , “Mining association rules between sets of

items in large databases”, Proceedings of the ACM

SIGMOD Conference on Management of Data,

Washington, D.C.

 [21] RakeshAgrawal and RamakrishnanSrikant, “

Fast algorithms for mining association rules”,

Proceedings of 20th International Conference on

Very Large Data Bases, Santiago deChile,Chile,

September 12-15, 1994.

[22] [Agrawal1996] Rakesh Agrawal and John C.

Shafer, Parallel Mining of Association Rules, IEEE

Transactions on Knowledge and Data Engineering,

Vol. 8, No. 6, pp. 962-969, December 1996.

[23] S.Brin, R. Motwani, S. Tsur, “Dynamic itemset

counting and implication rules for market basket

data”,1997.

[24] Sunita Sarawagi , Shiby Thomas , Rakesh

Agrawal , “integrating mining with relational

database systems”, in sigmoid,1998.

[25] Takahiko Shintani and Masaru Kitsuregawa,

Hash Based Parallel Algorithms for Mining

Association Rules, Proceedings of PDIS, 1996.

[26] Tien Dung Do, Siu Cheung Hui, Alvis Fong,

“Mining Frequent Itemsets with Category-Based

Constraints”, Lecture Notes in Computer Science,

Volume 2843, 2003, pp. 76 – 86.

[27] Wojciechowski, M., Zakrzewicz, M., “Dataset

Filtering Techniques in Constraint-Based Frequent

Pattern Mining”, Lecture Notes in Computer Science,

Volume 2447, 2002, pp.77-83

[28] Y. Bastide, R. Taouil, N. Pasquier, G. Stumme,

L. Lakhal , ”Mining Frequent Patterns with Counting

Inference” ACM SIGKDD Explorations Newsletter,

in 2000.

1677

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 4, April - 2013
ISSN: 2278-0181

www.ijert.org

IJ
E
R
T

IJ
E
R
T

