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Abstract 
 
This paper develops a model for the optimal management 

of periodic deliveries of a given commodity called 

Periodic Vehicle Routing Problem (PVRP). The goal is to 

schedule the deliveries according to feasible 

combinations of delivery days and to determine the 

scheduling of fleet and driver and routing policies of the 

vehicles. The objective is to minimize the sum of the costs 

of all routes over the planning horizon. We propose a 

combined approach of heuristic algorithm and exact 

method to solve the problem.  

 

Keywords: Vehicle routing problem, scheduling, 

combined approach 

 

1. Introduction 
In the distribution of goods or services, there exists a 

problem that is known as the vehicle routing problem. In 

fact there is a wide variety of situations and therefore the 

problem is not unique but a vast class of problems, each  

one with its own characteristics and constraints. Vehicle 

Routing Problem is one of the important issues that exist 

in transportation system. Many researchers have been 

working in this area to discover new methodologies in 

selecting the best routes in order to find the better 

solutions. 

The vehicle routing problem (VRP) can be defined as 

follows: vehicles with a fixed capacity Q must deliver 

order quantities iq  ( 1, ,i n  ) of goods to n 

customers from a single depot (i = 0). Knowing the 

distance ijd  between customers i and j ( , 1, ,i j n  ), 

the objective of the problem is to minimize the total 

distance traveled by the vehicles in a way that only  one 

vehicle handles the deliveries for a given customer and 

the total quantity of goods that a single vehicle delivers is 

not larger than Q [1]. 

In PVRP, Each customer  1,2, , , ,i I i n     

specifies a set  k i  of combinations, and the visit days 

are assigned to the customer by selecting one of these 

combinations. Thus, the vehicles must visit the customer i 

on the days belonging to the selected combination. 

Early formulations of the PVRP were developed by 

Beltrami and Bodin [2] and by Russell and Igo [11] who 

proposed heuristics applied to waste collection problems. 

Tan and Beasley [14] use the idea of the generalized 

assignment method proposed by Fisher and Jaikumar [9] 

and assign a visiting schedule to each vertex. Eventually 

a heuristic for the VRP is applied to each day. Russell 

and Gribbin [12] developed a heuristic organized in four 

phases. Solution methods in these papers have focused on 

two-stage (construction and improvement) heuristics. 

Cordeau et al. [6] present another algorithm: The solution 

algorithm is a TS heuristic which, differently from the 

above heuristics, may allow infeasible solutions during 

the search process. Similarly, good results were obtained 

in the more recent work of Ha. Dji constantinuo and 

Baldacci [8], Angelelli and Speranza [1], and Blakeley et 

al. [3] who provide specific practical applications of the 

PRVP. 

Francis et al. [10] introduce the Periodic Vehicle 

Routing Problem with Service Choice (PVRP-SC) which 

allows service levels to be determined endogenously. The 

PVRP-SC is defined as follows: 

Given: A set of nodes with known demand and minimum 

visit frequency requiring service over the planning 

period; a fleet of capacitated vehicles; a set of service 

schedules with headways and service benefits; and a 

network with travel times.  

Find: An assignment of nodes to service schedules and a 

set of vehicle routes for each day of the planning period 

with the objective 

Minimize: the total routing cost incurred net of the 

service benefit accrued. 

Francis et al. [10] develop an integer programming 

formulation of the PVRP-SC with exact and heuristic 

solution methods. Due to the computational complexity 

of the problem, solutions to the discrete PVRP-SC are 

limited by instance size. Continuous approximation 

models are better suited for large problem instances, yet 

the use of continuous approximation models for periodic 

routing problems has been limited. 
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Daganzo [7] presents modeling techniques for 

distribution problems with varying service requirements. 

Smilowitz and Daganzo [13] develop continuous 

approximation models for distribution network design 

with multiple service levels. These references show that 

continuous approximations can be powerful tools for 

strategic and tactical decisions when service choice 

exists. In continuous approximation models, aggregated 

data are used instead of more detailed inputs. 

This paper concerns with PVRP with fleet and driver 

scheduling (PVRFDSP). The basic framework of the 

vehicle routing part can be viewed as a Heterogeneous 

Vehicle Routing Problem with Time Windows 

(HVRPTW) in which a limited number of heterogeneous 

vehicles, characterized by different capacities are 

available and the customers have a specified time  

windows for services. We propose a mixed integer 

programming formulation to model the problem. A 

feasible neighbourhood heuristic search is addressed to 

get the integer feasible solution after solving the 

continuous model of the problem. 

Section 2 reviews the integer programming 

formulation of the PVRP with Service Choice from 

Francis et al. [10]. Section 3 describes the mathematics 

formulation of the (PVRFDSP). Feasible neighbourhood 

heuristic search is given in Section 4. The conclusions are 

described in Section 5. 

 

2. Models Of The PVRP- SC 
In this section, we present the discrete formulations of 

the PVRP-SC from Francis et al. [10]. In the PVRP-SC, 

customers are visited a preset number of times over the 

period with a schedule that is chosen from a menu of 

schedule options. Let S denote this menu of schedules, 

and T denote the set of days in the period. The parameter 

sda  links schedules to days, where if 1sda   day 

d T  is in schedule s S  and 0sda   otherwise. 

Each schedule 𝑠 ∈ 𝑆 has an associated visit frequency 𝛾𝑠 

measured by number of days in the schedule: 𝛾𝑠 =
 𝑎𝑠𝑑𝑑∈𝑇 . For given schedule option, the headway 

between visits is defined in terms of the visit frequency as 

1s sH  . Each schedule has an associated benefit 

𝛼𝑠 related to the cost benefit of more frequent service 

which is assumed to be stationary over the time period. 

 

 

 

 

2.1 Discrete Formulation Of The PVRP-SC 
 

The discrete formulation of the PVRP-SC is defined 

for a set of nodes, 𝑁0, which consists of  customers 

nodes, N, and a depot, 0i  , and a set of arcs connecting 

nodes,   0, : ,A i j i j N  . Each customer node 

i N  has a known daily demand, 𝑊𝑖 , and a minimum 

service frequency, 𝐹𝑖 , measured in days per period. The 

demand accumulated between visits, 𝑤𝑖
𝑠, is a function of 

the schedule 𝑠 ∈ 𝑆 and the daily demand of the node. The 

stopping time at a node, 𝜏𝑖
𝑠, is a function of the frequency 

of the schedule since more items accumulate with less 

frequent service and, therefore, require more time to 

load/unload. Associated with each arc  ,i j A  is a 

known travel cost, ijc . There is a set K of vehicles, each 

with capacity C. The following allocation and routing 

variables define the solution to the discrete formulation. 

 

𝑦𝑖𝑘
𝑠 =  

1  if node 𝑖 ∈ 𝑁 is visited by vehicle 𝑘 ∈ 𝐾 on schedule 𝑠 ∈ 𝑆
0 otherwise

  

 

𝑥𝑖𝑗𝑘
𝑠 =  

1  if vehicle 𝑘 travels the arc (𝑖, 𝑗) ∈ 𝐴 on day ∈ 𝑇
0 otherwise

  

 

The discrete formulation for PVR-SC developed in 

Francis et al. [10] is: 

 

𝑍∗ = min    𝑐𝑖𝑗 𝑥𝑖𝑗𝑘
𝑑 +(𝑖,𝑗 )∈𝐴𝑑∈𝐷𝑘∈𝐾

                   𝑠 ∈ 𝑆 𝑖 ∈𝑁  
( 𝛾 𝑠 𝜏 𝑖 𝑠 −𝑊 𝑖 𝛼 𝑠 ) 𝑦 𝑖 𝑘 𝑠    (1)  

Subject to 

    𝛾𝑠
𝑘∈𝐾 𝑦𝑖𝑘

𝑠 ≥ 𝐹𝑖     𝑠∈𝑆 ∀ 𝑖 ∈ 𝑁        (2)             

 

     𝑦𝑖𝑘
𝑠 ≤ 1𝑘∈𝐾     𝑠∈𝑆       ∀ 𝑖 ∈ 𝑁          (3)                                                    

  

                   𝑤𝑖
𝑠𝑎𝑠𝑑𝑦𝑖𝑘

𝑠 ≤ 𝐶𝑖∈𝑁   𝑠∈𝑆 ∀ 𝑘 ∈ 𝐾, 𝑑 ∈ 𝑇    (4)                                             

  

         𝑥𝑖𝑗𝑘
𝑑 =  𝑎𝑠𝑑𝑦𝑖𝑘

𝑠          𝑠∈𝑆𝑗∈𝑁0
∀ 𝑖 ∈ 𝑁,  

     𝑘 ∈ 𝐾, 𝑑 ∈ 𝑇      (5) 
 

                𝑥𝑖𝑗𝑘
𝑑 =  𝑥𝑗𝑖𝑘

𝑑          𝑗∈𝑁0𝑗∈𝑁0
 ∀ 𝑖 ∈ 𝑁0 ,  

                 𝑘 ∈ 𝐾, 𝑑 ∈ 𝑇                       (6) 

                   

                𝑥𝑗𝑖𝑘
𝑑  ≤  𝑄 − 1   𝑖𝑗 ∈𝑄 ∀ 𝑄  𝑁, 𝑘 ∈ 𝐾, 𝑑 ∈ 𝑇 (7)    

                            

  𝑦𝑖𝑘
𝑠 ∈  0, 1                  ∀ 𝑖 ∈ 𝑁, 𝑘 ∈ 𝐾, 𝑠 ∈ 𝑆    (8)                               

  

  𝑥𝑖𝑗𝑘
𝑑 ∈  0, 1  ∀ (𝑖, 𝑗) ∈ 𝐴, 𝑘 ∈ 𝐾, 𝑑 ∈ 𝑇           (9)                         

  

The objective function (1) balances arc travel times, 

stopping times and demand weighted service benefit. 

Constraints (2) enforce the minimum frequency of visits 

for each node. Constraints (3) ensure that one schedule 

and one vehicle are chosen for each demand node. 

Constraints (4) represent vehicle capacity constraints. 

Constraints (5) link the x and y variables for the demand 
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nodes. Constraints (6) ensure flow conservation at each 

node. Constraints (7) are the subtour elimination 

constraints and ensure that all tours contain a visit to the 

depot. Constraints (8)  and (9) define the binary variables 

for allocation and routing, respectively. 

 

3. Mathematical Formulation Of PVRFDSP 
. We denote the planning horizon by T and the set of 

drivers by D. The set of workdays for driver l D  is 

denoted by lT T . The start working time and latest 

ending time for driver l D  on day t T  are given by 
t

lg  and 
t

lh , respectively. Let DI and DE denote the set of 

the internal and external drivers ( I ED D D  ). For 

each internal driver Il D , let H denote the maximum 

weekly working duration. We denote the maximum 

elapsed driving time without break by F and the duration 

of a break by G (according to the EU driver legislation). 

Let K denote the set of vehicles. For each vehicle 

k K , let Qk and Pk denote the capacity in weight and 

in volume, respectively. We assume the number of 

vehicles equals to the number of drivers. Denote the set 

of n customers (/nodes) by  1,2, ,N n  . Denote 

the depot by  0, 1n . Each vehicle starts from  0  

and terminates at  1n . Each customer i N  

specifies a set of days to be visited, denoted by iT T  . 

On each day it T , customer i N  requests service 

with demand of 
t

iq  in weight and 
t

ip  in volume, service 

duration 
t

id  and time window  ,i ia b . Note that, for the 

depot  0, 1i n   on day t, we set 0t t t

i i iq p d   . 

Denote the set of preferable vehicles for visiting customer 

i by Ki ( iK K ) and the extra service time per pallet by 

e if a customer is not visited by a preferable vehicle. The 

travel time between customer i and j is given by ijc . 

Denote the cost coefficients of the travel time of the 

internal drivers by A and the working duration of the 

external drivers by B. 

We define binary variable 
t

ijkx  to be 1 if vehicle k 

travels from node i to j on day t, binary variable wt i to be 

1 if customer i is not visited by a preferred vehicle on day 

t. Variable 
t

ikv  is the time that vehicle k visits node i on 

day t. Binary variable 
t

ikz  indicates whether vehicle k 

takes a break after serving customer i on day t. Variable 

t

iku  is the elapsed driving time for vehicle k at customer i 

after the previous break on day t. Binary variable 
t

lky  is 

set to 1 if vehicle k is assigned to driver l on day t. 

Variables 
t

lr and 
t

ls  are the total working duration and 

the total travel time for driver l on day t, respectively. 

 

This notations used are given as follows : 

Set: 

T  The set of workdays in the planning 

horizon, 

DI  The set of internal drivers, 

DE  The set of external drivers, 

D  The set of drivers D = DI ∪ DE, 

Tl  The set of workdays for driver l ∈ D, 

K  The set of vehicles, 

N  The set of customers, 

N0  The set of customers and depot N0 = {0, n 

+ 1} ∪ N, 

Ki  The set of preferable vehicles for customer 

i ∈ N, 

Ti  The set of days on which customer i N  

orders, 

Parameter: 

Qk  The weight capacity of vehicle k K , 

Pk  The volume capacity of vehicle k K , 

cij  The travel time from node 0i N  to node 

0j N , 

[ai, bi]  The earliest and the latest visit time at 

node 0i N , 

t

id   The service time of node 0i N  on day 

it T , 

t

iq  The weight demand of node 0i N  on 

day it T , 

t

ip  The volume demand of node 0i N  on 

day it T , 

e  The extra service time per pallet when a 

non-preferable vehicle is used, 

[
t

lg , 
t

lh ]  The start time and the latest ending time of 

driver l D  on day t T , 

H  The maximum working duration for each 

internal driver over the planning horizon, 

F  The maximum elapsed driving time 

without break, 

G  The duration of the break for drivers, 
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1K   The cost factor on the total travel time of 

internal drivers, 

2K   The cost factor on the total working 

duration of the external drivers, 

Variables: 
t

ilkx   Binary variable indicating whether vehicle 

k K  travels from node 0i N to 

0j N  on day t T , 

t

iw   Binary variable indicating whether 

customer 0i N  is visited by a non-

preferable vehicle on day t T , 
t

ikv   The time at which vehicle k K  starts 

service at node 0i N  on day t T , 

t

ikz   Binary variable indicating whether vehicle 

k K  takes break after serving node 

0i N  on day t T , 

t

iku   The elapsed driving time of vehicle 

k K  at node 0i N  after the previous 

break on day t T , 
t

lky   Binary variable indicating whether vehicle 

k K  is assigned to driver l D  on day 

t T , 
t

lr   The total working duration of driver 

l D  on day t T , 
t

ls  The total travel distance of driver l D  

on day t T . 

 

The mathematical formulation for this problem is 

presented as follows: 

 

    min 𝐾1 .   𝑠𝑙
𝑡 +𝑡∈𝑇𝑖𝑙∈𝐷𝐼

𝐾2 .   𝑟𝑙
𝑡 + 𝑍′

𝑡∈𝑇𝑖𝑙∈𝐷𝐸
     (10) 

  (10) 

Subject to: 

 

      𝑥𝑖𝑗𝑘
𝑡

𝑗∈𝑁0
= 1𝑘∈𝐾         ∀ 𝑖 ∈ 𝑁, 𝑡 ∈ 𝑇𝑖         (11)                      

  i  N, t  Ti (11) 

     𝑥𝑖𝑗𝑘
𝑡

𝑗∈𝑁0
= 𝑤𝑖

𝑡
𝑘∈𝐾\𝐾𝑖

  ∀ 𝑖 ∈ 𝑁, 𝑡 ∈ 𝑇𝑖         (12)          

  i  N, t  Ti (12) 

 

     𝑞𝑖
𝑡𝑥𝑖𝑗𝑘

𝑡
𝑗∈𝑁0

≤ 𝑄𝑘𝑖∈𝑁     ∀ 𝑘 ∈ 𝐾, 𝑡 ∈ 𝑇       (13)                       

  k  K, t  T (13) 

     𝑝𝑖
𝑡𝑥𝑖𝑗𝑘

𝑡
𝑗∈𝑁0

≤ 𝑃𝑘𝑖∈𝑁     ∀ 𝑘 ∈ 𝐾, 𝑡 ∈ 𝑇        (14)  k  K, t  T (14) 

 

    𝑢𝑗𝑘
𝑡 ≥ 𝑢𝑖𝑘

𝑡 + 𝑐𝑖𝑗 − 𝑀 1 − 𝑥𝑖𝑗𝑘
𝑡  − 𝑀𝑧𝑖𝑘

𝑡      

     ∀ 𝑖, 𝑗 ∈ 𝑁0, 𝑘 ∈ 𝐾, 𝑡 ∈ 𝑇                                            (15) i, j  N0,  k  K, t  T (15) 

 

    𝑢𝑗𝑘
𝑡 ≥ 𝑐𝑖𝑗 − 𝑀 1 − 𝑥𝑖𝑗𝑘

𝑡   ∀ 𝑖, 𝑗 ∈ 𝑁,   

     𝑘 ∈ 𝐾, 𝑡 ∈ 𝑇                                                         (16) i, j  N, k  K, t  T (16)  

 i  N0,  k  K, t  T (17) 

    𝑢𝑖𝑘
𝑡 +  𝑐𝑖𝑗 𝑥𝑖𝑗𝑘

𝑡 − 𝐹 ≤ 𝑀𝑧𝑖𝑘
𝑡

𝑗∈𝑁0

 ∀ 𝑖, ∈ 𝑁0 ,  

    𝑘 ∈ 𝐾, 𝑡 ∈ 𝑇                                                             (17) i, j  N0,  k  K, t  T (18) 

 i  N,  k  K, t  Ti (19) 

    𝑣𝑗𝑘
𝑡 ≥ 𝑣𝑖𝑘

𝑡 + 𝑑𝑖
𝑡 + 𝑒. 𝑝𝑖

𝑡 . 𝑤𝑗
𝑡 + 𝑐𝑖𝑗 + 𝐺. 𝑧𝑖𝑘

𝑡   

   𝑀 1 − 𝑥𝑖𝑗𝑘
𝑡   ∀ 𝑖, 𝑗 ∈ 𝑁0, 𝑘 ∈ 𝐾, 𝑡 ∈ 𝑇                    (18) 

      𝑏𝑖 ≥ 𝑣𝑖𝑘
𝑡 ≥ 𝑎𝑖           ∀ 𝑖 ∈ 𝑁, 𝑘 ∈ 𝐾, 𝑡 ∈ 𝑇𝑖      (19) 

 

       𝑣0𝑘
𝑡 ≥  (𝑔𝑙

𝑡 .𝑦𝑙𝑘
𝑡 )𝑙∈𝐷  ∀ 𝑘 ∈ 𝐾, 𝑡 ∈ 𝑇               (20) 

 

       𝑣𝑛+1,𝑘
𝑡 ≤  (ℎ𝑙

𝑡 .𝑦𝑙𝑘
𝑡 )𝑙∈𝐷   ∀ 𝑘 ∈ 𝐾, 𝑡 ∈ 𝑇         (21) 

 

       𝑠𝑙
𝑡 ≥   𝑐𝑖𝑗 𝑥𝑖𝑗𝑘

𝑡 −𝑀 1 −𝑗∈𝑁0𝑖∈𝑁0

       𝑦𝑖𝑘𝑡   ∀ 𝑙∈𝐷𝐼, 𝑘∈𝐾, 𝑡∈𝑇𝑖                          (22) 

 

       𝑟𝑙
𝑡 ≥ 𝑣𝑛+1,𝑘

𝑡 − 𝑔𝑙
𝑡 − 𝑀 1 − 𝑦𝑙𝑘

𝑡    

       ∀ 𝑙 ∈ 𝐷𝐼 ,𝑘 ∈ 𝐾, 𝑡 ∈ 𝑇𝑖                                    (23) 

        

        𝑟𝑙
𝑡 ≤ 𝐻 𝑡  ∈ 𝑇𝑖

    ∀ 𝑙 ∈ 𝐷𝐼                             (24) 

 

       𝑥𝑖𝑗𝑘
𝑡 , 𝑤𝑖

𝑡 , 𝑧𝑖𝑘
𝑡 , 𝑦𝑙𝑘

𝑡  ∈  0, 1  ∀ 𝑖, 𝑗 ∈ 𝑁0 , 𝑙 ∈ 𝐷,  

       𝑘 ∈ 𝐾, 𝑡 ∈ 𝑇                                                   (25) 

 

       𝑣𝑖𝑗𝑘
𝑡 , 𝑢𝑖𝑘

𝑡 , 𝑟𝑙
𝑡 , 𝑠𝑙

𝑡  ≥ 0 ∀ 𝑖, 𝑗 ∈ 𝑁0 , 𝑙 ∈ 𝐷,  

       𝑘 ∈ 𝐾, 𝑡 ∈ 𝑇                                                   (26) 

 N0, l  D,  k  K, t  T (25) 

The objective function (10) minimizes weighted sum 

of the travel time of the internal drivers and the working 

duration of the external drivers over the planning horizon. 

Constraints (11) state that each customer must be 

visited by one vehicle on each of its delivery days. 

Constraints (12) define whether each customer is visited 

by a preferable vehicle. Constraints (13-14) guarantee 

that the vehicle capacities are respected in both weight 

and volume.  

Constraints (15-16) define the elapsed driving time. 

More specifically, for the vehicle (k) travelling from 

customer i to j on day t, the elapsed driving time at j 

equals the elapsed driving time at i plus the driving time 

from i to j (i.e., 
t

jku  ≥ 
t

iku  + cij ) if the vehicle does not 
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take a break at customer i (i.e., 
t

ikz = 0); Otherwise, if the 

vehicle takes a break at customer i (i.e., 
t

ikz  = 1), the 

elapsed driving time at j will be constrained by (10) 

which make sure it is greater than or equal to the travel 

time between i and j (i.e., 
t

jku  ≥ cij). Constraints (17) 

guarantee that the elapsed driving time never exceeds an 

upper limit F by imposing a break at customer i (i.e., 
t

ikz

= 1) if driving from customer i to its successor results in a 

elapsed driving time greater than F. 

Constraints (18) determine the time to start the service 

at each customer. If j is visited immediately after i, the 

time 
t

jkv to start the service at j should be greater than or 

equal to the service starting time 
t

ikv  at i plus its service 

duration 
t

id , the extra service time 
t

ie p  if i is visited 

by an inappropriate vehicle (i.e., 
t

jw  = 1), the travel time 

between the two customers cij , and the break time G if 

the driver takes a break after serving I (i.e., 
t

ikz  = 1). 

Constraints (19) make sure the services start within the 

customers’ time window. 

Constraints (20-21) ensure that the starting time and 

ending time of each route must lie between the start 

working time and latest ending time of the assigned 

driver. Constraints (22) calculate the total travel time for 

each internal driver. Constraints (23) define the working 

duration for each driver on every workday, which equals 

the time the driver returns to the depot minus the time 

he/she starts work. Constraints (24) make sure that the 

internal drivers work for no more than a maximum 

weekly working duration, referred to as 37 week-hour 

constraints. Constraints (25-26) define the binary and 

positive variables used in this formulation. The overall 

model should contain constraints (2-7) from PVRP-SC. 

 

4. Feasible Neighborgood Heuristic Search 
While a straightforward brand-and-bound approach 

could be adopted, for many classes of large-scale 

problems such a procedure would be prohibitively 

expensive in terms of total computing time. We have 

adopted the approach of examining a reduced problem in 

which most of the integer variables are held constant and 

only a small subset allowed varying in discrete steps. 

This may be implemented within the structure of a 

program by marking all integer variables at their bounds 

at the continuous solution as nonbasic and solving a 

reduced problem with these maintained as nonbasic. 

The procedure may be summarized as follows: 

Step 1 :  Solve the problem ignoring integrality 

requirements. 

Step 2 : Obtain a (sub-optimal) integer feasible 

solution, using heuristic rounding of the   

continuous solution. 

Step 3 : Divide the set I of integer variables into the set 

I1 at their bounds that were nonbasic at the 

continuous solution and the set I2,  I = I1+ I2. 

Step 4 : Perform a search on the objective function, 

maintaining the variables in I1 nonbasic and 

allowing only discrete changes in the values of 

the variables in I2. 

Step 5 : At the solution obtained in step 4, examine the 

reduced costs of the variables in I1. If any 

should be released from their bounds, add 

them to set I2 and repeat from step 4, otherwise 

terminate. 

 

The above summary provides a framework for the 

development of specific strategies for particular classes 

of problems. For example, the heuristic rounding in step 

2 can be adapted to suit the nature of the constraints, and 

step 5 may involve adding just one variable at a time to 

the set I2. 

At a practical level, implementation of the procedure 

requires the choice of some level of tolerance on the 

bounds on the variables and also their integer 

infeasibility. The search in step 4 is affected by such 

considerations, as a discrete step in a super basic integer 

variable may only occur if all of the basic integers remain 

within the specified tolerance of integer feasibility. 

In general, unless the structure of the constraints 

maintains integer feasibility in the integer basic variables 

for discrete changes in the superbasic, the integers in the 

set I2 must be made superbasic. This can always be 

achieved since it is assumed that a full set of slack 

variables is included in the problem. 

 

5. Conclusions 
This paper was intended to present a solution for one 

of the most important problems in Supply Chain 

Management, Distribution problems. The aim of this 

paper was to develop a model of Periodic vehicle Routing 

with Fleet and Driver Scheduling Problems This problem 

has additional constraint which is the limitation in the 

number of vehicles. The proposed algorithm employs 

nearest neighbor heuristic algorithm for solving the 

model. This algorithm offers appropriate solutions in a 

very small amount of time.  
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