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Abstract-This paper investigates the application of 

Unscented Kalman Filter (UKF) for induction motor (IM) 

sensorless drives and compares the general UKF with 

Extended Kalman Filter (EKF) in detuned conditions. The 

speed and rotor resistance estimation results are 

compared. Simulation results for Unscented Kalman Filter 

are presented and compared with those of Extended 

Kalman Filter. It evaluates the very low speed 

performance of general UKF.Only General UKF is 

presented as it provides the best performance compared to 

other UKFs (basic,simplex,spherical) and compared with 

respect to EKF.It is concluded that the UKF  provides 

more robust performance than the conventional EKF. 

Keywords-Extended Kalman Filter, general 

Unscented Transformation, state estimation. 

1.INTRODUCTION 

      Estimation in nonlinear systems is extremely 

important because almost all practical systems 

involve nonlinearities of one kind or another. In 

estimation theory, the Extended Kalman Filter 

(EKF) is the nonlinear version of the Kalman 

filter which linearizes about an estimate of the 

current mean and covariance. In  case of well 

defined transition models, the EKF has been 

considered the de facto standard in the theory of 

nonlinear state estimation and navigation 

systems.Unlike its linear counterpart, the 

Extended Kalman Filter in general is not an 

optimal estimator (of course it is optimal if the 

measurement and the state transition model are 

both linear, as in that case the extended Kalman 

Filter is identical to the regular one). In addition, 

if the initial estimate of the state is wrong, or if 

the process is not modeled correctly, the filter 

may quickly diverge, owing to its linearization. 

Another problem with the Extended Kalman 

Filter is that the estimated covariance matrix 

tends to underestimate the true covariance matrix 

and therefore risks becoming inconsistent in the 

statistical sense without the addition of 

"stabilising noise”.   

         Although the EKF maintains the elegant 

and computationally efficient update form of 

KF,it suffers from number of serious 

limitations[1].EKF is difficult to tune, the 

jacobian can be hard to derive,and it can only 

handle limited amount of nonlineariy. A 

nonlinear Kalman Filter which shows promise as 

an improvement over the EKF is the Unscented 

Kalman Filter (UKF). In the UKF, the probability 

density is approximated by a deterministic 

sampling of points which represent the 

underlying distribution as a Gaussian. The 

nonlinear transformations of these points are 

intended to be an estimation of the posterior 

distribution, the moments of which can then be 

derived from the transformed samples. The 

transformation is known as the Unscented 

Transform(UT).The UKF tends to be more robust 

and more accurate than the EKF in its error 

estimation . 

       The paper is organized as follows. In section 

II, the general UT concept is discussed. In section 

III, the UKF and the discrete UKFs are discussed. 

The IM model and observer are described in 

section IV. Section V provides the simulation 
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results.Conclusions and scope for future work are 

given in section VI. 

II.GENERAL U.T 

         The Unscented Transformation is a method 

for calculating the statistics of a random variable,   

while undergoes a nonlinear 

transformation[2].The UT was developed to 

address the deficiencies of linearization by 

providing a more direct and explicit mechanism 

for transforming mean and covariance 

information. 

    Throughout the paper, the superscript (i) is 

used to denote the 𝑖𝑡ℎ  sigma point. Suppose the 

mean mx and covariance Px of a n × 1 stochastic 

vector x are known and moreover if one is 

interested in the mean and covariance of the 

output of a known nonlinear function y= h (x), A 

set of sigma points 𝜎𝑥
(𝑖)

, i = 0, 1, 2,……N, with 

the same mean and covariance as the vector can 

be selected. Then, the sigma points are 

transformed through the known nonlinear 

function h (x) to obtain a set of projected sigma 

points 𝜎𝑥
(𝑖)

, i = 0, 1, 2,……N. The weighted 

sample mean and sample covariance of the 

projected sigma points give a good 

approximation of the true mean and covariance 

of the output y. If the weight associated with the 

i
th
 sigma point is denoted by W

(i)
 then the 

approximate mean and covariance of the output 

are calculated as 

𝑚𝑦 =   𝑊(𝑖)𝜎𝑦
(𝑖)𝑁

𝑖=0                                   (1)                                       

.                                                                                           

𝑃𝑦 =   𝑊 𝑖  𝜎𝑦
(𝑖)

−𝑚𝑦  𝜎𝑦
(𝑖)

−𝑚𝑦 
𝑇

𝑁
𝑖=0     (2) 

    The general UT [5] uses a set of 2n+1 sigma 

points which lie on the 𝒏
𝒕𝒉

  covariance 

contou[6]. This is taken as the general UT, since 

it includes the basic UT as a special case. The 

general UT uses the 2n+1 sigma points 

𝜎𝑥
(0)

= 𝑚𝑥                                                   (3)                                             

      

𝜎𝑥
(0)

= 𝑚𝑥 + 𝑃 𝑥
(𝑖)

          𝑖 = 1,… ,2𝑛                  (4)       

       

𝑃 𝑥
(𝑖)

=    𝑛 + 𝑘 𝑃  
(𝑖)

𝑇
          𝑖 = 1,… , 𝑛 (5)                  

      

𝑃 𝑥
(𝑛+𝑖)

= −   𝑛 + 𝑘 𝑃  
(𝑖)

𝑇
   𝑖 = 1, . . , 𝑛         (6)                      

Unlike the basic UT, the sigma points are 

assigned unequal weights in the calculation of the 

mean and covariance as follows: 

𝑊0 =
𝑘

𝑛+𝑘
                                             (7)                   

      

𝑊(𝑖) =
1

2(𝑛+𝑘)
        𝑖 = 1,… ,2𝑛               (8)          

     

 The design parameter k determines the 

degree of emphasis on point 𝜎𝑥
(0)

, and reduces the 

higher-order approximation errors. For k = 0, the 

general UT reduces to basic UT. 

      III UNSCENTED KALMAN FILTER 

The Kalman filter (KF) was originally 

developed for linear systems [7] but later applied 

to nonlinear systems using the linearized or 

extended KF (EKF) [8]. Although the 

performance of the EKF is poor in some 

situations, its performance is acceptable if the 

system nonlinearity is not severe. Its simplicity, 

together with the popularity of the KF, makes it 

the most widely applied nonlinear state estimator.                                         

Nonlinearly mapping an input random variable 

typically results in a complex distribution with a 

large number of associated parameters. Hence, 
optimal nonlinear state estimation requires 

knowledge of higher order statistics and the exact 

estimation of the states of a nonlinear system is 

often impossible in practice [9]. 

The Unscented Kalman Filter belongs to 

a bigger class of filters called Sigma-Point 

Kalman Filters or Linear Regression Kalman 

Filters,which are using the statistical linearization 

technique[3,4]. 
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Fig.1-Simulation results for high speed operation of IM with 

general UKF with speed of 200rad(a) estimated speed, (b) 

measured speed,(c)estimated torque,(d)estimated stator and 

rotor flux magnitudes 

          The discrete KF uses the first two statistical 

moments and updates them with time. This is the 

key idea when combining the UT and KF to 

obtain UKF. The UKF is basically the discrete 

KF in which an UT is used to obtain the mean 

and covariance updates. The UKF as presented 

here is a simplified UKF which is suitable for 

estimation of IM states. In general, the 

observation model can also be nonlinear and all 

parameters and functions can be time-varying. 

Moreover the UKF can be extended to the case of 

non-additive noise [8]. 

 Given the discrete-time nonlinear system 

                

 

 

 

 

 

 

 

 

 

 

 

 

 

 

     

 

                (d)  

Fig.2-Simulation results for low speed  operation of IM with square 
speed reference of 12 rad/s and general UKF(a)estimated speed 

(b)measured speed (c)estimated torque(d)estimated stator and rotor 

flux magnitudes 

and a linear measurement model 

𝑧𝑥 = 𝐻. 𝑥𝑘 + 𝑣𝑘                               (10)                                              

Where 𝑥𝑘 is an n×1 state vector, 𝑧𝑘 is an m×1 

measurement vector, H is the measurement 

matrix (m×m) and f (𝑥𝑘 , 𝑢𝑘 ) is a known 

nonlinear state transition vector. It is assumed 

that the process noise 𝑤𝑘  is white and zero mean 

with covariance matrix Q and measurement noise 

𝑣𝑘  is also white and zero mean with covariance 

matrix R. Estimates of the initial state 𝒙 𝟎
+and the 

initial error covariance matrix𝑷𝟎
+ are available. 

The iterations in the classic KF consist of a 

prediction  
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 Fig-Simulation results for high speed operation of IM with speed of 
200 rad/s(a)estimated speed with EKF ,(b)measured speed with 

EKF,(c)estimated speed with general UKF,(d)measured speed with 

general UKF  

step followed by a correction step. For the 

correction step the discrete KF equations are 

used. 

𝐾𝑘 = 𝑃𝑘
−. 𝐻𝑇 . (𝐻. 𝑃𝑘

−. 𝐻𝑇 + 𝑅)−1           (11)           

       

𝑥 𝑘
+ = 𝑥 𝑘

− + 𝐾𝑘 . (𝑧𝑘 −𝐻. 𝑥 𝑘
−)              (12)                 

      

𝑃𝑘
+ =  𝐼 − 𝐾𝑘 . 𝐻 . 𝑃𝑘

−                                      (13)    

Where 𝑘𝑘  is the Kalman gain. 

The prediction step in the KF is the projection of 

the mean 𝒙 𝒌
+ and covariance 𝑷𝒌

+ in time using the  

 

 

 

(a)  

(c) 

 

(d)  

Fig.4: Simulation results for low speed operation of IM with speed 

of 60 rad/s(a)estimated speed with EKF(b)measured speed with 
EKF(c)estimated speed with general UKF(d)measured speed with 

general UKF 

state equation (recall that the KF estimates are 

unbiased). For the nonlinear system of (9), the 

state equation is a nonlinear transformation of a 

stochastic input 𝒙𝒌 . Hence, the UT can be used 

to obtain the mean 𝒙 𝒌+𝟏
+  and covariance 𝑷𝒌+𝟏

−  of 

its output. 

The mean𝒙 𝒌
+  and the covariance 𝑷𝒌

+  of 

the stochastic input  𝒙𝒌 are used to obtain a set of 

sigma points𝝈
𝒙 𝒌

+
(𝒊)

, (i= 0, 1, 2,…., N) and the 

corresponding weights (W
(i)

, i=0,1, ….., N). Then 

the sigma points are projected in time using the 

non linear transformation(9). 

(b) 

 

(c) 1 
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Fig:5-  Simulation results for low speed operation of IM with speed 

of 120 rad/s (a)estimated speed with EKF(b)measured speed with 
EKF(c)estimated speed with general UKF(d)measured speed with 

general UKF 

Given the projected sigma points𝝈𝒙 𝒌+𝟏
−

(𝒊)
, the 

predicted mean  𝑥 𝑘+1using (1) and the predicted 

error covariance 𝑃𝑘+1
− using the following 

modified version of (2) are calculated. 

𝑃𝑘+1
− =   𝑊(𝑖)  𝝈𝒙 𝒌+𝟏

−
(𝒊)

− 𝒙 
𝒌+𝟏

−   𝝈𝒙 𝒌+𝟏
−

(𝒊)
−𝑁

𝑖=0

𝒙 
𝒌+𝟏

−
 
𝑇
 +  𝑄                        (15) 

 Although the UKF is computationally costly, its 

computational load is acceptable for modern 

microprocessors. The most costly operations are 

the Cholesky factorization and outer products in 

obtaining the covariance of the projected sigma 

points. While the latter is an inevitable costly 

operation, Cholesky factorization can be 

simplified then the error covariance matrix is  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

       

  Fig:6-Simulation results for low speed operation with speed of 
300rad/s(a)estimated speed with EKF (b)measured speed with 

EKF(c) estimated speed with general UKF (d)measured speed with 

general with general UKF 

sparse. Since the load torque TL appears only in 

the swing equation, its cross-correlation with 

both currents and both fluxes is negligible and it 

can be considered independent of both the 

currents and the fluxes. In addition, the 

orthogonality of the axes implies that φsα and φsβ 

are independent, as are isα and isβ. Consequently, 

the covariance matrix is sparse. For application to 

the IM, symbolic manipulation can be used to 

simplify the expressions off-line and thereby 

significantly reduce the computational load. 
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(b)  

Fig.7-Simulation results for rotor resistance 

(a) rotor resistance with EKF (b)rotor resistance with UKF 

 

           IV INDUCTION MOTOR MODEL 

             The IM state space model in the stator 

reference frame is 

𝑑𝜓𝑠

𝑑𝑡
= −𝑅𝑠𝑖𝑠 + 𝑢𝑠                                   (16)                                                                             

𝒅𝒊𝒔𝒔

𝒅𝒕
= − 

𝟏

𝑻𝒓𝝈
+

𝟏

𝑻𝒔𝝈
− 𝒋𝝎𝒓 𝒊𝒔 +

𝟏

𝑳𝒔𝝈
 
𝟏

𝑻𝒓
−

𝒋𝝎𝒓 𝝍𝒔 +
𝟏

𝑳𝒔𝝈𝒖𝒔
                                      (17)                                 

𝒅𝝎𝒓

𝒅𝒕

𝟑

𝟐𝑱
𝒑𝟐 𝝍𝒔𝜶𝒊𝒔𝜷 −𝝍𝒔𝜷𝒊𝒔𝜶 −

 
𝑻𝑳

𝑱
𝒑                                                             (18)                               

𝑑𝑇 𝐿

𝑑𝑡
= 0                                                   (19)                                                                                  

Where φs is stator flux space vector, is is stator 

current vector, p is the pole pairs, J is the inertia, 

Rs and Rr are the stator and rotor resistances, Ls 

and Lr are the stator and rotor inductances, and 

Lm is magnetizing inductance.  𝑻𝒔 =
𝑳𝒔

𝑹𝒔
, 𝑻𝒓 =

𝑳𝒓

𝑹𝒓
, 𝝈 =

𝑳𝒔𝑳𝒓−𝑳𝒎
𝟐

𝑳𝒔𝑳𝒓
 . ωr is the rotor speed, and us = 

usα+ j usβ  is the stator voltage vector, which is the 

system input. The load torque is TL, it is usually 

unknown, and in this model is assumed constant. 

The choice of stationary reference frame results 

in a simpler mathematical model and a simpler 

UKF design. However the UT is applicable to 

any state-space representation of the IM, in any 

reference frame, and is not limited to the one 

chosen here. 

To use the discrete KF, the IM model  is 

discretized by solving the system’s state equation 

to determine the states at the sampling instants. 

To avoid cross-coupling problems, the forward 

Euler method is used which provides an 

acceptable approximation of the system 

dynamics for a short sampling period ts. The 

resulting system is 

𝜓𝑠 𝑘 + 1 = 𝜓𝑠 𝑘 − 𝑡𝑠 . 𝑅𝑠 . 𝑖𝑠 𝑘 + 𝑡𝑠 . 𝑢𝑠(𝑘)                                                                                                

(20)                                                                 

   𝒊𝒔 𝒌 + 𝟏 = 𝒊𝒔 𝒌 − 𝒕𝒔  
𝟏

𝑻𝒓𝝈
+

𝟏

𝑻𝒔𝝈
−

𝒋𝝎𝒓 𝒌  𝒊𝒔 𝒌 +
𝒕𝒔

𝑳𝒔𝝈
 

𝟏

𝑻𝒓
− 𝒋𝝎𝒓 𝒌  𝝍𝒔 𝒌 +

𝒕𝒔

𝑳𝒔𝝈
𝒖𝒔(𝒌)                                                   (21) 

𝜔𝑟 𝑘 + 1 =

𝜔𝑟 𝑘 −
𝑡𝑠

𝐽
𝑝𝑇𝐿 𝑘 +

3𝑡𝑠

2𝐽
𝑝2 𝜓𝑠𝛼  𝑘 . 𝑖𝑠𝛽  𝑘 −

𝜓𝑠𝛽  𝑘 . 𝑖𝑠𝛼 (𝑘)       (22)              

𝑇𝐿 𝑘 + 1 = 𝑇𝐿(𝑘)                                        (23)                                                                                                                    

 The state vector is chosen as 

𝑥 = [𝜑𝑠𝛼      𝜑𝑠𝛽     𝑖𝑠𝛼      𝑖𝑠𝛽     𝜔𝑟      𝑇𝐿]𝑇         (24)                                                                                                                        

The stator current is the measured output and the 

measurement is 
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𝐻 =  
0 0 1
0 0 0

   
0 0 0
1 0 0

                  (25)                                                                                         

Thus, the measurement model is linear. 

         

 V.SIMULATION RESULTS 

     General UKF is a good choice in terms of 

performance and computational load. Only the 

speed estimation and rotor resistance results are 

compared. For an unbiased comparison, the same 

parameter values are used for the general UKF 

and EKF in each simulation. The simulation 

results for general UKF are shown in Fig.1 where  

thirteen sigma points are used and k=1.The speed 

estimation errors are low during both transients 

and steady-state operation, and its overall 

performance in terms of torque and noise is 

excellent. The observer’s low speed performance 

is tested with square wave speed reference.The 

low speed operation of general UKF is shown in 

fig.2. 

             Fig.3 shows the estimation results for 

general UKF in slow reversal operation. Figs-

4,5,6 shows the comparison of EKF and UKF at 

different speeds. Fig .7 shows the rotor resistance 

of IM with EKF and UKF. 

              VI.Conclusions 

       This paper proposes the general unscented 

Kalman Filters and Extended Kalman filter for 

IM drive’s state estimation.The comparison 

includes results for low speed operation of the 

drive. The results of extended kalman filter and 

unscented kalman filter are compared for  speed 

and rotor resistance estimation. 

                   The variation of rotor resistance is 

negligible as the thermal model is not used. If the 

thermal model is used the variation is upto 50% 

due to temperature variations. 

                   The general UKF which provides the 

best performance was compared with the 

conventional EKF under detuned conditions. It is 

concluded that the UKF provides more robust 

performance than the conventional EKF. The 

simulation prove that UKF has the capability to 

deliver superior performance under various 

operating conditions compared to EKF. 

                           APPENDIX 

                The IM name plate data and parameters 

are: 

PN=0.75hp,USN=240V,fSN=60HZ,nN=1725rpm 

,p=2,TeN=3.1Nm,Rs=2.3Ω,Rr=2.5Ω,Ls=Lr=0.25H 

and  Lm =0.24H. 

                 The noise covariance matrices used  

are Q=diag{1.3x  10
-6

, 1.3x  10
-6

,1.4x10
-5

, 

1.4x10
-5

,5.17x10
-7

} and R=diag{120,120}
  

and 

the initial setting is selected as a zero-mean 

vector with an identity error covariance matrix. 
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