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Abstract 

Sustainable development regards the improvement in future generation life by transitioning towards a fossil fuel free 

future. The extensive usage of fossil fuels has large impact on catastrophic climate variations and many other 

aspects of life. Also, the extensive usage of petrol, diesel and other fossil fuels cause a rapid decrease of global 

reserves. Due to promis- ing solutions in terms of sustainability, reduced Co2 emission and other environmental global 

issues, electric vehicles are gaining massive popularity in the automotive industries. Further, lithium-ion batteries 

are widely accepted in EVs because of their high energy density, fast charging/ slow discharging, low weight and 

satisfactory life cycle. In this paper, a com- prehensive review on state of charge (SoC) estimation for lithium-ion 

batteries is proposed which can lead towards reliable and safe operation of electric vehicles. The classification of 

different SoC estimation techniques, methodology used, estimation accuracy and drawbacks are discussed in detail. 

During review, it has been observed that SoC estimation analyze the charging and discharging cycles of battery and 

avoid the overcharging/discharging conditions of the battery. All the findings and insights of the presented review 

will lead to the advanced SoC estimation techniques for lithium-ion batteries for future electric vehicle applications. 

Keywords: Lithium-Ion Batteries, State of Charge (SOC) estimation, Battery Management System, Battery 

Modeling 
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1. INTRODUCTION

Extensive usage of petrol, diesel in the transportation sector have led the world to some serious consequences 

including greenhouse gas emission and global warming. Also, increas- ing cost of crude oil set a bottleneck for the 

automotive industry. World emission regulatory agencies are more concerned about fossil fuel dependency and carbon 

impressions. As per International Energy Agency (IEA)-2022 transportation sector contributed 37% Co2 emis- sions. 

These issues have placed an urge to develop future generation vehicles with alternative fuel resources. In this context, 

Electric vehicles have proved to become promising alternative vehicles which are powered by rechargeable battery cells. 

Various battery technologies are used in EVs including nickel metal hybrid (NiMH) batteries, nickel cadmium 

(Nicd), lead acid and lithium-ion batteries. Among them, lithium-ion batteries are widely accepted and fastest 

growing storage technology due to its promising features. 

However, despite of all positive features, lithium-ion batteries are highly dynamic and nonlinear in nature and 

its performance get affected by aging cycles, material degrada- tion, charging/discharging current and operating 

temperature variations. Thus, the state of charge (SoC) of lithium-ion batteries is one of the important evaluation 

parameters that confirms safe operation of electric vehicles. An accurate SoC estimation leads to extended battery 

life cycle, prevent battery failure by providing the information about driving range or remaining useful power in the 

battery. The main contribution of this review article is to classify different State of Charge (SoC) estimation methods 

for different materialistic com- positions of Lithium-ion batteries. This paper proposed a systematic review of 

published articles in literature to extract information of different SoC estimation methods in order to find out most 

accurate method with respect to battery material composition. Benefits/ drawbacks and challenges of implementing 

various SoC estimation methods are addressed that will be important for vehicle manufacturers. 

The rest of the paper is structures as follows: Section 2 presents the basic concept of SoC in EVs. Section 3 

explains the basic battery modeling methods for SoC estimation in EVs. Section 4 provides a detailed classified 

review of SoC estimation methods for different Lithium-Ion compositions. Section delivers some observations and 

suggestions that will be helpful in upgrading existing SoC methods and for future innovations of implementing new 

SoC techniques. Finally, section 5 summarizes conclusion and selective suggestions which have been coming out 

from the proposed literature review. 

2. Concept of SoC for EVs

State of Charge (SoC) is not a physical quantity and can be estimated by measuring correlated battery 

parameters including voltage, current and temperature as shown in figure 

1. The figure 1 shows the basic functions of a battery management system to ensure optimal and safe usage of battery

charge and acquiring information about battery state for vehicle control.
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Fig. 1. Basic functions of Battery Management System in EVs [1] 

Mathematically, SoC of a battery is defined as the ratio of remaining charge QRemaining to the actual amount of 

charge (as per battery specifications) QActual of the battery; generally expressed in percentage and given as: 

SoC(t) = (QRemaining/QActual) ∗ 100%   

(1) 

The QActual parameter is the actual battery charge that is available at the initial charge/ discharge cycle and 

depends upon discharge current rate and State of Health (SoH). QRemaining is the maximum charge that can be used 

from the battery after a specific period of time. To consider the coulombic efficiency, the above equation can be 

modified as 

where Soc(0) is the initial State of Charge value, I(t) is the charging and discharging battery current, ηi is the 

coulombic efficiency and defined as ratio of discharged electrons to charged electrons in one cycle. Its range lies 

between 0.9 to 1. 
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Table 1: Abbreviations 

Definition Notation Definition Notation 

Open Circuit Voltage VOC Extended Kalman Filter EKF 
Back Propagation Neural Networks BPNN Dynamic Stress Test DST 
Nickel-Manganese-Cobalt NMC First and Second Derivative of Volt- 

age 

Vd1, Vd2 

Transient Voltage Loss and Ohmic 

Voltage Loss 

LV T , LV O 

Nickel Cobalt Aluminum NCA Long Short-Term Memory LSTM 
Levenberg–Marquardt Algorithm LM algo- 

rithm 

Highway Fuel Economy Test HFET 

Urban Dynamometer Driving 

Schedule 

UDDS Unified Cycle Driving Schedule LA92 

Supplemental Federal Test Proce- 

dure 

US06 Beijing Dynamic Stress Test BJDST 

Federal Urban Drive Schedule FUDS Constant Discharge Test CDT 
Hybrid Pulse Power Characteriza- 

tion 

HPPC 

3. Battery Modeling Methods

Various battery models have been developed over the past years with different accuracy levels and computational 

cost. The estimation accuracy of battery life cycle and associ- ated simulation results are dependent upon the 

effectiveness of the battery model. In the literature, these models have been classified in three broad categories 

including equiva- lent electrical circuit model [2] [3], physics based electrochemical models [4] and artificial 

intelligence approach-based data driven approach [5][6]. 

3.1. Electrical Equivalent Circuit Model 

Equivalent circuit model of the battery has been comprised of basic circuit elements including resistor, 

capacitor and voltage source and used to trace the dynamic behavior of the battery. State space equations of the 

model have been used to analyze battery management systems and EV based modeling simulations. Different 

types of equivalent circuit models have been discussed in literature including Rint model [7], Thevenin’s model [8], RC 

model and PNGV (partnership for a new generation of vehicle) model [9]. Their circuit structures have been 

depicted in figure 2. 

The Rint model [10] is simplest practical implementation of Li-ion batteries where output voltage UL is equal to the 

sum of open circuit voltage Uocv and internal circuit resistance 

R. IL is the output load current. Battery SoC and SoH are dependent upon on these mentioned parameters but the

model is not accurate for practical implementation as it leads to uncertainties in the state estimation.

UL = Uocv − ILR   (3) 

The Thevenin’s model is an extension to Rint model with the introduction of parallel RC network in the 

circuit. The internal circuit resistance is the sum of ohmic resistance R and polarization Thevenin resistance RP. 

The transient response of the circuit is depicted by CP . The output voltage UL is given as: 
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Fig. 2. Different types of battery equivalent circuit models 

The RC model is well suited for the dynamic voltage behavior of the battery. The output voltage of the 

circuit can be calculated by the given equation: 
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The PNGV model is an extension of Thevenin’s model by introducing a capacitor in series with the voltage 

source. The problem of accumulation and saturation of load current is solved by PNGV model. The output voltage 

is calculated as: 

UL = Upp − Upc − Upb − Upo

(8) Based on the available literature survey, PNGV model offers acceptable dynamic perfor- 

mance and less operational losses among all the discussed models. 

3.2. Physics Based Electrochemical Model for SoC Estimation 

Since lithium-ion batteries are electrochemical in nature, their electrochemical states can be examined to determine 

their real time state. Solid electrochemical particles and amount of lithium concentration in them determine the 

capacity and output voltage of the battery. The same parameter can be used to determine electrode SoC which can 

be calculated by the following mathematical equation [11]: 

where L is the electrode thickness and R is the radius of the particle. Cs,max signifies the maximum concentration in 

the solid phase and Cs(x, r, t) is the solid phase concentration. Electrochemical model is useful to estimate battery 

degradation level which is mainly due to over-potential in the battery that cause unwanted side reactions, for e.g., 

lithium plating. If over-potential can be estimated, side reactions in the battery can be controlled. 

3.3. Artificial Intelligence Based Data Driven Approach 

Artificial Intelligence based data driven approach is a model free and flexible methodology for SoC prediction. 

Available correlated features or parameters during battery operational cycles can be used to estimate SoC of battery. 

For instance, artificial neural networks [12], fuzzy logic [13], support vector machine [14], Radial basis function 

[15], Gaussian process regression [16] and many more data driven algorithms can be utilized for battery health 

monitoring. These techniques first build battery degradation state space model followed by particle filter or Kalman 

filter to estimate SoC or remaining useful life of battery. 

4. Review of Existing SoC Estimation Techniques

4.1. Lithium Iron Phosphate Battery (LiFePO4) 

In Lithium Iron Phosphate Batteries [17], lithium iron phosphate act as the cathode material and graphitic 

carbon electrode work as anode with a metallic backing. Some distinctive features about this battery are stable 

and constant output voltage with high charge cycle, non-explosive and less heating and better power density. Some 

shortcomings of Lithium Iron Phosphate Battery are low operational performance at low temperature, high self-

discharging rate, low nominal voltage and high manufacturing cost. 

Table 2: Specifications of Lithium Iron Phosphate Battery 

Cell level specifications Lithium Iron Phosphate Battery 

Nominal voltages(v/cell) 3.20V - 3.30V 

Working voltage(v/cell) 3.0-3.20V 

Maximum Charge Voltage 3.65V 

Energy density 90-160Wh/kg

Cycle life(1C) ≥ 2000 

Working temperature range -20 - 75 C 
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4.1.1. Techniques for SOC Prediction 

1. Artificial Neural Networks (ANN) and Machine Learning (ML) Based Approach

Anton et al. [18] proposed Support Vector Regression (SVR) based approach for SOC calculations of lithium iron

manganese Phosphate battery cell. Model parameters have been extracted from charging and discharging cycles of

60 AH battery cell under dynamic stress test cycle. Results offer RMSE value of 0.71% and maximum error value

less than 6%. Wang et al. [19] proposed Extreme Learning Machine (ELM) based SOC estimation framework for

180Ah/3.2v battery at 250c. The estimation accuracy is comparable with back propagation based neural networks and

SVM with less number of training parameters and less computational complexity. Results shows that training time is

4% less in ELM as compared to BPNN with high accuracy. Dang et al. [20] presented the concept of dual neural

networks that adopt open circuit voltage concept to predict state of charge information with fusion battery model. The

proposed fusion battery model is comprised of serially connected two neural networks. First order or second order

electrochemical battery parameters are identified by the first linear neural networks and relationship among these

parameters are analyzed by applying dynamic stress test data on back propagation based second part of neural

networks. Results shows that for Thevenin’s theory-based battery model, the maximum error in state of charge

prediction is 4.82% and is reduced to 0.75% with second order battery model. It has been observed from the results

that accuracy in state of charge estimation can be further improved by using higher order battery model.

Sheng et al. [21] presented Gaussian Process Regression (GPR) based SOC estima- tion. Revolutionary

expectation maximum method has been used for the selection of optimum number of Gaussian processes. Feature

selection has been performed with nonlinear correlation method. Chaoui et al. [22] proposed a input time delayed neural

network based approach for State of Health (SOH) and State of Charge (SOC) prediction of lithium Iron Phosphate

Batteries (LiFePO4). The proposed technique considers the output from three sensors including voltage, current and

ambient temperature of the battery irrespective of other battery parameters. Time delayed neural networks are based

on back propagation learning algorithm for analyzing the battery dynamics. For the training and testing of NN, four

variations in data sets has been proposed. The first data set has been extracted from a new battery and depicted as 0h.

The second, third and fourth data set has been taken with respect to the usage of the battery and it includes 352h,

544h and 650h respectively. It has been depicted in the results that the proposed method is capable to handle

nonlinearity between battery voltage, cur- rent, surrounding temperature and its SOC more accurately as compared to

traditional Multilayer Perceptron (MLP).

Chen et al. [23] worked to estimate the non-linearities in the Li-ion battery. The author designed an equivalent

battery model and apply Radial Basis Function (RBF) based neural network to predict the SOC. The performance of

the proposed model has been compared with Kalman filter. It has been observed from the results that the proposed

approach offers high convergence speed and more precise SOC estimation. Guo et al. [24] proposed three-layer

back propagation neural network for SOC estimation. Simulations has been performed on MATLAB platform with

voltage, current, temperature and internal resistance as the inputs.

Wei et al. [25] introduced Long Short-Term Memory (LSTM) based exogenous in- put neural network for SOC

predictions. The proposed hybrid model resolves the issue of gradient disappearance and gradient explosion by

establishing the jump ahead connection which leads to shorter propagation path for gradient information. The

performance analysis of proposed model has been carried out against PSO based back propagation neural networks,

standard LSTM and least square support vector ma- chine under dynamic stress test and urban dynamometer

driving schedule. The out- put results validate the satisfactory estimation results from the proposed hybrid model. Tian

et al. [26] combined the positive attributes of Adaptive Cubature Kalman Filter (ACKF) and LSTM. To capture the

nonlinear relationship among the measured bat- tery parameters and SOC, LSTM approach has been utilized.

ACKF as a subsequent stage, smooth out the LSTM network output by adaptively updating the noise co- variance

matrices. To validate the generalization ability of the proposed model, DST data set has been used for model

training, US06 and FUDS cycles have been used for testing purpose. Results shows that model offer RMSE value

less than 2.2% and maximum value up to 4.4%. Wang et al. [27] proposed back propagation based neural network

for SOC estimation which has been optimized using artificial fish swarm optimization algorithm. Performance of the

proposed model has been compared with EKF algorithm and concluded that the proposed approach is more cost

effective and realistic then EKF approach.

2. Fuzzy Logic

Esfandyari [28] introduced fuzzy logic and predictive theory-based hybrid model to precisely estimate the state of 

power for series connected Li-ion battery cells. Initially, the power level of a single cell has been calculated by 

predictive control procedure. In the next step, difference between state of charge and concurrent aging state has been 

calculated by fuzzy logic-based model free control system. The proposed framework eliminates the need of online 

charging/discharging curves of individual cells and need only current value of cell voltage and current and can be 
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calculated in offline mode. 

3. Filter-Based Approach/Hybrid Approach

The main issue with data driven approaches is the dependency on the available data. The biased data or incomplete 

data may lead to incorrect SOC estimations. To com- pensate this issue, hybrid model approach can be implemented 

to design an optimized Battery Management System (BMS). Several stochastic filtering approaches that can be 

classified in hybrid modelling have been reviewed in the following section. Gener- ally, filter-based methods have been 

classified as Gaussian process-based filtering and probability-based filtering. 

Di et al. [29] presented EKF based SOC estimation approach. The proposed framework is based on electrochemical 

model of lithium-ion batteries. The performance of the proposed technique has been validated using HPPC profile 

and results in restricting maximum SOC estimation error below 3%. Chen et al. [30] proposed an extended 

Kalman filter based SOC estimation using nonlinear battery model. The nonlinear battery model has been designed 

using second order RC circuit model and open circuit voltage. Experiments have been conducted under four different 

conditions including known initial SOC values, unknown initial SOC values, in the presence of current noise and with 

limited battery parameters. Results validate the effectiveness of the proposed model. Mastali et al. [31] proposed 

Kalman filtering approach for SOC estimation of LiFePO4 batteries. The proposed approach is applicable to 

both prismatic and cylindrical cells. The extended Kalman filter has been used in zero state hysteresis model and 

dual extended Kalman filter has been used in varying parameter hysteresis model for SOC estimation. In dual 

approach, battery SOC and model parameters can be estimated simultaneously. Results shows that a maximum 

error of 4% has been observed in estimating the state of charge of the battery. Yu et al. [32] proposed Kalman 

filter based SOC estimation of Li-ion batteries using open circuit voltage as the only parameter to depict the 

dynamic behavior of the battery. The concept of zero axial straight line has been used to trace the relationship 

between SOC and open circuit voltage. The slope of the line changes with respect to the change in the SOC. Second 

order equivalent battery model has been used to simulate the partially and fully charged battery behavior. Results 

shows an error of less than .5% during the experiments. 

Dong et al. [33] developed an equivalent linearized circuit model to depict the dynamic behaviour of the battery while 

considering open circuit voltage as linearized function for SOC. The estimation of SOC and State of Function (SOF) 

has been carried out by Kalman filter estimation method and analyzed under different temperatures and currents. 

The results indicate RMSE under four different experiments as 1.05% (open circuit voltage test), 4.31% (constant 

power test), 3.51% (maximum discharge capability test) and 1.22% (dynamic current test). Deng et al. [34] utilized dual 

adaptive extended Kalman filter together with first order RC model for SOC estimation. The first filter used to 

identify the battery parameters and second one is used to estimate the SOC. To improve the estimation accuracy, 

ampere-hour counting method has been employed for estimation where the relationship between OCV and SOC is 

highly nonlinear. For online SOC prediction, least square support vector machine has been implemented that will 

consider the effect of degradation and temperature while inputting relevant feature vectors. The proposed model has 

been analyzed using Hybrid pulse test and UDDS cycle test. The tests have been conducted at −120c, 0c, 250c and 

520c and observed error is 6.37%, 4.44%, 4.40% and 4.04% for hybrid pulse test and 5.88%, 4.31%, 4.06% and 

4.64% for UDDS cycle. 

Zhao et al.[35] implemented SOC estimation framework using EKF and central dif- ference Kalman filter. 

Accuracy of the proposed models is evaluated using charge- discharge current and fast charging current. Two 

cases have been analyzed for per- formance measures including difference in the actual terminal voltage and 

estimated value of terminal voltage and second is the truncation error. In both cases central difference Kalman 

filter perform better than EKF. 

Li ei al. [36] presented a methodology to calculate open circuit voltage, resistance and capacitance of Thevenin’s 

eqivalent circuit model of the battery. A capacity estimation algorithm has been introduced to estimate the 

capacity loss during the working cycle of the battery. Furthermore, extended Kalman filter has been used for SOC 

estimation while circumventing the effect of noise. MATLAB platform has been used to simulate the battery model. 

Wu et al. [37] consider the effect of temperature on model parameters. He proposed a battery model which is 

suitable to work at low temperature conditions and have slow discharging rate. Extended Kalman filter approach 

has been used for SOC estimation at different temperatures. The results shows that the average relative error is 

less than 1% for estimating battery terminal voltage and SOC prediction error is 2%. Kim et al. [38] proposed an 

integrated framework of reinforcement learning and extended Kalman filter for SOC estimation of lithium-ion batteries. 

EKF with RC equivalent circuit work as an iterative algorithm where we can define actions and reinforcement 

learning algorithm is used to optimize the EKF parameters. Optimization of rules for adjusting EKF parameters is 
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with respect to the battery characteristics that includes the usage characteristics of the battery, behavioral 

difference in real time battery and battery model and error in initial SOC estimation. Zheng et al. [39] proposed 

a dual Kalman filter algorithm for SOC estimation and to compensate the gaps of EKF algorithm and ampere hour 

integration algorithm. For this, the proposed approach implements linear Kalman fusion with SOC estimations from these 

two traditional methods. The results shows that maximum error has been restricted to less than 2% with the proposed 

technique with high convergence speed. 

Dong et al. [40] presented a Sequential Monte Carlo Filter technique in association with Auto Regressive 

Exogenous Modelling (ARXM) approach for SOC estimation. An ARXM approach is used to trace the transient 

behaviour of the battery with the consideration of temperature variations and model order. Monte Karlo filtering 

approach using nonlinear comprehensive has been used for SOC estimation. Author also proposed Numerical 

Subspace State Space System Identification method for real time monitoring of battery parameters including voltages 

and currents. 

Liu et al. [41] particle filter algorithm-based SOC estimation approach in which re- cursive estimation formula has 

been deduced using sequential importance resampling approach. To further improve the model accuracy, particle filter 

algorithm is revised 

by optimizing the density function. MATLAB based simulation results shows that the proposed method reduced the 

RMSE value to 0.0163. Singh et al. [42] designed an equivalent battery model with three RC pairs connected in 

series with their internal resistance. The parameter values of the model have been calculated by considering the 

charging and discharging rates of the battery and optimization of these parameters has been done with Isqnonlin 

function. An integrated method of open circuit voltage method and coulomb counting method has been for soc 

estimation. The accuracy of the proposed framework has been further improved by using an Adaptive Neuro Fuzzy 

Inference System (ANFIS) algorithm. Simulation results shows that the estimations from the proposed model are 

very close to practical battery data and hence suitable for real time systems. Li et al. [43] focuses on the double layer 

electrochemical modelling of the li-ion batteries by considering electrolyte liquid phase and electrode solid phase. 

Based on the structural characteristics of the double layer model, parameter identification has been done with genetic 

algorithm. SOC estimation has been carried out by EKF and verified by NEDC and 1C pulse discharge cycle. 

Maximum error has been reported as 2.62% with 1C pulse discharge and 2.56% with NEDC. 

Yang et al. [44] proposed LSTM based RNN model for describing the behaviour of the battery under different 

temperature ranges and to estimate the battery SOC with voltage, current and temperature as input variables. To 

further improve the estimation accuracy, unscented Kalman filter has been implemented to filter out the noise. 

Evaluation of the proposed model has been performed under DST, FUDS and US06 drive cycles under the 

temperature range from 00c to 500c. Results shows that RMSE has been restricted to less than 1.1% and mean 

average error is less than 1%. Nguyen et al. [45] presented an integrated framework for SOC estimation using particle 

filter and unscented Kalman filter. Equivalent circuit of the battery is modelled by second order ARXM approach 

and parameter identification has been performed with recursive least square identification approach. Observed RMSE 

is 0.76% in proposed framework as compared to unscented Kalman filter (1.85%) and adaptive unscented Kalman 

filter (1.01%). Sun et al. [46] presented an adaptive intelligent extended Kalman filter to detect the change in fixed length 

error innovation sequence using the maximum likelihood function. Based on the observed changes, innovation covariance 

matrix has been updated which further improves the SOC estimation accuracy. Results shows that in comparison 

with adaptive extended Kalman filter, the RMSE and mean absolute error have been decreased by 43.34% and 55.80% 

respectively. In addition to this, the computation time has been increased by a factor of 4.59%. 
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Table 3: Summary of SOC estimation techniques for Lithium Iron Phosphate Battery(LiFePO4) (Cont.) 

Author Battery 

Ca- pac- ity 

Temperature 

Range 

Methodology Models Training and valida- 

tion 

Error Rate 

Dang 

[20] 

et al. 20Ah − Serially c o n n e c t e d  d u a l   neural 
networks together with Thevenin’s 
theory based battery model 

Dynamic stress data for training 

BP neural networks 

Observed error is 0.75% with sec- 

ond order battery model 

Chaoui et al. [22] 20Ah 100c, 250c, 400c Multilayer perceptron Back propagation-based time- delayed 

neural network w.r.t. us- age of the 

battery 

Observed RMSE is 1.9 ∗ 10−3, 

3.2 ∗ 10−3,3.3 ∗ 10−3, 2.7 ∗ 10−3 
for 0h, 352h, 544h and 650h us- 
age respectively 

Chen 
[23] 

et al. 36Ah 200c Neural networks 
linear observer 

based non- RBF based neural network on 
FUDS drive cycle 

Observed RMSE is 2.23% for 20 
consecutive FUDS cycles 

Wei et al. [25] 20Ah 200c LSTM based exogenous i/p neu- 

ral network with nonlinear auto 

regressive approach 

Training over UDDS and DST 

drive cycles 

Observed RMSE is 0.76% for 

UDDS and 0.78% for DST cycles 

Burgos et al. 

[47] 

185Ah - EKF with fuzzy logic for deriving 

state transition equation 

Trained and validated by 4 sets 

of designed experimental sys- tem for 

fuzzy model, Thevenin’s model, plett 

and Copetti models 

Observed RMSE is minimum for 

fuzzy rule-based system among all 

the systems 

Mastali et al. 
[31] 

20 
Ah 

250c Kalman filtering approach Validated on experimental test 
bench 

Observed maximum error is 4% 

Yu et al. [32] 280 
mAh 

250c Standard Kalman filter Validated on experimental test 
bench 

Observed maximum error is 0.5% 

Dong 

[33] 

et al. 9.5/10/ 

and 12.5/13 
Ah 

–10 450c(Chg)

and –20 600c(Dis)

Kalman filter method validated using open circuit volt- age 

test, constant power test, dy- namic 

current test and maximum 
discharge capability test 

Observed RMSE under four ex- 

perimetral tests are 1.05%, 4.31%, 

3.51% and 1.22% respectively 

Deng et al.[34] 10 

Ah 
−120c, 0c, 250c and 

520c 

• Adaptive extended Kalman fil- 

ter with ampere-hour counting 

method •Least square support 
vector machine 

Validated under Hybrid pulse test 

and UDDS cycle test 

observed RMSE is 6.37%, 4.44%, 

4.40% and 4.04% for hybrid pulse 

test and 5.88%, 4.31%, 4.06% 
and 4.64% for UDDS cycle 

Li ei al. [36] 40 

AH 

- Extended Kalman filter Matlab simulations Observed maximum error is 3.8% 

after the consideration of capac- ity 

loss 
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Table 3: Summary of SOC estimation techniques for Lithium Iron Phosphate Battery(LiFePO4) 

Dong 

[40] 

et al. 9.5Ah 

and 12.5Ah 

100c, 250c, 

450c,−5 − 600c 

Monte Karlo Filtering 

approch with ARXM 
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Yang 

[44] 

et al. 1.1Ah 00c,100c, 

200c, 300c, 

400c,500c 

LSTM with RNN and 

Unscented Kalman filter 

trained and validated 

DST, FUDS and US06 

Nguyen et al. 

[45] 

10 

Ah 
0 − 450c EKF, Particle filter, ARXM and 

Recursive least square identifica- 

tion approach 

Trained a n d  

validated UDDS drive 

cycle 

Liu et al. [41] 2.3 

Ah 

- Auxiliary Particle Filter MATLAB based simulation 

2.1002Ah 250c Adaptive  intelligent  

extended Kalman filter, Genetic 

algorithm 

MATLAB based simulation 

Li et al. [43] 2.5 

Ah 
250C Double layer electrochemical 

model, Genetic algorithm, EKF 

Verified by NEDC and 1C 

pulse discharge cycle 

Sun 

1

et al. [46] 3
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4.2. Lithium-ion Polymer Battery (LiPB) 

Lithium-ion Polymer Batteries are composed of rectangular and cylindrical shaped struc- ture and fabricated using 

solid form of polymer electrolyte. Polyethylene oxide or polyacry- lonitrile are the examples of polymer electrolyte 

which are used as a plastic like sheet which leads to ion exchange but no electricity conduction. Due to this feature, 

these batteries are flexible and can be designed in different economical shapes. Other positive attributes are light 

weight, low risk of overcharging and electrolyte leakage. High manufacturing cost, low energy density, shorter life 

cycle and sensitive to explosions. 

Table 4: Specifications of Lithium-ion Polymer Battery 

Cell level specifications Lithium-ion Polymer Battery 

Capacity Typ. 1000 mAh 

Nominal voltage(v/cell) 3.7V 

Maximum Charge Voltage 4.2V 

Energy density 100 to 158 Wh/Kg 

Cycle life(1C) ≥ 500 

Working temperature range charging 0 45C discharging -10-60C 

4.2.1. Techniques for SOC Prediction 

1. Artificial Neural Networks (ANN) and Machine Learning (ML)

Sun et al. [48] addresses model complexity with respect to the prediction accuracy and presented a method to

estimate the required model order and associated param- eter identification. An equivalent circuit model of twelve

series connected LiPB cells has been used to evaluate the proposed framework. The author implemented Radial

Basis Function (RBF) based neural network to model the bias function and to estimate terminal voltage of each battery

cell. Finally, adaptive extended Kalman filter based framework for state of charge estimation of serially connected

multi cell battery pack with bias correction techniques has been proposed. The results validate that the bias correction

techniques can lead to extended battery model with less computation cost. Results shows that maximum absolute

error of SOC estimation is less than 2% and mean absolute error and standard variations are less than 0.5% by using

bias correction techniques.

2. Filter Based Approach/ Hybrid Approach

Xiong et al. [49] designed an equivalent battery model by considering open circuit voltage at different aging

levels and parameters have been updated using recursive least square algorithm. Real time parameter updation

has been carried out with adaptive extended Kalman filter while considering changing operating conditions and battery

degradation. Results indicate that the proposed model limit the maximum SOC estimation error less than 1.5%. Hu

et al. [50] proposed double step search based SVR approach for SOC prediction that will result in fast training process

by avoiding
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the parameter search in a large range. Simulation results have been extracted from advanced vehicle simulator that 

provide universal cycle conditions. Thus the proposed approach is applicable to all types of battery cells. Kim et al. [51] 

proposed equivalent circuit model for LI-ion battery while considering the hysteresis effect. Parameter 

identification has been performed with diagonal upper triangular least square method. SOC estimation has been 

performed with sliding mode control-based structure filter. Results shows that the proposed approach perform better 

as compared to Extended Kalman filter. 

Meng et al. [52] proposed an integrated framework of Least Square Support Vector Machine (LSSVM) and 

Adaptive Unscented Kalman Filters (AUKF) for SOC esti- mation of Lithium Polymer Battery Cell. Moving 

window method is applied in the initial phase to limit the training samples. LSSVM method has been used to 

calcu- late measurement equation of AUKF technique and updated continuously with new training samples in 

online mode. This step helps to overcome the impact of changes in internal battery characteristics and ensure 

prediction accuracy. The simulation results shows that AUKF offer adaptive noise covariance adjustment as 

compare to Unsected Kalman Filter (UKF). Hao et al. [53] applied particle filter-based approach for SOC estimation 

using a second order equivalent battery model. The parameters of the model have been identified using least square 

method. Chen et al. [54] presented a radial basis function based neural network for SOC estimation. The concept 

used sliding mode observer that helps to adapt uncertain behaviour of the system. Parameter estimation of battery 

equivalent circuit model has been done by forgetting factor recursive least square algorithm. Simulation results shows 

that the proposed model is robust against the nonlinear and time varying behaviour of the batteries. 

Lee et al. [55] introduced a temperature compensated equivalent model for Lithium-ion Polymer Batteries. The author 

also investigated EKF approach to trace the dynamic behaviour of the nonlinear devices. For this a least square 

error algorithm has been implemented between a temperature range of 370c to 400c. Simulation results shows 

that maximum estimation error has been reduced to ±3%. Wang et al. [56] simulated 

Thevenin’s theory-based battery model to measure battery polarization resistance and 

polarization capacitance. Parameters have been identified using bias compensation recursive least square method 

to reduce the effect of colored noise. SOC estimation has been carried out by EKF to further improve the estimation 

accuracy. Performance evaluation of the proposed model has been done under HPPC and DST drive cycles. Results 

shows that mean absolute error has been confined to less than 1%. Wu et al. 

[57] introduced the concept of temperature compensation with Thevenin’s equivalent circuit of battery model and 
verified it with DST drive cycle. For SOC estimation, unscented Kalman filter has been implemented and verified 
using new European drive cycle. Simulation results shows that the maximum SOC estimation error observed is 3%. 
Cui et al. [58] introduced square root cubature Kalman filter approach for SOC es- timation that calculates the 
mean and variance of the state variables. The proposed approach propagates the square root of state variables as 
cholesky decomposition that eliminates the divergence of the filter. The performance has been compared with EKF, 
unscented Kalman filter and cubature Kalman filter. The results shows that the proposed model offer good 
convergence rate with high robustness. Feng et al. [59] integrated the concept of sliding mode observer with weighted 
Kalman filter to address the chattering problem. Second order RC equivalent circuit model has been used with two-or 
multi-order sliding window observer for improved SOC estimation. Performance of the proposed approach has been 
compared with EKF and weighted EKF. Results shows that maximum RMSE value has been confined to 0.096 with 
proposed model.
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Table 5: Summary of SOC estimation techniques for Lithium-ion Polymer Battery (LiPB) (Cont.) 

Author Battery 

Ca- pac- ity 

Temperature 

Range 

Methodology Models Training and valida- 

tion 

Sun et al. [48] 2016 VOC RBF with extended Kalman filter Hybrid pulse test and DST cycles 

Hu et al. [50] - - Double search optimization ap- 

proach on SVR 

Training and validation over AD- 

VISOR(advanced vehicle simula- tor in

the Matlab/Simulink) 

Meng 

al.[52] 

et 70.0 

Ah 
200c to 450c Least square support vector ma- 

chine with adaptive unscented 

Kalman filter 

Trained and validated on exper- 

imental test bench 

Lee et al. [55] 630 

mAh 
370c − 400c EKF  with  least  square 

curve-fitting method 

error MATLAB and LabView based 

test bench 

Xiong 

[49] 

et al. 24 

to 34.5 

Ah 

250c Recursive least square algorithm 

with adaptive EKF 

Validated using FUDS and DST 

drive cycles 

Wang 

[56] 

et al. 2.4Ah 100c Bias compensation recursive 

least squares method, EKF 

Verified using HPPC and DST 

Wu et al. [57] 2600 

mAh 
00c − 450c Temperature compensated un- 

scented Kalman filter 

Verfied using DST and HPPC 

Chen 

[54] 

et al. 5.0Ah 250c RBF based NN, Sliding mode ob- 

server and Recursive least square 

algorithm 

Verified by UDDS and HFET 

Feng 

[59] 

et al. 36 

Ah 

250c Weighted EKF 
with discrete slid- 
ing mode observer 

MATLAB based simulation Observed RMSE value has been 

confined to 0.096 

17
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4.3. Lithium Nickel Manganese Cobalt Oxide (LiNiMnCoO2) — NMC 

The combination of Lithium Nickel Manganese Cobalt Oxide (NMC) act as an electrode for lithium-ion batteries 

with high thermal stability with low heating rate. High energy density, lower cost and longer life span are the 

other advantages of NMC batteries. Low nominal voltage and poor mechanical stability are the main drawbacks 

of NMC batteries. 

Table 6: Specifications of Lithium Nickel Manganese Cobalt Oxide Battery 

Cell level specifications Lithium Nickel Manganese Cobalt Oxide Battery 

Capacity 2,800mAh 

Nominal voltage(v/cell) 3.70V 

Maximum Charge Voltage 4.2V 

Energy density 150–220Wh/kg 

Cycle life(1C) ≥ 2000 

Working temperature range charging 0-50C 

4.3.1. Techniques for SOC Prediction 

1. Artificial Neural Networks (ANN) and Machine Learning (ML) Based Approach

Tong et al. [60] proposed neural network-based SOC estimation methodology with the implementation of load 
classification battery process model. The proposed ap- proach firstly pre-process the battery inputs to sort out the 
operational modes of the battery including idle state, charging and discharging states. Three separate neural 
networks have been trained parallelly with respect to each operational mode. The load profile of vehicle 
operational cycle has been used for model training and duty cycle pulse duration test has been used for validating 
the results. An average error of the order of 3.8% has been observed in estimating the State of Charge (SOCs) and 
can be further reduced by employing suitable filtering techniques at the output. Hossain et al. [61] utilized the 
Principal Component Analysis (PCA) and Particle Swarm Optimization (PSO) techniques in back propagation based 
neural networks to increase the SOC estimation accuracy. PCA technique is used to select most significant input 
feature space and simulation results depicts the selection of seven input parameters that have strong mapping with 
battery SOC. Optimization of proposed model in terms of number of hidden layers and learning rate has been done 
by the PSO algorithm. The proposed model has been evaluated under three electric vehicle drive cycles and 
comparison has been performed with conventional back propagation neural networks and radial basis function neural 
networks. The model offered Root Mean Square Error (RMSE) of 0.47% for USO6 drive cycle, 0.58% for Beijing 
dynamic stress test and 0.72% for Federal urban drive schedule.

Liu et al. [62] presented a Gaussian Process Regression (GPR) based data driven ap- proach for the capacity 

estimation of Nickel Cobalt Manganese Cobalt Oxide (NMC)lithium 
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ion (Li-ion) batteries(21Ah). Depth of discharge rate, cyclic temperature and tendency of capacity aging have been 

considered as the input features for predicting the battery capacity. The author proposed two different structures for 

GPR models by integrating empirical and electrochemical knowledge of battery aging with covariance function. 

The structure ’1’ is capable in removing the irrelevant inputs and extracting the most useful parameters for GPR by 

changing the squared exponential kernel with the relevance determination methodology. The structure 2 combines 

the empirical and electrochemical battery aging parameters with the proposed GPR model using the Arrhenius 

law. The results have been validated by doing comparison with single sequential exponential GPR. It was observed 

that structure ’2’ offers Root Mean Square Error (RMSE) and Mean Absolute Error (MAE)values less than 0.4% 

(0.09Ah) and 0.3%(0.07Ah). Lipu et al. [63] proposed Gravitational Search Algorithm (GSA) based Extreme 

Learning Machine (ELM) model as SOC estimator. The GSA will enhance the generalization performance, 

estimation accuracy and computational speed by optimizing the number of neurons in the hidden layer. The performance 

of the proposed model has been compared with Back Propagation Neural Network (BPNN) with GSA, Radial Basis 

Function Neural Network (RBFNN) with GSA and PSO under different temperatures, vehicle drive cycles and 

noise. The results shows that the model offer RMSE value less than 1% for BJDST cycle and 1.6% for US06 drive 

cycle. 

Yang et al. [64] proposed a Gated Recurrent Unit (RLU) based recurrent neural net- work for battery health 

monitoring. The model makes use of past SOC measurements to estimate the current SOC. Training and testing data has 

been collected from dynamic load profiles of lithium nickel manganese cobalt oxide (NMC) batteries and lithium 

iron phosphate (LFP) batteries. It has been observed that LFP batteries more number of hidden neurons as compare to 

NMC to trace the battery behaviour. Furthermore, NMC offer 2.5% RMSE value and it is 3.5% for LFP batteries. 

2. Support Vector Machine (SVM)

Feng et al. [65] proposed online SOC estimation framework for Li-ion batteries. SVM based predictive model analyze

the charging data of battery cells to depicts the char- acteristic behaviour of Li-ion battery. With constant current,

partial charging time segment of fifteen minutes length has been used as the input for the model. Once the support

vectors are finalized, the model is trained to calculate the SVMs coefficients of cells for different state of health

conditions. Similarity factor has been calculated by analyzing stored SVM charging curves with the data under

consideration. Ex- periments have been conducted with graphite anode and Li(NiCoMn)O2 and results indicate an

error rate of less than 2% in more than 80% cases and less than 3% error in more than 90% cases.

3. Fuzzy Logic

Hu et al. [66] presented a fuzzy logic-based SOC estimation technique for series connected battery cells. The fuzzy

adaptive federated filtering technique overcome the effect of inconsistencies on SOC estimation accuracy. Battery cell

inconsistencies have been characterized by mean plus difference model. To derive the fusion weights of the fuzzy

system, cell mean model combine the initial SOC estimation with the standard deviation. The performance evaluation

has been carried out for individual battery cell. Results shows that over the complete range of SOC estimation, root mean

square error of less than 0.4% (online parameters) and 1% (offline parameters) has been observed.

4. Filter Based Approach/ Hybrid Approach

Wei et al. [67] analyzed three different approaches for online SOC estimation of Li-ion batteries. The methods include

Extended Kalman filter with two parallel co-estimation filters, hybrid model that uses recursive least square algorithm

for parameter identi- fication and EKF for SOC estimation and third one is Rayleigh quotient and noise

compensation based recursive least square method (RNRLS) for parameter identification and EKF for SOC estimation.

A comparative analysis shows that recursive least square approach with extended Kalman filter offers low

computational cost but losses the accuracy with the increase in noise and bias factor. On the other hand, RNRLS- 

EKF is more robust to noise interference but suitable for higher order models. Zhang et al. [68] analyzed OCV-SOC

characteristics, capacity characteristics, internal resistance characteristics, temperature and power characteristics of

battery while conducting capacity and pulse test at different temperatures. Parameters of Second order equivalent circuit

model has been identified using offline parameter estimation approach and used as reference data.

Liu et al. [69] designed a deep belief network and Kalman filter based hybrid model for SOC estimation. The

relationship among battery parameters and battery SOC has been traced by the deep belief network by using its

nonlinear fitting capabilities. The role of the Kalman filter is to enhance the estimation accuracy by eliminating the

effect of measurement noise. The experiment results show maximum mean estimation error is less than 2.2%. Li et al.

[70] considered the effect of white noise on model identifica- tion and SOC accuracy. To address this issue, three bias

compensation techniques has been proposed for recursive least square approach and EKF to improve the estimation

accuracy.
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Table 7: Summary of SOC estimation techniques for Lithium Nickel Manganese Cobalt Oxide (LiNiMnCoO2) — NMC (Cont.) 

Author Battery 

Ca- pac- ity 

Temperature 

Range 

Methodology Models Training and valida- 

tion 

Error Rate 

Tong 

[60] 

et al. 2016 VOC , Vd1, Vd2, 
LV T , LV O, Current 

Parallel training of three neural 

networks based on charge, dis- charge 

and idle mode followed by filtering 

approach 

LM Back Propagation algorithm 

on US06 vehicle drive cycle for 

training and pulse test duty cycle for 

testing 

Average estimation error is 3.8% 

with simple filtering techniques 

Hossain et al. 

[61] 

2017 Voltage, Current 

and Temperature 

BPNN PCA and PSO on BJDST, FUDS 

and USO6 drive cycles 

RMSE observed 0.58%, 0.72%, 

0.47% for BJDST, FUDS and 

US06 respectively. 

Liu et al. [62] 2019 Battery aging ten- 

dency, operational 

temperature and depth 

of discharge 

GPR based model structure • GPR based model ’A’ to elim- 

inate irrelevant inputs •GPR based 

model ’B’ for integrating 

empirical and electrochemical el- 

ements in to GPR model 

Observed RMSE is 0.4% 

Lipu 

[63] 

et al. 2019 Voltage, Current 

and Temperature 

BPNN and RBFNN ELM and GSA algorithm on 

BJDST and US06 drive cycles 

Observed RMSE is below 1% in 

BJDST and below 1.6% in US06. 

Yang 

[64] 

et al. 2019 Voltage, Current 

and Temperature 

RNN with gated recurrent unit Training   and   testing   on 

FUDS(8300 data points) and 

DST(8500 data points) drive cycles 

respectively and FUDS 

Observed RMSE is 3.5% with 

varying temperature range 

Feng 

[65] 

et al. 24Ah 

and 20Ah 
250c SVM Trained and validated on Bat- 

tery Cycler BT-3008 

Observed error is less than 2% er- 

ror for 80% of all the cases, and less 

than 3% error for 95% of all the cases 

Hu et al. [66] 2.2 

Ah 
250c fuzzy adaptive federated filtering Simulation based test bench Observed RMSE is 0.6% and 

1.5% with inline and offline pa- 

rameters respectively 
Liu et al. [69] 2200 

mAh 

- Deep belief network with Kalman 

filter approach 

Validated using DST drive cycle Observed maximum mean esti- 

mation error is less than 2.2% 

Wei et al. [67] 2200 

mAh 

- Dual EKF, Recursive 

square-EKF, RNRLS-EKF 

least Verified by hybrid pulse experi- 

ment 

Observed RMSE is 0.78%, 1.10% 

and 0.69% for Dual EKF, Recur- sive 

least square-EKF, RNRLS- EKF 

respectively 

2
1 
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4.4. Lithium Nickel Cobalt Aluminum Oxide (LiNiCoAlO2) or NCA 

The combination of Lithium Nickel Cobalt Aluminum Oxide is used as cathode in NCA batteries. The 

technology is similar to NMC batteries but Nickel amount is high in NCA batteries. Because of this feature, the 

battery capacity gets extended that contributes to cover longer distances with single charge. Also, integration of 

aluminum leads to higher operational stability. Thermal breakdown, early aging and safety issue are the main concerns 

for NCA technology. 

Table 8: Specifications of Lithium Nickel Cobalt Aluminum Oxide Battery 

Cell level specifications Lithium Nickel Cobalt Aluminum Oxide Battery 

Capacity 180 to 200 mAh/g 

Nominal voltage(v/cell) 3.60V 

Maximum Charge Voltage 4.2V 

Energy density 256Wh/kg 

Cycle life(1C) ≥ 500 

Working temperature range charging -30-60C 

4.4.1. Techniques for SOC Prediction 

1. Artificial Neural Networks (ANN) and Machine Learning (ML) Based Approach

Chemali et al. [71] offered a framework to self-learn the network parameters using long LSTM cell based Recurrent

Neural Networks (RNN). The proposed approach precisely estimates the battery SOC directly from the voltage, current

and temperature measurements without computationally complex inference algorithms and filters. Stochastic gradient

descent algorithm based self-learning approach results in lesser number of drive cycles for model training.

Furthermore, the proposed framework can accurately estimate the SOC at different ambient temperatures and with

different scarce data sets. Zhang et al. [72] proposed deep learning-based estimation of remaining useful life of Li-

ion battery. To consider the time dependent capacity degradations, Recur- rent Neural Network (RNN) with long

short-term memory approach is used. Mini batch training of designed neural network has been implemented using

mean square back propagation approach. To resolve the issue of overfitting, a dropout technique is employed which

improves the prediction accuracy of proposed network. Monte Carlo approach has been used to simulate the

performance analysis between the proposed model, Support Vector Machine (SVM)and simple RNN model.

Predictions can be carried out independent to the offline training data and if some offline data is available, remaining

useful life predictions can be carried out earlier in comparison to traditional methods. The experimentation has been

carried out at two different temperatures and at different current rating. Results validate that the proposed RNN

model leads to more precise and accurate results as compare to SVM and simple RNN model.
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Xia et al. [73] presented a Levenberg-Marquardt (LM) algorithm optimized multi layer wavelet neural network for 

accurate SOC estimations. For optimum results, the proposed model is combined either with particle swarm 

optimization technique (PSO), piece-wise network model and and linear smoothing method, based on the specific 

characteristics of SOC estimation. The performance comparison has been carried out against Kalman filter and back 

propagation neural network. The piece wise network model offer minimum value of Mean Absolute Error (MAE) 

as 0.6% and maximum value up to 5% for New European Driving Cycle. 

Chemali et al. [74] introduced deep learning-based feed forward neural networks model 

for SOC estimations. Deep learning-based ability make the model to self-learn the weights and associated 

parameters. The ambient temperature ranges from −200c to 250c has been used to train the model so that the battery 

behaviour at different temperature ranges can be directly mapped to the weights of the proposed model. The model 

is also able to overcome the imperfections in vehicle’s measurement devices in terms of measurement offsets, noise 

and gains. The results validate that the proposed model offers Mean Absolute Error (MAE) in the range of 

1.10%to2.17%. Zhang [75] further improves the performance of the model by introducing a fusion technique to 

reduce the amount of data that is needed for accurate estimation of battery health conditions. For the 

implementation of fusion technique, relevance vector machine is used for feature extraction and particle filter is 

employed to update the relevant parameters for accurate ageing model. Zhang et al. [76] introduced a hybrid 

approach of ampere hour counting method and back propagation neural networks for SOC estimation. The performance 

of the proposed method has been validated under different aging cycles and results shows that maximum SOC 

estimation error has been confined to ±2.0%. 

Hannan et al. [77] proposed exogenous inputs based recurrent autoregressive non- linear neural network for SOC 

estimation. The proposed model integrates Lightning Search Algorithm (LSA) to make the system more robust and 

accurate under different working conditions. The experimental data has been obtained from hybrid pulse power 

characterization test and constant discharge test. The performance analysis has been carried out between the 

proposed model and backtracking search algorithm, gravitational search algorithm and particle swarm optimization 

technique. Results validate that the proposed model achieve lowest SOC estimation error and lowest objective 

function under different operating temperature ranges. Fasahat et al. [78] implemented a combined model of LSTM 

and autoencoder neural network. Relevant feature selection has been performed by autoencoder neural network and 

precise capturing of data trend has been performed by LSTM. The proposed model is evaluated and offer satisfactory 

estimation results with Federal Urban Driving Schedule (FUDS) and Dynamic Stress Test (DST). Zhang et al. [79] 

proposed a Fast Recursive Algorithm (FRA) based Radial Basis Function (RBF) neural network. FRA has been 

used to select relevant and compact input set which is highly correlated with SOC parameters. It is further utilized 

to prune redundant hidden layer neurons. For kernel parameter optimization, PSO algorithm has been used. Chandran 

et al. [80] evaluated six machine learning models for SOC estimation including Gaussian process regression, artificial 

neural networks, linear regression, support vector machine, ensemble boosting and ensemble bagging. From the simulation 

results, it has been concluded that Gaussian process regression and artificial neural networks with support vector 

machine offer high prediction accuracy as compared to rest of the models. 

2. Genetic Algorithm (GA)

Chen et al. [81] designed a grey system theory-based battery model with sliding window concept for the adjustment

of model variables with respect to different oper- ating conditions. Parameter optimization has been performed by

Genetic algorithm. Performance validation has been carried out with device under test cycle for different discharge

rates and temperature.

3. Fuzzy Logic

Zheng [82] introduced a fuzzy logic based sliding mode observer for state of health monitoring in EVs. Dynamic

behaviour of the battery cells has been traced by resistor- capacitor equivalent circuit model with exponential fitting

method for parameter up- dation. The relationship between state of charge and open circuit voltage has been

demonstrated by piece-wise linear fitting approach. Results have been verified under New European Drive Cycle, West

Virginia suburban driving schedule and Federal Ur- ban Driving Schedule. Comparison of the proposed model has

been carried out with conventional sliding mode observer and extended Kalman filter. Results shows that an average

estimation error with fuzzy logic based sliding mode observer is less than 1% and quickly converge to 3% with in

2400s.
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Table 9: Summary of SOC estimation techniques for Lithium Nickel Cobalt Aluminum Oxide (LiNiCoAlO2) or NCA (Cont.) 

Author Battery 

Ca- pac- ity 

Temperature 

Range 

Methodology Models Training and valida- 

tion 

Error Rate 

Chemali et al. 

[71] 

2017 Voltage, Current, 

Temperature 

RNN with LSTM Stochastic gradient descent al- 

gorithm over HWFET,UDDS, 

LA92 and US06 drive cycles 

• MAE is 0.573% with fixed tem- 
perature •MAE is 1.606% with 
temperature variations from 100c 
to 250c 

Zhang 

[72] 

et al. 2018 Voltage, Current, 

Temperature 

RNN with LSTM • Mini batch gradient descent al- 

gorithm with dropout technique to 

address overfitting •Monte carlo 

simulation to estimate un- 

certainties 

LSTM offer minimum error in 

comparison with simple RNN and 

SVM techniques 

Xia et al. [73] 2150 

mAh 

25% LM  algorithm  based  wavelet 

neural networks optimized by 

integrating piecewise network method 

- - 

Chemali et al. 

[74] 

2018 Voltage, Current, 

Temperature 

Deep feed forward neural net- 

works 

Stochastic gradient descent al- 

gorithm over HWFET,UDDS, 

LA92 and US06 drive cycles 

• Observed MAE is 1.10% at 250c
temperature •Observed MAE is
2.17% at -200c

Hannan et al. 

[77] 

3200 

mAh 
00c − 450c • RNN with nonlinear au- 

toregressive exogenous inputs 

• Lightning search algorithm 

Training and validation on CDT, 

HPPC, DST and FUDS drive cy- cles 

Observed RMSE is 0.68% for 

CDT, 0.43% for HPPC, 0.56% 

for DST and 0.86% for FUDS. 

Fasahat et al. 

[78] 

2000 

mAh 
00c,250c, 450c LSTM based autoencoder neural 

network 

Training and validation on DST 

and FUDS 
• Observed RMSE is 0.99 at 00c, 
1.1 at 250c, 0.6 at 450c for DST drive 
cycle •Observed RMSE is 

1.69 at 00c, 1.81 at 250c, 0.5 at 
450c for FUDS drive cycle 

Chen 

[81] 

et al. 2.0 

and 2.6 

Ah 

40c, 240,440c Grey model and genetic algo- 

rithm 

Experimental test bed Observed relative error is 0.13 

Zheng [82] 2150 

mAh 
00c, 250c, 450c Fuzzy logic based sliding mode 

observer, Piecewise linear fitting 

model 

Training and validation 

FUDS, WUBSUB, NEDC 

on Observed RMSE is 5,0.97,2.12 at 

00c, 250c, 450c respectively 

2
5
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5. CONCLUSION

The presented review classified different material compositions or technologies under lithium-ion batteries and 

compare them on the basis of their merits, demerits and specifica- tions. This review critically investigates different SoC 

estimation algorithms/methodologies with a focus on their use in electric vehicles. An accurate estimation of SoC 

is a major research issue because of the sensitivity of Li-ion batteries towards internal electro-chemical reactions, 

temperature, cell imbalance, variable hysteresis features, self-discharge and bat- tery aging. 

The review concluded that direct measurements of physical quantities or conventional methods are easy in 

implementation but their performance is highly affected by temperature variations, battery aging and drifts. The battery 

model based SoC estimation is more precise in comparison to Conventional methods. Adaptive filtering-based 

estimation approach can precisely trace nonlinear dynamic behaviour of the battery state but offers poor robustness 

and high computational complexity. The machine learning based SoC estimation techniques performs precisely for a 

nonlinear dynamic behaviour system. These models maintain their accuracy level under temperature instability 

and battery aging effect but require a high-speed controller and high storage time for complex calculation. During 

survey, it has been observed that integration of various SoC estimation techniques for eg. Machine learning models 

followed by filtering approach can lead to higher degree of accuracy in battery health monitoring and thus safe EV 

operations. 

5.1. Research Areas for Future Innovations 

Based on the proposed comprehensive review, there are some selective suggestions for future development of 

SoC estimation methods, such as: 

• Detailed analysis is needed while finalizing battery modeling parameters and hyper parameters while implementing

model driven or data driven SoC estimation methods.

• Computation complexity of data driven models need to be addressed by considering various optimization

techniques.

• SoC estimations need to be further analyzed in real world environment including noise effect, aging and temperature

variations.

• In achieving full-fledged market acceptance, durability, safety and mobility of lithium-ion batteries need to be

addressed.

• A highly efficient real time battery management system is must for EVs that can achieve thermal stability, charge

equalization, fault diagnostics and risk prevention for accurate SoC estimations.

• A benchmark and validated, generalized SoC estimation method is needed.

The author assume that these suggestions would contribute in the direction of accurate SoC estimations. Also, 

future SoC estimation technologies for lithium-ion batteries will dominate the future EV market. 
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