
A Comprehensive Survey of Operating
Systems for Smart Home Networks

Based on IOT

home and control them from a single platform. A

comprehensive smart home OS must be able to create an

intelligent system by providing technical support to all

types and categories of IoT devices. An example of

choosing a smart home OS is the need of the hour, and

thus we conducted a critical survey of Smart Home

Operating Systems. We also studied existing survey

papers and listed the features of these surveys.

3 REVIEWS OF LITERATURES

3.1 IoT Ecosystem: A Survey on Devices, Gateways,

Operating Systems, Middleware, and

Communication [2]: In this article, Bansal et al.

categorized IoT as high-end and low-end, and further

formed sub-categories such as Linux-based OS and Non-

Linux-based OS. In this study, the authors listed and

briefly explained the design features for lightweight OS,

such as Architecture, Scheduling, Memory management,

interfaces and communication protocols, interfaces and

communication protocols, simulation ability, Security,

Development model, power management, and

multimedia features.

3.2 Internet of Things (IoT): operating system,

application and protocol design, and validation

techniques [3]: In this paper, Zikria et al. stated that the

important features to be considered when selecting a

Lightweight OS are Energy Efficiency, Memory

Footprint, Support for Heterogeneous

Hardware, Network Connectivity, Interoperability

and Security features. 3.3 WSN OPERATING

SYSTEMS FOR INTERNET OF THINGS(IOT):

A SURVEY [4]: In this study, Yaqoob et al. listed

design features such as Architecture,

Programming Model, Scheduling, Memory Management,

Resource Sharing and Real-time Application Support for

some popular OS such as TinyOS, Contiki, MANTIS,

Nano-RK, LiteOS, and RIOT. They also prepared a

comparative analysis table of these features.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

Vol. 13 Issue 10, October 2024

ABSTRACT
The entire world is leaping with the biggest technological
steps and moving towards automated lifestyles with either
Artificial Intelligence networks or IoT networks. The
researchers in the field of Computer Science are
steering extensive studies to provide various services and
Smart Home Automation is one such service. This study
guides those enquirers who want to choose a safe and
secure smart home system with suitable operating
system (OS) that assists the development of reliable
application software for home automation by
providing a convenient and safe abstraction of IoT
devices. The study has taken up comparison of
existing surveys and available Operating Systems for
Smart Home Networks.

KEYWORDS: Smart Homes, Cooja, Constrained devices,
TinyOS, Contiki.

1 INTRODUCTION

Researchers in the fields of science and technology

always focus on making the fruitions of their projects

revolutionize various fields such as homes, health,

education, construction, automobiles, a nation’s

infrastructure, and agriculture [1]. The field of IoT is such

an affluence in technology, where anything and

everything can be connected to the Internet and controlled

remotely. The use of sensors to accumulate data without

any human intervention has made IoT a ubiquitous field

and has amplified the process of transforming the human

lifestyle. Studies in this field fall into numerous

categories. The The extensive survey of research papers

in the field of IoT shows that most of the researchers have

taken up common issues in the fields such as security,

performance of IoT networks, performance analysis of

various protocols, the IoT Eco system, the performance of

Operating Systems etc. The OS plays a major role in IoT

networks because most of the components and devices

have constrained resources. IoT OS has varied hardware

constraints such as low memory, less computational

power, limited resources, and low battery life, and studies

have shown that the IoT OS must be equipped to handle

these constraints; however, the complexity of the OS must

be kept low because the MCU will work at very low clock

cycles. Although a number of Operating Systems for IoT

are now available, many of them require optimization

with reduced complexity. This study contributes to a

distinct comparison perspective on IoT OSes.

IJERTV13IS100108

Suparna N, Manjaiah D H
Department of PG Studies and Research in CSc,

Mangalore University Mangalore, Karnataka

Home automation is no longer a dream or part of a
science-fiction movie. Smart homes have come to
existence, and the number of families adapting smart
home technology is exponentially increasing worldwide.
IoT Home Automation controls the electrical or electronic
appliances of our homes using Internet-connected
systems. The Operating Systems used in IoT networks are
called Smart Home Operating Systems and are designed 
to coalesce all the connected devices across the

2 THE IMPETUS FOR THE STUDY

www.ijert.org
www.ijert.org

3.4 Survey on Operating Systems for the Applications of

the Internet of Things [5]: Kausar Parveen et al. studied

TinyOS, Contiki, MANTIS, NanoRK, and RIOT, and

summarized these operating systems for the IoT domain

according to the properties of resource constraints,

Architecture, Real-time requirements, Programming

Model, Scheduling, Memory Management and

Protection, Communication Protocol Support, Resource

Sharing, Portability, Failure handling, safety, security,

privacy, scalability, and upgrading for operating system

software.

3.5 IoT Operating Systems and Security Challenges [6]:

This paper presents a brief study of IoT operating systems

and the current security challenges in IoT using RPL and

6LoWPAN (IPv6 over low-power WPAN) protocols.

3.6 Comparative Analysis Of Different Operating

Systems Used For Low-End IoT Devices [7]: This study

focused on lightweight operating systems designed for

low-end IoT devices. This paper presents a comparative

analysis of various operating systems and discusses the

key strategies to consider in their design. These strategies

include general models, scheduling approaches, hardware

considerations, flexibility, and system capabilities.

3.7 Survey of Operating Systems for the IoT Environment

[8]: This paper explores diverse operating systems

designed for resource-constrained IoT environments. It

delves into supported platforms and available developer

tools, and enables communication protocols, offering a

comprehensive overview.

3.8 A Comparative Study Between Operating Systems

(OS) for the Internet of Things (IoT) [9]: Hicham et al.

discussed the important features of OS for IoT, such as

Architecture, Modularity, Communication Protocol

Support. The authors listed the advantages and

disadvantages of the well-known lightweight OS, namely

TinyOS, Contiki, Nano-RK, LiteOS, FreeRTOS, and

RIOT, and compared the features of these Operating

Systems.

3.9 An Overview of the Internet of Things Closed-Source

Operating Systems [10]: In this paper, the authors present

an overview of the common and existing closed-source

Oss for IoT. Each OS is described in detail based on the

set of design and development aspects that we established.

These aspects include architecture and kernel, memory

management, scheduling, power consumption,

networking protocol support, security, programming

models, and multimedia support.

4 PARAMETERS FOR SELECTING SUITABLE IOT

 OS An Operating System (OS) provides services to users

to develop application software with a convenient and

safe abstraction of hardware resources. In Servers and

personal computers, the OS allocates threads to

processors, virtual addresses to locations in memory, and

operates storage devices, peripherals, network devices,

and media on behalf of the user’s application. Generally,

IoT networks and devices make use of embedded

Operating Systems, but many researchers have developed

specific and specialized OSes for IoT. As IoT devices are

built for specific usage, there is no one-size-fits-all

approach to choosing the OS. If the OS chosen is just

adequate for the time being, then it becomes tedious in

future to change or alter the OS, if the user needs to add

some more technologically advanced things or devices

Therefore, the Operating System must provide all the

necessary hardware, applications, and connectivity

requirements of the product, now and in the future. When

selecting the operating system for our Home Automation

IoT project, it is vital to consider some key elements and

common features of various currently available Operating

Systems. Scalability, Portability, Memory Footprint,

Modularity, Security, Compatibility, Simplicity,

Flexibility, Reliability and Consistency are the key

features that facilitate the IoT OS selection.

5 IOT ECOSYSTEM

A set of interconnected devices such as processors,

sensors, actuators, and communication hardware enabled

by Internet connection constitutes an IoT ecosystem. The

basic functioning of IoT system is to acquire,

transmit and perform some tasks on the data they obtain

from their environments.[11] The Internet Engineering

Task Force (IETF) has classified constrained devices used

in the IoT field into different [12] according to the

required memory for storing code and data[2]. Because

the Operating System inhabits a major portion of memory,

researchers are thriving to develop tiny Operating

Systems suitable for resource-constrained devices.

 6 ARCHITECTURES OF OPERATING SYSTEMS

 In an effort to reduce the memory footprint, researchers

are striving to lessen the complexity of the IoT OS, which

has led to no consensus on the architecture for IoT, agreed

universally. The structural design of IoT frameworks and

protocols defines their architectures. This outline

specifies the functions and principles of the physical

components of IoT. Currently, researchers are using five

well-known architectures of IoT OS: monolithic

architecture, microkernel architecture, three- and five-

layered architecture, service-oriented architecture, cloud,

and fog-based architecture [2],[13]. Monolithic

architecture is a combination of the necessary OS

components and applications. The services are

implemented separately, and each service has an interface

for another service. The monolithic approach resulted in

an underprivileged design choice for the OS. The micro-

kernel architecture provides minimum functionality in the

kernel. The application and the OS were built as a set of

interacting modules. Therefore, the kernel size was

reduced. Another type of OS architecture is virtual

architecture, which works on the principle that a virtual

machine is exported to user programs that resemble

hardware[14]. The three-layered architecture consists of

a perception, network, and application layers. As their

names suggest, data are sensed and gathered at the

perception layer, transported at the network layer, and

processed, and the final product is provided at the

application layer. In the five-layered architecture, along

with the three basic layers of the three-layered

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV13IS100108
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

Vol. 13 Issue 10, October 2024

www.ijert.org
www.ijert.org

architecture, two more layers were added to provide more

abstraction to the IoT architecture. The five layers are

perception, transport, processing, middleware, and

application [2]. SOA, or service-oriented architecture, is

a concept designed to build systems that provide services

to applications. It is a design pattern and not restricted

to any programming language A service is a well-

defined self-contained function that represents a unit of

functionality. A service can exchange information with

another service. Here, the API does not change even if the

inner technology and code are changed. This is not

dependent on the state of the other services. It uses a

loosely coupled message-based communication model to

communicate with the applications and other services. In

fog-based architecture, four layers are present between

the physical and transport layers: monitoring, pre-

processing, storage, and security. The monitoring layer

observed and checked the data obtained from the sensors.

The preprocessing layer performs operations on the

sensed data. The storage layer gathers all the processed

data. The security layer is responsible for the integrity and

privacy of data.

7 OPEN-SOURCE VERSES CLOSED SOURCE OS IOT

operating systems employ microcontroller units (MCUs)

to perform fundamental computing tasks on Internet-

connected devices. These operating systems fall into two

main categories: open-source software (OSS) and

commercial or closed operating systems, the latter of

which are also referred to as proprietary operating

systems. OSS code is accessible to everyone, enabling

users to inspect, modify, and enhance it to meet their

specific needs. Many prefer OSS to proprietary systems

because they tend to be more secure, stable, easily

upgradable, and offer greater user control. Some popular

OSS include TinyOS, RIOT, Contiki, Mantis OS, Nano

RK, LiteOS, FreeRTOS, Apache Mynewt, Zephyr OS,

ARM mbed, Yocto, and Raspbian[15]. Linux has

released several lightweight operating systems that are

specifically designed for IoT and WSN networks. These

operating systems can be categorized based on the storage

space required for their installation. Versions such as

Xubuntu, Zorin OS Lite, Arch Linux, Bunsen Labs Linux

Lithium, Bodhi Linux, and Linux Lite require only 1GB

storage space. In contrast, Porteus and Puppy Linux

occupy less than 500MB. Notably, SliTaz and Tiny Core

Linux are the most intriguing options, as they require a

maximum of only 100MB of storage space. An Operating

System whose source code is not accessible by the public

is called CSS or closed Software OS. Only the individual

or institution that has created the OS can change the

source codes of the OS, and it needs a valid license before

installation into any computer. The major names in CSS

are Android Things, Windows 10 IoT, WindRiver

VxWorks, Micrium µC/OS, Micro Digital SMX RTOS,

MicroEJ OS, Express Logic ThreadX, TI RTOS,

Freescale MQX, Mentor Graphics Nucleus RTOS, Green

Hills Integrity, and Particle[10]. The IoT OS must ensure

security, connectivity, interoperability, networking,

storage management, and remote-device management.

Therefore, the development of the IoT OS has become a

competitive task for developers, and several projects have

been set up to perform this tedious task. Some of the

projects are developed by individual researchers such as

Richard Barry, J P Norair, Dave Hudson and Adam

Dunkels. Several studies and surveys have been

conducted, and forums and mail lists have been formed to

improve the functionalities of these projects. In this study,

we examined 18 important Operating Systems for IoT

projects. Table 1 summarizes some IoT OS projects and

papers published on these projects.

Fig 1: Survey results for operating systems used for IoT

devices

(Source: IoT Developer Survey 2016)

IoT operating systems are designed to connect devices

seamlessly. With built-in support for various

communication protocols, they effectively bridge the gap

between different wireless technologies, allowing for

effortless connectivity. Furthermore, these systems are

incorporated with highly secure communication

technologies like Bluetooth, WiFi, Ethernet, WiMAX,

LoRa, Z-Wave and Zigbee etc. and also improve security

by implementing encryption, authentication, and data

integrity measures. Thus, IoT OS ensures that IoT devices

communicate securely, protecting them from

unauthorized access and tampering.

Table 1: The Operating Systems for IoT projects and

 the papers published on those projects

Windows

IoT

Microsoft 1999 [84], [85],

[86], [87],

[10], [88]

MicroC/O

S-III

Micrium, Inc.

Micro-Controller

Operating Systems;

designed by Jean J.

Labrosse

1991 [89], [90],

[91], [81],

[92]

NutOS Dave Hudson –

Original project was

Liquorice.

2000 [93], [94],

[95], [96]

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV13IS100108
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

Vol. 13 Issue 10, October 2024

www.ijert.org
www.ijert.org

7 BRIEF STUDY OF LIGHTWEIGHT OS

7.1 Tiny OS: This is an application specific and component

based Operating System that requires a memory footprint

of 400bytes [97]. TinyOS written using the programming

language nesC and available with BSD license. The SDK

for TinyOS consists of TinyDT, TinyOS Eclipse Plugin –

YETI 2 and Eclipse Editor plugin[8]. It provides excellent

7.2 Zypher: With a smallest memory footprint, Zephyr is a

secure and flexible real time operating system best suited

for smart home networks as it supports more than 100

developer boards. Zephyr requires only 8KB RAM and

this suited for all types of home automation. With

monolithic kernel, Zephyr supports various

architectures such as RISC-V 32, ARM Cortex-M, ,

Tensilica Xtensa, NIOS-II, and Intel x86. This OS is

programmed using Python using Kconfig and Devicetree

as its configuration systems and thus can be ported to non-

Linux operating systems. The project has multi threading

services and priority based pre-emptive scheduling with

round-robin time slicing.

7.3 RIOT: Real Time IoT is a microkernel-based operating

system with a minimum RAM footprint of 1.5kB and ROM

required is around 5KB[99].RIOT supports 16 and 32bit

MCUs such as MSP430 or a ARM7[100]. It does not need

a Memory Management Unit (MMU) nor a Floating Point

Unit (FPU)[31].The RIOT project is developed with a

tickles scheduler for energy efficiency and for real time

scheduling it uses Deterministic O(1) scheduling [32]. It has

a modular structure with low latency interrupt handling. It

offers pre-emptive multithreading service with powerful

IPC[31].

7.4 Mantis OS: MANTIS is a lightweight POSIX-like and

energy efficient multithreaded operating system for

Multimodal Networks of In-Situ micro sensor nodes. It is a

cross-platform embedded OS with pre-emptive time-sliced

scheduling. With a RAM requirement of 500KB,this OS is

well suited for smart home networks. [35], [36], [38].

7.5 LiteOS: This lightweight OS has a Unix-like

programming environment and it consists of three

subsystems viz., LiteFS, LiteShell and Kernel. The user

interacts with IoT devices from LiteShell using Unix like

commands. The Kernel executes these commands and

LiteFS File System provides support to file and directory

related operations[41]. LiteOS runs on platforms such as

MicaZ, with an 8MHz CPU and a memory footprint of

128K bytes of program flash, and 4K bytes of

RAM[101].At the Kernel level LiteOS supports dynamic

memory. This OS implements priority based and round-

robin scheduling in the Kernel. LiteOS dos not have any in-

built networking protocol stacks but it supports plug-and-

play routing stack[102]

7.6 ARM mbed: ARM mbed is single-threaded, event-

driven and modular. It's has good connectivity and low

footprint

7.7 Yocto: With a layered architectural design, The Linux

Foundation collaborative, Yocto Project is a platform to

create customized OS for IoT networks. It has an excellent

support for Raspberry Pi or the BeagleBone, or

MinnowBoard. Yocto Project output can be transferred to

other platform orto another platform. Usually Yocto uses

2GB RAM per virtual core and allows for easy re-use of

code

Project

Name

Organization Year Research papers

published on the

Project

Zephyr Linux

Foundation

2016 [16],[17],[18],[19],[

20]

Tiny OS EECS
Department of

U.C. Berkeley.

2007 [21],[22],[23],[24],[
25],[26], [27]

RIOT Free University

of Berlin
French Institute

for Research in
CSc and

Automation

Hamburg
University of

Applied Sciences

2013 [28], [29], [30],

[31],[32]
[33],[34]

Contiki Adam Dunkels 2002 [28], [29], [30], [31]

Mantis OS MANTIS

Wireless Sensor

Networking
Project,

University of

Colorado at
Boulder

2003 [35],[36],[37],[38]

LiteOS Huawei 2007 [39], [40],[41],[42],

[43]

FreeRTO

S

Richard Barry ;

Real Time
Engineers Ltd.

2003 [34],[44],[45],[46],[

47]

ARM

mbed

ARM employees

Simon Ford and

Chris Styles

2007 [48], [49], [50],

[51], [52], [53]

Yocto The Linux

Foundation

2010 [54], [55], [56],

[57], [58], [59],
[60], [61]

Raspbian Mike Thompson
and Peter Green

at Raspberry Pi

Foundation

2012 [62], [63], [64], [65]

Brillo Google 2015 [66]

Android

Things

Google 2018-

2022

[67], [68], [69],

[70], [71]

Erika

Enterprise

Evidence Srl,

ReTiS Lab

2002 [72], [73], [74],

[75], [76], [77]

OpenTag JP Norair 2011 [78], [79]

uClinux D. Jeff Dionne

and Kenneth
Albanowski

1998 [80], [81], [82],

[81], [83]

support for networking and has incorporated support for
multiple wireless bands and standards [98].

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV13IS100108
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

Vol. 13 Issue 10, October 2024

www.ijert.org
www.ijert.org

7.8 Apache Mynewt: Apache Mynewt requires 8KB of

RAM and 64 KB of ROM. It's kernel takes up only 6KB.

Communication protocols typically take up 50-100KB of

ROM

7.9 Contiki: Contiki is a platform that provides software and

hardware for Wireless Sensor Networks. Adam Dunkels

created Contiki in 2002. Contiki platform has a pre-emptive

multithreading architecture and an event-driven

programming model, which uses Protothreads, Contiki

requires only 2KB of RAM and 40KB of ROM. The Contiki

OS features Cooja, a network simulator[8]

7.10 Brillo: Brillo is a new Android-based embedded OS

for IoT launched in 2016 by Google Being a power frugal

System, it should work with even the most basic hardware.

Only 128Mb of storage and 32MB of Ram is Brillo’s

memory footprint. Brillo is accompanied with the full stack

application framework with complete secure protocol stack

called Weave. It is Open Source Version of Android OS,

which is scaled down to suit resource constrained devices.

Brillo supports connectivity like Wifi and BLE. It also

supports the Thread protocol used in Google’s Nest Devices

and Android Things.

7.11 Android Things: In 2018 Google Launched its first

Operating System built for IoT, called Android Things. To

handle the communication with peripherals and drivers,

This OS has Android Things Library which supports

industry standard protocols such as GPIO, I2C,,PWM ,

UART and SPI.. Google dropped Android Things project in

January 2021 and completely shutdown its console.[67]

7.12 Erika Enterprise: Started in 2002 by Evidence Srl,

ReTiS Lab, Italy, Erika Enterprise is a Real Time OS with

a support for multicore architecture. It is suitable for all

kinds of micro controllers ranging from 8 to 64bits. It also

supports hypervisors such as JailHouse and scaled up in

2018 by adding AUTOSAR and Graphical Editor and thus

making it ready for the Vehicular Ad hoc Networks. The

Erika Enterprise OS contains single image Kernel shared

among various CPUs. Usually in embedded OS, multi-

processor resource policy (MSRP) allows, tasks on a core

to share single protocol stack. But being a multicore

architecture Erica Enterprise needs a flexible spin-lock

model. In 2014 Sara Afshar et al.,[77] proposed “a

flexible spin-based model for locking global resources in a

multiprocessor real-time system” and in 2018 implemented

“the flexible spin-lock model(FSLM) in ERIKA Enterprise

on a multi-core platform.”[73] . S.Muthu N et al[74]

published a hypothesis in 2017 introducing dual stack for

FSLM in the Erica Enterprise.

7.13 OpenTag: Open Tag is a minimal exokernel, open-

source RTOS. Exokernel is used to have a direct contact

with the system architecture. This OS was developed in C

programming language, having Exokernel system

architecture; it has event driven programming and pre-

emptive scheduling model. It is implemented with DASH7

protocol stack. It provides dynamic memory management

and deep sleep mode for power management. DASH7 is a

wireless standard designed for low-power and low-latency

communication. OpenTag is a full featured exo-kernel with

large API and Library. On MSP430 boards OpenTag entails

16-24KB ROM (Flash) and 2KB RAM[78].

7.14 μClinux: μClinux is a open source project developed

by D. Jeff Dionne and Kenneth Albanowski in 1998. The

name μClinux is pronounced as “you-see-Linux”. But the

name actually is the combination of the Greek Alphabet

μ(mu) which stands for Micro, the English Capital C which

is the abbreviation for Controller and the word Linux tells

us the fact that μClinux is derived from the Linux 2.0/2.4

kernel and inherits some features of Linux which are

suitable for embedded OS. This OS supports Motorola 68,

ARM, Sparc, MIPS, Altera and NEC architectures. It is

specifically aimed at CPUs without MMU (Memory

Management Unit) and requires 32 MB and the size of

bootable image starts from 0.8 MB.

7.15 MicroC/OS-III: This is an open-source project

developed by Micrium, Inn and designed by Jean J.

Labrosse. μC/OS-III is the acronym for Micro-Controller

Operating Systems Version 3. It has a microkernel

architecture and its highly portable and scalable. Its

maximum ROM footprint is 24KB and only 1KB Ram is

adequate to use it in microcontrollers and DSPs. µC/OS-III

uses pre-emptive Round-Robin scheduling and is

multitasking OS[103].

7.16 NutOS: Nut/OS is a modular, open source, real-time

operating system with simple RTOS Kernel which

provides services to run Ethernut, the TCP/IP stack. The

Ethernut software network stack is called Nut/Net.[95] It

provides a prevalent API for various protocols. It is easily

configurable and highly scalable. It features Co-operative

multithreading and dynamic memory management. The

memory footprint of Nut/OS is 128/256k bytes Flash

memory and 4K bytes on-chip EEPROM[96].

 7.17 Windows IoT: Windows 10 IOT is a proprietary

operating System developed by Microsoft. It is released in

3 different versions and Windows 10 IoT Core was first

released by Microsoft in August 2015. The Core version is

a light-weight version of Windows 10 and is optimised to

run on small, constrained devices with a memory foot print

of at least 256 MB of RAM memory and 2 GB of storage

memory. Windows 10 IoT Core embedded devices need a

minimum processing power of 400MHz and Windows 10

IoT OS uses pre-emptive scheduling with a Hybrid kernel

Architecture. We have prepared a comparison table of this

paper with 12 other survey papers and tabulated in Table 3

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV13IS100108
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

Vol. 13 Issue 10, October 2024

www.ijert.org
www.ijert.org

Table 2 Study of various features of Lightweight

Operating Systems

8 CONCLUSIONS

Whenever an existing technology botches up, an innovative

and advanced idea pops up and that technology starts

trending. For the subsistence and development of a

technology, its vital software part must be improved and

made more reliable. The augmentation of Internet of Things

is making the smart homes more secure, smarter and

reliable. OS support is vital in facilitating the development

and subsistence of IoT. In this paper, we first investigate the

various IoT OS projects and its contributors. We provide a

comprehensive study of the most used and state-of-art

closed source OSs for IoT. Then, we provide an extensive

overview of the survey papers on IoT OSes, where the

various features of OS are studied in detail, based on the

established designed and development aspects such as

architecture and kernel models, memory management,

scheduling, power consumption, security, development and

programming model[109]

Paper

[9
7

]

[1
0
4

]

[1
0
5

]

[1
0
6

]

[1
0
7

]

[1
0
2

]

[1
6

]

[1
0

]

[1
4

]

[1
0
8

]

[1
2

]

D
is

cu
ss

ed
 F

ea
tu

r
e
s

Architecture Y Y Y Y Y Y Y Y Y Y N

Programming

Model

Y Y Y Y Y Y Y Y Y Y N

Scheduling Y Y Y Y Y Y Y Y Y Y Y

Memory
Management

Y Y Y Y Y Y Y Y Y Y Y

Resource

Sharing

Y Y Y Y Y Y Y N Y Y Y

Real-time
Application

Support

Y Y Y Y Y N N N Y N Y

Portability N Y N N N Y Y N N N Y

Upgradability N Y N N N N N N N N N

Energy

Efficiency

N Y N N N Y Y N N N Y

Resource

constrained
Computing

N Y N N Y N N N N N Y

Failure

handling

N Y N N N N N N N N N

Simulation
Support

N N N N N N N Y N N N

Communicati

on Protocol
Support

N Y Y N Y N N Y N Y N

Supported

platforms

N N Y N Y N N N N N N

Networking
TechNlogies

N N N N N N N N Y Y N

Licence N N Y N N N N N N N N

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV13IS100108
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

Vol. 13 Issue 10, October 2024

www.ijert.org
www.ijert.org

Table 3: Comparison of this paper with other survey papers with respect to number of IoT OS studied

REFERENCES:

[1] G. L. P. Ashok, P. S. Akram, M. S. Neelima, J. Nagasaikumar, and A.

Vamshi, “Implementation Of Smart Home By Using Packet Tracer,”

vol. 9, no. 02, 2020.

[2] S. Bansal and D. Kumar, “IoT Ecosystem: A Survey on Devices,

Gateways, Operating Systems, Middleware and Communication,”

International Journal of Wireless Information Networks, vol. 27, no.

3, pp. 340–364, 2020, doi: 10.1007/s10776-020-00483-7.

[3] Y. Zikria, S. W. Kim, O. Hahm, M. Afzal, and M. Aalsalem, “Internet

of Things (IoT) Operating Systems Management: Opportunities,

Challenges, and Solution,” Sensors, vol. 8, pp. 1–10, 2019, doi:

10.3390/s19081793.

[5] K. Parveen, A. Ali, and G. Asadullah, “Survey on Operating Systems

for the Applications of the Internet of Things”.

[6] M. Asim and W. Iqbal, “IoT Operating Systems and Security

Challenges,” vol. 14, no. 7, 2016.

[7] Z. Riaz, “COMPARATIVE ANALYSIS OF DIFFERENT

OPERATING SYSTEMS USED,” vol. 8, no. 1, pp. 64–72.

[8] T. Borgohain, U. Kumar, and S. Sanyal, “Survey of Operating

Systems for the IoT Environment,” ArXiv, vol. abs/1504.0, 2015,

[Online]. Available: http://arxiv.org/abs/1504.02517

[9] A. Hicham, A. Sabri, A. Jeghal, and H. Tairi, “A Comparative Study

between Operating Systems (Os) for the Internet of Things (IoT),”

Transactions on Machine Learning and Artificial Intelligence, vol. 5,

2017.

[10] A. Al-sakran, M. H. Qutqut, F. Almasalha, H. S. Hassanein, and M.

Hijjawi, “An Overview of the Internet of Things Closed Source

Operating Systems,” 2018 14th International Wireless

Communications & Mobile Computing Conference (IWCMC), pp.

291–297, 2018.

[11] P. Sethi and S. R. Sarangi, “Internet of Things : Architectures ,

Protocols , and Applications,” vol. 2017, 2017.

[12] M. Silva, D. Cerdeira, S. Pinto, and T. Gomes, “Operating Systems for

Internet of Things Low-end Devices : Analysis and Benchmarking,”

IEEE Internet of Things Journal, vol. PP, no. XX, p. 1, 2019, doi:

10.1109/JIOT.2019.2939008.

[13] P. P. Ray, “A survey on Internet of Things architectures,” Journal of

King Saud University - Computer and Information Sciences, vol. 30,

no. 3, pp. 291–319, 2018, doi: 10.1016/j.jksuci.2016.10.003.

[14] F. Javed, M. K. Afzal, S. Member, M. Sharif, and B. Kim, “Internet of

Things (IoTs) Operating Systems Support , Networking

Technologies , Applications , and Challenges : A Comparative

Review,” IEEE Communications Surveys & Tutorials, vol. 20, no. c,

pp. 1–39, 2018, doi: 10.1109/COMST.2018.2817685.

[15] M. H. Qutqut, A. Al-sakran, F. Almasalha, and H. S. Hassanein,

“Comprehensive survey of the IoT open- source OSs,” 2018, doi:

10.1049/iet-wss.2018.5033.

O
p

er
at

in
g

 S
y

st
em

s

O
p

er
at

in
g

S
y

st
em

s
st

u
d

ie
d

Paper [97] [104]
[105

]

[106

]

[107

]

[102

]
[16] [10] [14] [108] [110]

[1

2]

This

paper

RIOT             

LiteOS             

Nano-RK             

MANTIS             

TinyOS             

Contiki             

FreeRTOS             

mBED OS             

SOS             

NutOS             

MicroC/OS-

III
            

uClinux             

OpenTag             

Erika

Enterprise
            

Zypher             

Brillo             

Raspbian             

Android

Things
            

Mynewt             

RETOS             

Linux             

Contiki-NG             

Total 6 5 7 8 7 14 6 9 8 3 4 3 18

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV13IS100108
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

Vol. 13 Issue 10, October 2024

www.ijert.org
www.ijert.org

[16] F. Jaskani, S. Manzoor, M. Amin, M. Asif, and M. Irfan, “An

Investigation on Several Operating Systems for Internet of Things,”

EAI Endorsed Transactions on Creative Technologies, vol. 6, no. 18,

p. 160386, 2019, doi: 10.4108/eai.13-7-2018.160386.

[17] R. K. Panta, S. Bagchi, and S. P. Midkiff, “Zephyr: Efficient

incremental reprogramming of sensor nodes using function call

indirections and difference computation,” Proceedings of the 2009

USENIX Annual Technical Conference, pp. 411–424, 2019.

[18] A. Nyffenegger, “Connecting constrained devices to the cloud using

Zephyr A prototype with nRF Connect Bachelor Thesis,” 2020.

[19] A. Elvstam and D. Nordahl, “Operating systems for resource

constraint Internet of Things devices : An evaluation,” 2016.

[20] Y. K. Lee, Y. Kim, and J. N. Kim, “Implementation of TLS and DTLS

on Zephyr OS for IoT Devices,” 9th International Conference on

Information and Communication Technology Convergence: ICT

Convergence Powered by Smart Intelligence, ICTC 2018, pp. 1292–

1294, 2018, doi: 10.1109/ICTC.2018.8539493.

[21] P. Levis et al., “TinyOS: An Operating System for Sensor Networks,”

in Ambient Intelligence, vol. 00, 2005, pp. 115–148. doi: 10.1007/3-

540-27139-2_7.

[22] P. Thomas, K. Kuladinithi, M. Becker, P. Trenkamp, and C. Goerg,

“Performance Evaluation of CoAP using RPL and LPL in TinyOS,”

pp. 2–6, 2012.

[23] R. Dor et al., “Student installation of TinyOS,” pp. 1–7, 2014.

[24] P. Levis et al., “TinyOS : An Operating System for Sensor Networks”.

[25] P. Levis and N. Lee, “TOSSIM : A Simulator for TinyOS Networks,”

pp. 1–17, 2003.

[26] P. Levis, “TinyOS : An Open Platform for Wireless Sensor Networks

Moore ’ s Law,” 2007.

[27] P. Levis, N. Lee, M. Welsh, and D. Culler, “TOSSIM : Accurate and

Scalable Simulation of Entire TinyOS Applications”.

[28] E. Baccelli, O. Hahm, M. Wählisch, and M. Günes, “RIOT : One OS

to Rule Them All in the IoT To cite this version : RIOT : One OS to

Rule Them All in the IoT,” 2013.

[29] E. Baccelli et al., “RIOT: An Open Source Operating System for Low-

End Embedded Devices in the IoT,” IEEE Internet of Things Journal,

vol. 5, no. 6, pp. 4428–4440, 2018, doi: 10.1109/JIOT.2018.2815038.

[30] T. Eichinger, “The friendly operating system for the IoT,” 2017.

[31] P. Kietzmann et al., “Connecting the World of Embedded Mobiles :

The RIOT Approach to Ubiquitous Networking for the IoT,” no. 2.

[32] K. Roussel, Y. Q. Song, and O. Zendra, “RIOT OS paves the way for

implementation of high-performance MAC protocols,”

SENSORNETS 2015 - 4th International Conference on Sensor

Networks, Proceedings, pp. 5–14, 2015, doi:

10.5220/0005237600050014.

[33] B. Karaduman, M. Challenger, R. Eslampanah, J. Denil, and H.

Vangheluwe, “Platform-specific Modeling for RIOT based IoT

Systems,” Proceedings - 2020 IEEE/ACM 42nd International

Conference on Software Engineering Workshops, ICSEW 2020, pp.

639–646, 2020, doi: 10.1145/3387940.3392194.

[34] T. Wroldsen, “A Real Time Operating System for embedded

platforms,” no. May, 2004.

[35] S. Bhatti et al., “MANTIS OS: An Embedded Multithreaded

Operating System for Wireless Micro Sensor Platforms,” Mobile

Networks and Applications, vol. 10, no. August, pp. 563–579, 2005.

[36] H. Abrach et al., “Mantis,” Network, no. October, pp. 50–59, 2003,

doi: 10.1145/941350.941358.

[37] H. Abrach et al., “MANTIS : System Support For M ultimod A l N e

T works of I n-situ S ensors Technical Report CU-CS-950-03

Department of Computer Science MANTIS : System Support for M

ultimod A l N e T works of I n-situ S ensors,” no. April, pp. 1–15,

2003.

[38] M. Rangan, “Mos (Mantis Os),” 2005.

[39] Q. Cao, T. Abdelzaher, J. Stankovic, and T. He, “The LiteOS

Operating System: Towards Unix-Like Abstractions for Wireless

Sensor Networks,” in 2008 International Conference on Information

Processing in Sensor Networks (ipsn 2008), 2008, pp. 233–244. doi:

10.1109/IPSN.2008.54.

[40] T. V. Chien, H. N. Chan, and T. N. Huu, “A comparative study on

operating system for Wireless Sensor Networks,” 2011 International

Conference on Advanced Computer Science and Information

Systems, pp. 73–78, 2011.

[41] V. Vanitha, V. Palanisamy, N. Johnson, and G. Aravindhbabu,

“LiteOS based Extended Service Oriented Architecture for Wireless

Sensor Networks,” International Journal of Computer and Electrical

Engineering, vol. 2, no. 3, pp. 432–436, 2010, doi:

10.7763/ijcee.2010.v2.173.

[42] LiteOS User ’ s Guide. 2011. [Online]. Available: www.liteos.net

[43] “The LiteOS Operating System Kernel 2.0.1,” 2011.

[44] N. Melot, “Study of an operating system: FreeRTOS,” 2009.

[45] R. T. E. L. Barry, Mastering the FreeRTOS TM Real Time Kernel.

[46] T. Errors, “Getting Started with FreeRTOS on megaAVR® 0-series,”

pp. 1–29.

[47] C. Sabri, L. Kriaa, and S. L. Azzouz, “Comparison of IoT constrained

devices operating systems: A survey,” Proceedings of IEEE/ACS

International Conference on Computer Systems and Applications,

AICCSA, vol. 2017-Octob, pp. 369–375, 2018, doi:

10.1109/AICCSA.2017.187.

[48] S. Martin, “Arm Mbed – AWS IoT System,” no. January, 2018.

[49] A. R. M. Limited, A. R. M. Limited, T. Instruments, C. C. Studio, and

T. Instruments, EM BED D ED SY STEM S : INTRODUCTION TO

ARM ® CORTEX -M MICROCONTROLLERS Volume 1 Fifth

Edition June 2014 Jonathan W . Valvano Fifth edition 2nd printing.

2014.

[50] N. Sudheer, “Hardware Implementation of Mbed to Mbed Through

Controller Area Network Using ARM Cortex Core,” vol. 2, no. 8, pp.

2491–2498, 2013.

[51] P. Primiceri, P. Visconti, A. Melpignano, G. Colleoni, and A. Vilei,

“Hardware and software solution developed in arm MBED

environment for driving and controlling DC brushless motors based

on ST X-Nucleo development boards,” International Journal on Smart

Sensing and Intelligent Systems, vol. 9, no. 3, pp. 1534–1562, 2016,

doi: 10.21307/ijssis-2017-929.

[52] D. Ibrahim et al., Introduction, vol. 1999, no. December. 2018. doi:

10.1016/b978-0-08-102969-5.00001-x.

[53] Rob Toulson and T. Wilmshurst, Fast and Effective Embedded

Systems Design Applying the ARM mbed. 2017.

[54] M. Swain and A. K. Srivastava, “Design of embedded Linux based

voice calling device,” International Journal of Applied Engineering

Research, vol. 10, no. 15, pp. 35095–35102, 2015.

[55] H. Khandelwal, P. Mankodi, and R. Prajapati, “Enhancement of

automation testing system using Yocto project,” Proceedings of the

International Conference on Electronics, Communication and

Aerospace Technology, ICECA 2017, vol. 2017-Janua, no. April

2017, pp. 697–700, 2017, doi: 10.1109/ICECA.2017.8203630.

[56] B. Linux, “Working with Yocto to Build Linux,” 2018.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV13IS100108

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

Vol. 13 Issue 10, October 2024

www.ijert.org
www.ijert.org

[57] S. Rifenbark, “Yocto Project Overview and Concepts Manual,” Yocto

Project, 2018, [Online]. Available:

https://www.yoctoproject.org/docs/2.5/overview-manual/overview-

manual.html

[58] A. P. Navik and D. Muthuswamy, “Dual band WLAN gateway

solutions in Yocto Linux for IoT platforms,” Internet of Things for the

Global Community, IoTGC 2017 - Proceedings, pp. 1–3, 2017, doi:

10.1109/IoTGC.2017.8008968.

[59] A. Biswas, D. Biswas, S. S. Chauhan, and A. Borwankar, “Smart home

equipment control system with raspberry Pi and Yocto,” Proceedings

of the World Conference on Smart Trends in Systems, Security and

Sustainability, WS4 2020, pp. 553–558, 2020, doi:

10.1109/WorldS450073.2020.9210376.

[60] N. X. P. Semiconductors, “Real-time Edge Yocto Project User Guide

Overview,” 2021.

[61] D. Moseley, “Why the Yocto Project for my IoT Project?,” Embedded,

2017, [Online]. Available: https://www.embedded.com/why-the-

yocto-project-for-my-iot-project/

[62] A. Kurniawan, Raspbian OS Programming with the Raspberry Pi.

2019. doi: 10.1007/978-1-4842-4212-4.

[63] G. R. Viswanath, J. A. Sadiq, V. R. Priya, and A. Professor, “Scrutiny

Mechanism By Raspbian,” International Journal of Scientific

Research and Engineering Development, vol. 2, [Online]. Available:

www.raspberrypi.org

[64] W. Harrington and W. Harrington, Learning raspbian : get up and

running with Raspbian and make the most out of your Raspberry Pi.

2015.

[65] G. Howser, “Raspberry Pi Operating System,” Computer Networks

and the Internet, pp. 119–149, 2020, doi: 10.1007/978-3-030-34496-

2_8.

[66] I. I. Pǎtru, M. Carabaş, M. Bǎrbulescu, and L. Gheorghe, “Smart home

IoT system,” Networking in Education and Research: RoEduNet

International Conference 15th Edition, RoEduNet 2016 - Proceedings,

2016, doi: 10.1109/RoEduNet.2016.7753232.

[67] L. Jordan and P. Greyling, “Android Projects”.

[68] S. Arslan, O. Dagdeviren, and G. Kardas, “An IoT LDR Bulb

Application with Android Things Operating System for Smart Cities,”

Proceedings - 2019 Innovations in Intelligent Systems and

Applications Conference, ASYU 2019, pp. 1–5, 2019, doi:

10.1109/ASYU48272.2019.8946400.

[69] V. V. R. Dantu, V. V. S. Sai Dasaradha, and P. Sasikumar, “Unified

Automotive Location Tracking Using Android Things (IoT),”

Wireless Personal Communications, vol. 120, no. 1, pp. 63–79, 2021,

doi: 10.1007/s11277-021-08434-y.

[70] T. Cho, H. Kim, and J. H. Yi, “Security Assessment of Code

Obfuscation Based on Dynamic Monitoring in Android Things,” IEEE

Access, vol. 5, no. X, pp. 6361–6371, 2017, doi:

10.1109/ACCESS.2017.2693388.

[71] S. Arslan, O. Dagdeviren, and G. Kardas, “An IoT LDR Bulb

Application with Android Things Operating System for Smart Cities,”

Proceedings - 2019 Innovations in Intelligent Systems and

Applications Conference, ASYU 2019, no. January 2020, pp. 1–5,

2019, doi: 10.1109/ASYU48272.2019.8946400.

[72] A. Avanzini, P. Valente, D. Faggioli, and P. Gai, “Integrating Linux

and the real-time ERIKA OS through the Xen hypervisor,” 2015 10th

IEEE International Symposium on Industrial Embedded Systems,

SIES 2015 - Proceedings, pp. 218–224, 2015, doi:

10.1109/SIES.2015.7185063.

[73] S. Afshar, M. P. W. Verwielen, P. Gai, M. Behnam, and R. J. Bril, “An

implementation of the flexible spin-lock model in ERIKA Enterprise

on a multi-core platform,” no. 2016, 2022.

Bril, “A dual shared stack for FSLM in Erika Enterprise A dual shared

stack for FSLM in Erika Enterprise,” 2017.

[75] Evidence, “ERIKA Enterprise Manual,” 2012.

[76] P. Pagano et al., “ERIKA and open-ZB: An implementation for real-

time wireless networking,” Proceedings of the ACM Symposium on

Applied Computing, no. May 2014, pp. 1687–1688, 2009, doi:

10.1145/1529282.1529661.

[77] S. Afshar, M. Behnam, R. J. Bril, and T. Nolte, “Flexible spin-lock

model for resource sharing in multiprocessor real-time systems,”

Proceedings of the 9th IEEE International Symposium on Industrial

Embedded Systems, SIES 2014, pp. 41–51, 2014, doi:

10.1109/SIES.2014.6871185.

[78] J. Norair, “Introduction to DASH7 technologies,” Dash7 Alliance

Low Power RF Technical Overview, pp. 1–22, 2009.

[79] A. Vegendla, H. Seo, D. Lee, and H. Kim, “Implementation of an

RFID Key Management System for DASH7,” Journal of information

and communication convergence engineering, vol. 12, no. 1, pp. 19–

25, 2014, doi: 10.6109/jicce.2014.12.1.019.

[80] G. Started, “AN 2119 Getting Started with uClinux for STR71x,” no.

February, pp. 1–19, 2005.

[81] M. Wang and F. Liu, “Research & implementation of

uCLinux-based embedded browser,” pp. 504–508, 2008, doi:

10.1109/apscc.2007.51.

[82] S. Martin, “uClinux CoreCommander BSP User Guide,” vol. 2009,

no. January, 2009.

[83] E. Dodiu, A. Graur, and V. G. Gaitan, “Hard-soft real-time

performance evaluation of linux RTAI based embedded systems,”

Elektronika ir Elektrotechnika, vol. 104, no. 8, pp. 51–56, Oct. 2010.

[84] I. M. Culic and A. Radovici, “Extending the wyliodrin platform for

windows 10 IoT core,” Networking in Education and Research:

RoEduNet International Conference 15th Edition, RoEduNet 2016 -

Proceedings, 2016, doi: 10.1109/RoEduNet.2016.7753246.

[85] J. M. C. Gómez, J. R. Gómez, J. C. Mondéjar, and J. L. M. Martínez,

“Non-volatile memory forensic analysis in windows 10 IoT core,”

Entropy, vol. 21, no. 12, 2019, doi: 10.3390/e21121141.

[86] A. C. Petrini and V. M. Ionescu, “Implementation of the huffman

coding algorithm in windows 10 IoT core,” Proceedings of the 8th

International Conference on Electronics, Computers and Artificial

Intelligence, ECAI 2016, 2017, doi: 10.1109/ECAI.2016.7861103.

[87] P. Sabanal, “I NTO T HE C ORE : I N - DEPTH E XPLORATION O

F W INDOWS 10 I O T C ORE”.

[88] C. Bell, Windows 10 for the Internet of Things. 2016. doi:

10.1007/978-1-4842-2108-2.

[89] J. J. Labrosse and W. Road, μC/OS-III.

[90] W. H. Li, J. Y. Zheng, and C. Yu, “Data acquisition system based on

uC/OS-III embedded system,” Advanced Materials Research, vol.

619, pp. 85–89, 2013, doi: 10.4028/www.scientific.net/AMR.619.85.

[91] L. Peng, F. Guan, L. Perneel, and M. Timmerman, “Behaviour and

performance comparison between FreeRTOS and μC/OS-III,”

International Journal of Embedded Systems, vol. 8, no. 4, pp. 300–

312, 2016, doi: 10.1504/IJES.2016.077774.

[92] J. J. Labrosse, µC/OS-II - The Real-Time Kernel - User’s Manual.

2015.

[93] M. Payer, “Implementation of a Bluetooth Stack for BTnodes and

Nut/OS Version 0.9,” 2004.

[94] M. Strobl, N. Balbierer, and A. Schingale, “Rapid Prototyping

Embedded Systems Using Ethernut Boards,” no. February, 2012.

http://www.ijert.org

IJERTV13IS100108
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

[74] S. M. N. Balasubramanian, S. Afshar, P. Gai, M. Behnam, and R. J.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Vol. 13 Issue 10, October 2024

www.ijert.org
www.ijert.org

[95] “Nut/OS Software Manual”.

[96] M. Considerations, “Nut/OS”.

[97] A. Yaqoob, M. A. Ashraf, F. Ferooz, A. H. Butt, and Y. Daanial Khan,

“WSN Operating Systems for Internet of Things(IoT): A Survey,” in

2019 International Conference on Innovative Computing (ICIC),

2019, pp. 1–7. doi: 10.1109/ICIC48496.2019.8966731.

[98] P. Levis et al., “TinyOS : An Operating System for Sensor Networks”.

[99] E. Baccelli et al., “RIOT : an Open Source Operating System for Low-

end Embedded Devices in the IoT,” vol. 4662, no. c, pp. 1–12, 2018,

doi: 10.1109/JIOT.2018.2815038.

[100] E. Baccelli, O. Hahm, and M. Gunes, “RIOT: One OS to Rule

Them All in the IoT,” 2012.

[101] Q. Cao, T. Abdelzaher, and J. Stankovic, “The LiteOS

Operating System : Towards Unix-like Abstractions for Wireless

Sensor Networks,” pp. 233–244, 2008, doi: 10.1109/IPSN.2008.54.

[102] P. Gaur and M. P. Tahiliani, “Operating Systems for IoT

Devices: A Critical Survey,” in 2015 IEEE Region 10 Symposium,

2015, pp. 33–36. doi: 10.1109/TENSYMP.2015.17.

[103] M. Lv et al., “WCET analysis of the μC/OS-II real-time

kernel,” Proceedings - 12th IEEE International Conference on

Computational Science and Engineering, CSE 2009, vol. 2, no. 2007,

pp. 270–276, 2009, doi: 10.1109/CSE.2009.82.

[104] K. Parveen, A. Ali, and G. Asadullah, “Survey on Operating

Systems for the Applications of the Internet of Things Introductio n,”

pp. 9–16, 2016.

[105] A. Jeghal, H. Aberbach, S. Abdelouahed, and H. Tairi, “A

Comparative Study Between Operating Systems (Os) For The

Internet Of Things (Iot) A Comparative Study between Operating

Systems (Os) for the Internet of Things (IoT),” no. November 2019,

2017, doi: 10.14738/tmlai.54.3192.

[106] N. Al-taleb, “A Study on Internet of Things Operating

Systems,” 2019 IEEE International Conference on Electrical,

Computer and Communication Technologies (ICECCT), pp. 1–7,

2019.

[107] C. Sabri, K. Lobna, and S. L. Azzouz, “Comparison of IoT

constrained devices operating systems : A Survey,” 2017, doi:

10.1109/AICCSA.2017.187.

[108] A. Musaddiq et al., “A Survey on Resource Management in IoT

Operating Systems,” IEEE Access, vol. 6, pp. 8459–8482, 2018, doi:

10.1109/ACCESS.2018.2808324.

[109] O. Hahm, E. Baccelli, H. Petersen, and N. Tsiftes, “Operating

Systems for Low-End Devices in the Internet of Things : a Survey,”

vol. 3, no. 1, pp. 1–16, 2016, doi: 10.1109/JIOT.2015.2505901.

[110] E. Baccelli, O. Hahm, E. Baccelli, and O. Hahm, “Operating

Systems for the IoT – Goals , Challenges , and Solutions Operating

Systems for the IoT – Goals , Challenges , and Solutions,” no. January,

2013.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV13IS100108
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

Vol. 13 Issue 10, October 2024

www.ijert.org
www.ijert.org

