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Abstract-Neural models have transformed the landscape of 

Natural Language Processing (NLP), enabling significant 

advancements in tasks such as machine translation, sentiment 

analysis, and question answering. However, their complexity and 

opacity create challenges in understanding their internal 

mechanisms and decision-making processes. This paper delves 

into interpretability and visualization techniques designed for 

neural models in NLP, emphasizing the growing need for methods 

that enable deeper comprehension of model behavior. Through a 

review of attention mechanisms, saliency maps, and probing 

classifiers, this work explores how these techniques help uncover 

the layers of neural models, offering insights into their predictions 

and outputs. Additionally, case studies on Long Short-Term 

Memory (LSTM) networks and Transformer models demonstrate 

how visualization has been applied to reveal the inner workings of 

these architectures. Finally, the paper discusses the implications 

of interpretability for future research and the potential for the 

development of new tools that could facilitate more transparent 

and accountable NLP systems. 

Keywords: Neural Networks(NN), Natural Language Processing, 

Long Short-Term Memory(LTSM), BERT, GPT 

I. INTRODUCTION

The rise of deep learning has revolutionized the field of Natural 

Language Processing (NLP). Prior to neural networks, NLP 

methods largely depended on statistical models and feature-

based machine learning, which required labor-intensive manual 

feature engineering. These traditional models struggled with 

complex language tasks due to their reliance on hand-crafted 

features and their inability to capture the rich, intricate 

structures of human language. The advent of neural networks, 

particularly models like Long Short-Term Memory (LSTM) 

networks and, more recently, Transformer-based architectures 

such as BERT and GPT, has significantly advanced the state of 

NLP, delivering remarkable performance across tasks like 

machine translation, question answering, and sentiment 

analysis. 

Neural networks have changed the landscape of NLP by 

automatically learning high-level representations of language 

from vast amounts of data. Unlike previous models, which had 

to be meticulously designed to recognize specific linguistic 

patterns, neural models can learn these patterns on their own. 

This ability has allowed for significant breakthroughs, 

particularly with the development of Transformer models. 

Transformers, with their attention mechanisms, have set new 

benchmarks in NLP, enabling much deeper understanding and 

generation of text. As a result, neural networks have replaced 

traditional approaches in many applications, achieving 

unprecedented results in areas like text classification, named 

entity recognition, and summarization. 

However, this success comes with a downside: the "black box" 

nature of neural models. Unlike simpler, more transparent 

models, neural networks are often opaque, making it difficult 

to explain how they arrive at their decisions. This lack of 

interpretability has become a critical issue, especially as NLP 

systems are being deployed in high-stakes fields such as 

healthcare, finance, and law, where understanding the rationale 

behind a model’s output is essential. Interpretability refers to 

the ability of a human to comprehend and trust the decisions 

made by a machine learning model, and in the context of NLP, 

it is vital for ensuring responsible and ethical use of AI systems. 

As a result, researchers have increasingly focused on 

developing methods to improve the interpretability of neural 

models in NLP. Several techniques have been proposed to help 

understand and explain these complex models. One prominent 

approach is the use of saliency maps, which highlight the parts 

of the input that are most influential in a model’s decision-

making process. Another method is to analyze attention 

mechanisms, particularly in Transformer models, where 

attention weights can provide insights into which words or 

phrases the model is focusing on when making predictions. 

Probing classifiers are also used to test what specific linguistic 

knowledge (such as syntax or semantics) is encoded in the 

model’s hidden layers. 

By leveraging these interpretability techniques, researchers can 

gain a better understanding of the inner workings of neural 

models. This knowledge not only helps in diagnosing and 

correcting errors in NLP systems but also fosters greater trust 

in their outputs, particularly in critical real-world applications.  
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Enhancing interpretability ensures that AI systems are both 

effective and accountable, paving the way for safer, more 

reliable deployment of neural NLP models across various 

domains. 

II. BACKGROUND ON NEURAL MODELS

This article [1] explores advancements in text classification, a 

crucial task in Natural Language Processing (NLP) that 

involves categorizing text into predefined categories. The paper 

presents a thorough review of traditional and modern 

approaches to text classification, emphasizing the shift from 

earlier statistical and rule-based methods to deep learning-

based techniques. Initially, Wang reviews conventional 

methods like Bag of Words (BoW) and TF-IDF, which rely on 

manually engineered features. These methods, while 

foundational, are limited by their inability to capture semantic 

relationships between words and contextual nuances within 

text. Support Vector Machines (SVMs) and Naive Bayes 

classifiers are highlighted as widely used algorithms before the 

rise of deep learning. The study then transitions to discussing 

modern deep learning methods, focusing on neural network-

based models such as Convolutional Neural Networks (CNNs), 

Recurrent Neural Networks (RVNNs), and Long Short-Term 

Memory (LSTM) networks. Wang emphasizes how these 

models can automatically learn feature representations from 

raw text, significantly improving classification performance. In 

this paper [2] it reviews existing sentiment analysis approaches 

and propose a hybrid model that integrates Recurrent Neural 

Networks (RVNNs) with Enhanced Multi-Head Self-Attention 

mechanisms. The authors emphasize that attention 

mechanisms, especially Multi-Head Self-Attention used in 

Transformer models, have significantly improved performance 

by enabling models to focus on different parts of the text 

simultaneously. However, they note that while Transformers 

excel at capturing global context, RVNNs are still effective in 

modeling sequential patterns, thus motivating their hybrid 

approach that combines RVNN structures with enhanced self-

attention. The study [14] provide a comprehensive review of 

discourse parsing techniques, emphasizing the advancements 

brought by neural approaches and large-scale pretraining. The 

literature review traces the development of discourse parsing 

from early rule-based systems to modern neural methods, 

focusing on the challenges of capturing both contextual and 

structural information in discourse. Initially, the authors discuss 

traditional discourse parsing methods, which relied on manual 

rules and feature-based machine learning models. These 

methods, while effective in simple cases, struggled with 

capturing complex discourse structures and contextual nuances. 

Rhetorical Structure Theory (RST), a widely used framework 

for representing discourse, was foundational in early 

approaches, but these models required extensive feature 

engineering and were often brittle. The work [15] provide a 

thorough review of existing techniques for extractive 

summarization, particularly for long documents, before 

introducing their novel graph-based approach. The literature 

review explores the evolution of summarization methods from 

traditional machine learning approaches to more recent neural 

network models. It emphasize the potential of graph-based 

approaches to overcome these limitations by representing 

documents as graphs, where nodes can represent sentences, 

passages, or even key entities, and edges capture relationships 

between them. The review highlights how Graph Neural 

Networks (GNNs) have been increasingly adopted for 

document-level tasks as they excel in modeling complex 

dependencies across different sections of a text. The authors 

specifically point out the limitations of existing graph-based 

models, which often treat all relationships uniformly, ignoring 

the heterogeneity of document structures. This motivates the 

introduction of their Heterogeneous Graph Neural Network 

(HeterGraphLongSum) approach, which distinguishes between 

different types of relationships (e.g., passage-to-passage or 

passage-to-entity) and uses passage-level aggregation to 

summarize long documents more effectively. 

III. VISUALISING TECHNIQUES FOR NEURAL

MODELS 

Visualization techniques for neural models in Natural 

Language Processing (NLP) are essential for understanding 

how these complex models work, particularly in cases where 

interpretability is critical. These techniques help researchers 

and practitioners gain insights into what parts of the input data 

influence the model’s decisions and how the model processes 

information. Here are some key visualization techniques used 

in neural NLP models. 

A. Saliency Maps

Saliency maps are powerful visualization tools used to

understand which parts of an input contribute most significantly

to a model's predictions. In the context of Natural Language

Processing (NLP), saliency maps highlight the importance of

specific words or phrases within a text. The technique involves

calculating the gradients of the model's output with respect to

the input features—essentially measuring how changes in input

words affect the final prediction. This is often done using

backpropagation, where the model determines the sensitivity of

the output score to each input word.

By creating saliency maps, researchers can visually represent

the areas of the text that have the highest influence on the

model's decision, thereby providing insight into the model's

internal workings. For example, in sentiment analysis, a

saliency map might show that words like "excellent" or

"terrible" receive high scores, indicating their significant

impact on the sentiment classification. These maps are

particularly useful for interpreting complex models, as they

help users understand not just what the model predicts, but also

why it makes certain predictions. This transparency is crucial

for applications in sensitive areas, such as healthcare or finance,

where trust in AI systems is paramount.

Fig.  1. a) Input images b) image’s Saliency Map 
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B. Attention Mechanisms

Attention mechanisms have become a cornerstone of modern

neural networks, particularly in Transformer architectures

like BERT and GPT. The primary function of attention is to

allow models to focus selectively on different parts of the

input when making predictions. Unlike traditional sequential

models that process input tokens in order, attention

mechanisms evaluate the relationships between all tokens

simultaneously, assigning different weights to them based on

their relevance.

This mechanism works by calculating attention scores, which

determine how much focus the model should place on each

token when generating an output. In NLP, attention

visualizations, often presented as heatmaps, reveal which

words the model prioritizes during tasks like translation or

summarization. For instance, in machine translation, an

attention heatmap can illustrate how a model aligns source-

language words with their target-language counterparts,

providing insights into the model's understanding of linguistic

structure. By visualizing attention weights, researchers can

better comprehend how the model navigates complex

contexts, leading to more interpretable and trustworthy

predictions.

Fig.  2.  Attention in NLP using Transformers 

C. Layer-wise Relevance Propagation (LRP)

Layer-wise Relevance Propagation (LRP) is a sophisticated

technique designed to enhance the interpretability of neural

networks by elucidating how input features contribute to a

model's output. The essence of LRP lies in its ability to trace

back the decision-making process through the layers of the

neural network. This technique assigns relevance scores to

each input feature by decomposing the output prediction into

contributions from the input features, effectively creating a

relevance distribution across the input.

In the context of NLP, LRP helps reveal which specific words

or phrases are most influential in driving a particular

prediction. For instance, in a sentiment classification task,

LRP can identify that certain emotionally charged words are

primarily responsible for the model's positive or negative

classification. By providing a clear attribution of relevance,

LRP allows practitioners to assess the fairness and

accountability of their models. Furthermore, LRP can serve

as a diagnostic tool to identify biases or errors in model

predictions, thereby supporting the development of more

robust and ethically aligned AI systems.

Fig.  3.  Original image vs LRP map 

D. t-SNE and PCA for Embedding Visualization

t-Distributed Stochastic Neighbour Embedding (t-SNE) and

Principal Component Analysis (PCA) are dimensionality

reduction techniques widely employed to visualize high-

dimensional data, such as word or sentence embeddings

generated by neural models. These techniques are particularly

useful in NLP, where embedding spaces can have hundreds of

dimensions, making it challenging to interpret the

relationships between words or documents. PCA works by

identifying the principal components of the data—essentially

the directions of maximum variance—and projecting the data

into a lower-dimensional space while retaining as much

information as possible. This helps in understanding the

overall structure of the data and identifying clusters of similar

items. t-SNE, on the other hand, is specifically designed for

visualizing high-dimensional data by preserving local

relationships. It converts high-dimensional distances into

probabilities and aims to minimize the divergence between

the probability distributions of the original and low-

dimensional spaces. As a result, t-SNE excels in revealing

intricate structures and clusters within the data, making it

particularly effective for visualizing word embeddings, where

semantically similar words cluster together in the reduced

space.

Fig.  4.  PCA of MNSIT Dataset 
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IV. MODELS IN NLP

A. Long short-term memory (LSTM)

Long Short-Term Memory (LSTM) networks, a specialized

type of Recurrent Neural Network (RVNN), have emerged as

one of the most influential architectures in the field of deep

learning, particularly for sequential and time-series data.

Developed by Sepp Hochreiter and Jürgen Schmidhuber in

1997, LSTMs were designed to address one of the

fundamental challenges of traditional RVNNs: their difficulty

in capturing long-range dependencies within sequences. The

architecture of LSTMs enables them to effectively remember

information for extended periods, making them particularly

well-suited for tasks involving sequences where context is

critical. Before the advent of LSTM networks, RVNNs were

widely used for processing sequential data due to their ability

to maintain hidden states that can capture information from

previous time steps. However, traditional RVNNs faced

significant limitations due to the vanishing and exploding

gradient problems. During backpropagation, gradients can

diminish exponentially for long sequences, rendering the

network unable to learn long-term dependencies effectively.

Conversely, they can also grow excessively, leading to

unstable updates. This made it challenging for RVNNs to

learn patterns that span across many time steps, which is often

crucial in applications such as natural language processing,

speech recognition, and time-series forecasting.

The architecture of LSTM networks is characterized by a

unique structure that includes memory cells and three key

gating mechanisms: the input gate, the forget gate, and the

output gate. These components work together to regulate the

flow of information, enabling LSTMs to retain relevant

information over long sequences while discarding irrelevant

data.

Fig.  5.  Architecture of LSTM networks 

Memory Cells: The core of the LSTM architecture is the 

memory cell, which serves as a storage unit for information. 

It maintains the cell state over time, allowing the network to 

carry information forward through the sequence. 

Gating Mechanisms: 

• Input Gate: The input gate determines how much of the new

information from the current time step should be added to

the cell state. It uses a sigmoid activation function to

produce values between 0 and 1, effectively controlling the

extent of information inclusion.

• Forget Gate: The forget gate regulates which information in

the cell state should be discarded. It assesses the importance

of existing information and decides what to forget based on

the current input and the previous hidden state.

• Output Gate: The output gate determines what part of the

cell state should be outputted to the next layer or time step.

It filters the cell state and passes the relevant information

forward while also controlling the hidden state.

These gates allow LSTMs to maintain a selective memory, 

thus overcoming the limitations of traditional RVNNs and 

enabling the network to learn temporal patterns more 

effectively. 

B. Recursive neural network (RvNN)

Recursive Neural Networks (RvNNs) represent a significant

advancement in the field of deep learning, particularly in the

domain of structured data. While traditional feedforward

neural networks and convolutional neural networks (CNNs)

excel in handling fixed-size inputs such as images, RvNNs

are designed to process data with an inherent recursive

structure. This makes them particularly well-suited for tasks

involving hierarchical or tree-like relationships, such as

natural language processing, parsing, and even computer

vision tasks where spatial hierarchies are present. Recursive

structures are characterized by the repetition of similar

patterns or elements, where a structure can be defined in terms

of itself. This is common in natural language processing,

where sentences can be represented as parse trees, with words

serving as the leaves and phrases or clauses as internal nodes.

In this context, RvNNs provide a powerful mechanism for

modeling such relationships, allowing them to capture the

intricacies of language and meaning.

Recursive Neural Networks utilize the idea of applying the

same neural network recursively to the inputs that are

structured hierarchically. For instance, in a binary tree

structure, the RvNN would combine the representations of

child nodes to generate a representation for the parent node.

This recursive approach allows the network to learn a

hierarchy of representations, enabling it to capture complex

relationships and dependencies within the data.

The architecture of an RvNN is based on the principle of

recursive composition, where the same neural network is

applied at each level of the hierarchy. Unlike traditional

RvNNs that process sequences in a linear fashion, recursive

neural networks process structured data by following the tree

structure.

Fig. 6. Architecture Recursive neural network 
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• Input Representation: Each node in the tree corresponds

to a data point, such as a word or phrase. The input to the

network is typically a vector representation of these

points, often obtained through techniques such as word

embeddings.

• Composition Function: The core of the RvNN

architecture is the composition function, which combines

the representations of child nodes to form the

representation of a parent node. This function can be a

simple operation like addition or multiplication, but it is

usually implemented as a neural network layer (e.g., a

feedforward network) that learns to weigh and combine

the inputs.

• Recursive Application: The recursive application of the

composition function continues up the tree until the root

node is reached, resulting in a holistic representation of

the entire structure. This final representation can then be

used for various tasks, such as classification, regression,

or further processing.

Recursive Neural Networks represent a powerful and flexible 

approach to modeling structured data, particularly in domains 

where relationships are inherently hierarchical. Their ability 

to capture complex dependencies and relationships makes 

them valuable for a wide range of applications, from natural 

language processing to computer vision and beyond. Through 

ongoing advancements, Recursive Neural Networks are 

poised to continue shaping the landscape of machine learning 

and artificial intelligence. 

V. NLP MODELS VISUALISATION

A. Steps for Visualizing Recursive neural network (RvNN)

• Understand the Structure: Before visualizing, familiarize

yourself with the hierarchical structure of the data you

want to model, such as parse trees in NLP. This

understanding is crucial for creating meaningful

visualizations.

• Use Visualization Tools: Tools like Graphviz,

TensorBoard, or custom Python scripts using libraries like

Matplotlib or Seaborn can be helpful for creating visual

representations of RVNNs.

• Generate Parse Trees: If your data is in a tree structure (like

sentences in NLP), generate the parse trees using tools like

NLTK or SpaCy. Visualize these trees to show the

hierarchical relationships.

• Display the Composition Function: Visualize how the

composition function combines child node representations

into parent nodes. Use arrows to indicate the flow of

information from child nodes to the parent node.

• Highlight the Recursive Nature: Illustrate the recursive

application of the network. Use nested boxes or layers to

represent the repeated application of the composition

function.

• Show Activation Maps: Visualize the activation values of

the nodes as the input propagates through the network. You

can use heatmaps to indicate which nodes are most

activated during specific inputs.

• Visualize Outputs: If applicable, show how the final

representation (root node) translates into output. You can

visualize the final decision or classification made by the

network.

• Interactive Visualizations: For a more dynamic

understanding, use tools like TensorBoard or D3.js for

interactive visualizations. This allows you to explore how

different inputs affect the network's behavior in real-time.

Fig. 6. Recurrent neural network outputs

B. Steps for Visualizing Long short-term memory (LSTM)

Understand LSTM Components: Familiarize yourself with

the key components of LSTMs: memory cells, input gates,

forget gates, and output gates. Understanding these elements is
essential for effective visualization.

• Use Visualization Libraries: Utilize libraries like Keras for

model visualization, which provides built-in functions to plot

the architecture of LSTM networks. Other tools like Graphviz

or Matplotlib can also be used for custom visualizations.

• Plot the LSTM Architecture: Create a diagram of the LSTM

architecture showing the input layer, LSTM layers, and

output layer. Clearly label the memory cell and the gating

mechanisms.

• Visualize Gates: Illustrate the flow of data through the

different gates. You can create flowcharts or diagrams to

depict how information is added, retained, or forgotten at each

time step.

• Show Cell States: Visualize the cell state across different time

steps. Use line graphs to show how the cell state evolves over

time, highlighting important moments where the state

changes significantly.

• Visualize Hidden States: Similar to cell states, visualize the

hidden states throughout the sequence. Heatmaps or line

graphs can show how the hidden state responds to inputs over

time.

• Activation Functions: Illustrate the activation functions used

in each gate (sigmoid and tanh) and show how they transform

inputs. You can plot the function curves alongside the input

data to provide a clearer picture.

• Layer Outputs: For each time step, visualize the outputs of the

LSTM layers. This can be done using bar charts or line graphs

to indicate how the model’s predictions change with different

inputs.

• Interactive Visualizations: Use interactive tools such as

TensorBoard to visualize training processes, including loss,

accuracy, and the internal state of the LSTM over epochs.

This interactivity provides deeper insights into the learning

dynamics.
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Fig.  7. LTSM states at various epochs

VI. RESULTS

Comparative visualizations of Recursive Neural Networks 

(RNNs) and Long Short-Term Memory (LSTM) networks 

highlight their structural and operational differences, as well 

as their performance characteristics. RNN visualizations 

typically depict hierarchical structures, such as parse trees, 

showing how child nodes contribute to parent representations 

through recursive composition. In contrast, LSTM 

visualizations emphasize layered architectures, detailing the 

roles of input, forget, and output gates alongside memory 

cells, illustrating how they manage information flow. 

Performance metrics can be displayed through bar charts and 

loss/accuracy plots, demonstrating LSTMs' superior ability to 

capture long-range dependencies compared to traditional 

RNNs. Side-by-side comparisons of these elements, 

including architectural diagrams and task-specific results, 

provide clear insights into the advantages and applications of 

each model type in handling sequential and structured data. 

Fig.  8. Graph of accuracy of LTSM and RvNN

VIII. CONCLUSION AND FUTURE SCOPE

Neural models have revolutionized the field of Natural 

Language Processing (NLP), driving substantial 

advancements in a wide range of applications such as 

machine translation, sentiment analysis, question answering, 

and text summarization. Traditional methods that relied on 

handcrafted features and statistical techniques have been 

largely supplanted by deep learning architectures, which 

automatically learn rich representations from vast amounts of 

data. This shift has enabled state-of-the-art performance 

across various NLP tasks, with models like Recurrent Neural 

Networks (RNNs), Long Short-Term Memory (LSTM) 

networks, and Transformer architectures fundamentally 

changing how machines understand and generate human 

language. The introduction of LSTMs addressed the 

limitations of standard RNNs, particularly the challenges 

associated with vanishing gradients, thus enabling models to 

learn from longer sequences. More recently, Transformer 

models, characterized by their attention mechanisms, have set 

new benchmarks by allowing parallelization and better 

capturing dependencies across entire sequences without the 

limitations of recurrent processing. Models such as BERT and 

GPT have further pushed the boundaries, showcasing the 

effectiveness of pretraining on large corpora followed by 

fine-tuning for specific tasks. The future scope of neural 

models in Natural Language Processing (NLP) is brimming 

with opportunities for innovation and improvement. Key 

areas of focus include enhancing model interpretability to 

build trust in high-stakes applications, developing more 

efficient and scalable architectures that operate effectively in 

resource-constrained environments, and addressing the needs 

of low-resource languages through transfer and few-shot 

learning techniques. Additionally, researchers must tackle 

ethical considerations by identifying and mitigating biases 

inherent in training data. Advancements in cross-modal 

learning, continual learning, and sophisticated dialogue 

systems will further enrich NLP capabilities. The exploration 

of unsupervised and self-supervised learning paradigms can 

reduce reliance on labeled data, while domain-specific 

adaptations will enhance model performance in specialized 

fields like healthcare and finance. Ultimately, fostering 

human-AI collaboration will be crucial for creating effective 

systems that enhance human-computer interaction while 

ensuring ethical oversight. 
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