A Developed Simple Spreadsheet for Center Pivot Irrigation System Design

Yasser E. Arafa¹ Agricultural Engineering Department, Faculty of Agriculture, Ain Shams University, Egypt

Abstract - Centre pivot irrigation system is a promising and precise system, for increasing the utilization efficiency of unit water. However, Egyptian agricultural-water uses policies for reclaiming and cultivation 1.5 million feddan (625000 ha) had stated center pivot irrigation system as a major irrigation system. Hence, a developed simple-spread sheet module for center pivot irrigation system design has been developed and validated. However, the developed spread-sheet is based on different design criteria, as, crop type, weather data, and soil characteristics. The module comprises five sub-models for: (a) main sub-model; (b) data entry sub-model; (c) weather submodel; (d) irrigation sub-model; and (e) results sub-model. The most important outputs include nozzle flow rate (m³/h), application rate (mm/h), and throw diameter (m). These outputs (outputs of 9 scenarios) were compared with observed/manufactured data for the calibration and validation of the model.

Results of this comparison show that differences in model accuracy owing to different variables affecting the design and management of the center pivot were not significant. The relationships between the observed/manufactured and simulated results have a good correlation with high value of coefficient of determination and the best models are as follows:

- 1- Nozzle flow rate (m^3/h) was in scenario 5 with $R^2 = 0.967$ and explained by an exponential model: $Q_{SIM} = 0.1067e^{4.1131} (Q_{obs})^2$.
- 2- Throw diameter (m) was in scenario 1 with $R^2 = 0.942$ and explained by a power model: Dw _{SIM} = 3.9064 (Dw _{MFD})^{0.4361}.

Keywords: Modeling; Application rate; Nozzle flow rate; Throw diameter.

1. INTRODUCTION

Center pivot is a promising method of irrigation, became very popular in Egypt, in which water is dispersed through a long segmented arm that revolves a water source (deep well for example) and covers a circular area. A wide diffusion of the center pivot irrigation systems [8 and 15] is due to two reasons: (I) automation is built into the center pivot device allowing for irrigation with minimal labor input; and (II) center pivot systems can be one of the most efficient and uniform methods of applying irrigation water. Currently, an objective of irrigation planners is to obtain a high level of irrigation management as general and center pivot irrigation management in specific. Attempts to apply and manage center pivot irrigation systems have been started the 1960s. Reference [7] had developed center pivot irrigation model software for water and/or water-nitrate distribution analyses from center pivots. Reference [2] is Khaled A. Shalabi² On-Farm Irrigation Engineering Dept., Agricultural Engineering Research Institute, ARC, Egypt

developed a model for simulating of water application under center pivots, focusing on irrigation uniformity. A sophisticated software package for center pivot evaluation and design (CPED) was introduced by [9].

Generally, several attempts on design and watering management of center pivot irrigation systems based on different modeling techniques, had been considered. Reference [5] stated that modelling remains a valuable tool to address a variety of engineering problems (such as irrigation management), at the design, planning, and operations levels. Accordingly, the application of simulation models in irrigation water management reduces water and energy consumption which, leads to increase the efficiency of utilization of these resources [11].

In practical, there are many simulation models that have proved a great success in the design and management of pressurized irrigation systems such as: the SpacePro model [3], for the purpose of selecting nozzle size and spacing for a given application; the SIRIAS model for sprinkler droplet simulation [4]; the TRAVGUN model for sprinkler application depth [14].

Due to the design requirements of center pivot irrigation systems and attributed watering-management criteria, that needs a highly qualified data and designer's background. Therefore, the aim of this study was to open a new era of spread-sheets modeling in design of center irrigation system under arid conditions.

2. MATERIAL AND METHODS

2.1. Modeling Conceptualization of the Developed Spreadsheet

The appropriate development of a simulation model begins with understanding and interpretation of the real system through one of the methods of system analysis. Thus the waterfall model is used in the model building which gives the possibility to programmers to follow phases of development of the program in a certain order, as presented in Fig. 1. However, database contains information such as station information, weather information, and crop water data information. Consequently, the mathematical model consists of five sub-modules was developed. A detailed description of the sub-modules could be summarized as following:

2.2. Main Sub-module:

Main sub-module is the way to interact with a computer using pictures and other visual elements displayed on a computer screen. This sub-module directs the running of the model by offering the user ability to select subsequent submodules and load the data files. It is the main entry point as well as the highest level of the program. *2.3. Data Entry Sub-module:*

Design data entry sub-module controls the optimization procedure by performing the required calculations. This enables the user to enter and edit the basic project data to simulate one or more operating scenarios. The basic project input data include: irrigated area dimensions; type of water source;

Fig. 1: Schematic flow-chart of the developed simple spread-sheet.

available discharge of water source; reference evapotranspiration ETo (whether entered manually by the user or retrieved from the database incorporated in the program for three cities); wind speed; soil characteristics retrieved from the database; and crop coefficient and root zone depth for each crop retrieved from the database.

2.4. Sub-module Requirements of Center Pivot Irrigation System Design

Fig. 2 represents all related calculations to crop water requirements, irrigation requirements, and center pivot irrigation system design had been considered. However, these related parameters could be described as:

2.4.1.1. Center Pivot System Capacity (Qs, m³/h)

Center pivot system capacity design followed the methodology recommended by [10] as follows:

$$Q_s = K \times A \times I_a / T_i \times T \tag{1}$$

Where: K is conversion factor = 0.001; A is total irrigated area, m²; I_a irrigation requirement;

T is operating time, h/day

Ti irrigation interval

2.4.1.2. Center Pivot Hydraulic Analysis

Hydraulic of center pivot irrigation system includes determination of friction losses (H*f*, m) along the sprinkler line, sprinklers operating pressure head (H_{sp}, m), nozzle size (d_{sp}, mm), nozzle discharge (Q_{sp}, m3/h) and Sprinkler throw diameter (D_w, m). The hydraulic characteristics design followed the approaches proposed by (10 and 1) as the following equations:

Friction head losses, m

 $H_f = 1.22 \times 10^{12} \times f \times (R/100) \times (Q_s/C)^{1.852} \times D^{-4.87}$ (2) Where:

f: outlet friction coefficient (0.548)

R: pipe length, m

C: Roughness coefficient (for galvanized steel = 120)

D: pipe inside diameter, mm

Operating pressure head in the pivot point, m

$$H_v = H_e + 1.1H_f \pm \Delta H_z + H_{rg} + H_r$$
(3)
Where:

· Drogguro

 H_e : Pressure head required in the end of the sprinkler line, m ΔH_z : Height difference between pivot and the end of lateral, m

H_{rg}: Head losses in pressure regulator, m

Hr: Height of Sprinkler, m

Sprinklers operating pressure head, m

$$H_{-} = H_{2}(1 + 875)(X - (2X^{2}/3) + (X^{5}/5)) + H$$

$$\mathbf{h}_{sp} = \mathbf{H}_f (1 - 1.8 / 5 (\mathbf{X} - (2\mathbf{X}^2 / 5) + (\mathbf{X}^2 / 5)) + \mathbf{H}_e \qquad (4)$$
$$\mathbf{X} = \mathbf{r}_{sp} / \mathbf{R} \qquad (5)$$

Nozzle size, mm	
$d_{sp} = 30.46 \times (Q_{sp}/P_{sp})^{1/2}$	(6)
Nozzle discharge, m ³ /h	
$\mathbf{Q}_{\mathrm{sp}} = (2 \ \mathbf{r}_{\mathrm{sp}} \times \mathbf{S}_{\mathrm{s}} \times \mathbf{Q}_{\mathrm{s}}) / \mathbf{R}^2$	(7)
Sprinkler throw diameter, m	
$D_w = 2.59 + 0.56 d_{sp} + 0.023 P_{sp}$	(8)

$$D_{\rm w} = 2.59 \pm 0.56 \, \rm d_{sp} \pm 0.023 \, \rm P_{sp} \qquad (8$$

Where: Psp is sprinkler operating pressure in kPa

2.4.1.3. Application rate (R_a , mm/h):

The application rate of sprinkler, as described in the following equation, depends on distance to sprinkler at lateral (r_{sp} , m), system capacity (Q_s , m^3/h), radius of center pivot (R, m) and throw diameter of sprinkler (D_w , m).

$$\mathbf{R}_{a} = (2 \times 1000 \times \mathbf{r}_{sp} \times \mathbf{Q}_{s}) / (\mathbf{R}^{2} \times \mathbf{D}_{w})$$
(9)

2.4.2. Sub-module Output

One of the most important objectives of this study was creating good output sub-module that allows users generating and handling clear outputs easily. Reports of the output can be printed or saved in spreadsheets such as Microsoft Excel according to users' specific needs, as shown in Fig. 3 and Fig. 4.

2.4.3. Validation Case Study

Field experiment on a single span center pivot irrigation system was used for validation process. The technical configuration of the evaluated center pivot irrigation system was: a span length of 56.7 m with flow rate of 4.2 m³/h. Sprinklers were manufactured by Nelson Irrigation Corporation with pressure regulators of 1.03 bars. The distance from the sprinkler to the ground surface was

(1)

1.8 m. Sprinklers throw diameter were varied in a range of 14 to 16 m from the beginning at the center pivot to the end of the center pivot radial line. Nozzle flow rate was measured for each nozzle along the radial line of the center pivot, meanwhile, the application rate (mm/h) and throw diameter (m) data of sprinklers were downloaded from the official web site of center pivot provider for the same center pivot model used in the experiment (Nelson Irrigation Corporation).

The analyzed output variables include Nozzle flow rate (m³/h), application rate (mm/h), and throw diameter (m). All scenarios have two types of boundary conditions. Firstly, are related to soil-plant-water relationship, while the second are related to center pivot irrigation management. Data of boundary conditions and limitations of the different

scenarios of the validation case studies are shown in Table (1).

2.4.4. Statistical Analysis

To achieve the objectives of the research, hypothesis testing was performed through the use of statistical analysis. Descriptive statistics, tests of normality, and test of homogeneity of variances were initially used for analyzing the data using IBM SPSS Statistics version 20.0. An analysis of variance between groups (ANOVA) for both simulated and observed/manufactured data was performed. Nozzle flow rate (m³/h), application rate (mm/h), and throw diameter (m) were included in the statistical analysis and tested for statistically significant differences at 5% confidence level, [13, 6 and 12].

X		u 0) • (™ • -	_			-	verifi	ication (1).x	lsx - Micr	rosoft Excel								_	-		
	File	Home Insert Page Layout Form	nulas Data	Review	Vie	w															
No	rmal	Page Page Break Custom Full Layout Preview Views Screen Workbook Views	r 🗹 Form lines 🗹 Head Show	ula Bar	1(Z	00% Zoom to Selection	New Window	Arrange w All	Freeze Panes *	Split Hide Unhide	D Viev D \$ Syn D € Res Wind	v Side chrono et Win ow	by Side ous Scre dow Pe	e olling osition	w	Save	ce Wi	witch	• Ma		
		F24 • (* <i>f</i> *																			
	A	B	с	D	Ε	F		G	н	1	J	К	L	м	N	0	Ρ	0	B	S	T
1	No.	Equations	Data	Unit																	
2		w	000			No. of Assessment P	(20	Span length	30 m		_										
3	1	W B = 16 W	450	m		No of towers = Kz	40/30	420	14												
5	-	Rrav=R-2	448	m		Ai=π(Ract)^2		554400	m²	132	Fed										
6						Qr = (la*Ai)/(1000)*Tr)	248.8	m³/h	69.11	L/s										
7						QA=Qs/A		1.88	m ³ /h.Fed												
8		ETo	7.18	mm/day				Span length	40 m												
9	2	Kc	0.9			No of towers = R _r	av/40	11.2	11												
10			6.462	mm/day		Keet =		440		144.07											
11	<u> </u>	W.RED.DOI AND	5562.55	m /day		$A_i = n(R_{int}^{-2})/(1000)$	(*Tr)	273 0451	m³/h	75.85	1/s										
13		Pf.c	15%			QA=Qs /A		1.88	m ³ /h.Fed	75.65											
14		Pw.p	7%					Span length	50 m												
15		As	1.65			No of towers = R ₂	av/40	8.96	8												
16	3	D	1800	mm		Ract =		400													
17	-	Soil Depletion	60%			Ai=π(Ract)^2		502857.1	m²	119.73	Fed										
18		In = (Pf.c - Pw.p) *As * D * Soil Depletion	142.56	mm		Q = (la*Ai)/(1000	(*Tr	225.6571	m³/h	62.68	L/s										
19		1	0.8			QA=Qs/A		1.88	m*/h.Fed		_										
20	<u> </u>	la = in / *	1/8.2	mm																	
22		Ti = In/Etc	22	dav																	
23	4	t	18	hr/day																	
24		Tr = Ti * t	397.1	hr																	
25																					
26	5	$r_{rpN} = ((N_{rp} - 1)^*S_r) + S_1$		m																	
27																					
28	6	$Q_{xy}N = (2 T_{xy}N T_{x}^{*}Q_{x})/(R_{act}^{*}2)$																			
29		Span Jepeth 30 m	_																		
31		d	197.66	mm																	
32	7	Hr=1.22*10^10*0.548*R***(Qr/CHw)^1.852*d^(-4.8)	6.66	m																	
33		Span length 40 m																			
34	-	d	197.66	mm																	
H	• •	Design data inputs / span 30 / Shee	et3 / 🞾 /								<u> </u>		_	_	_	_	_	_	1111	_	_
Re	adv																				

Fig. 2: Input data and required design equations of center pivot irrigation system

	TABLE 1: Boundary	conditions	of studied	variables at	different design	scenarios.
--	-------------------	------------	------------	--------------	------------------	------------

				Variable				
Scenario	Span length, m	Equivalent output length, m	No. of Sprinklers	Distance between sprinklers, m	Flow rate, m ³ /h	Soil	Crop	ET _o , mm/day
Scenario.1	30	56.3	7	7.5	7	Sand	Alfalfa	8
Scenario.2	30	57.5	11	5	6.2	Sand	Alfalfa	8
Scenario.3	30	56.3	18	2.5	5.5	Sand	Alfalfa	8
Scenario.4	40	55	6	10	6.3	Sand	Alfalfa	8
Scenario.5	40	56.7	8	6.67	6.2	Sand	Alfalfa	8
Scenario.6	40	55	14	3.33	5.4	Sand	Alfalfa	8
Scenario.7	50	56.3	5	12.5	6.8	Sand	Alfalfa	8
Scenario.8	50	54.2	7	8.33	5.94	Sand	Alfalfa	8
Scenario.9	50	56.3	12	4.17	5.8	Sand	Alfalfa	8

	-	_		verific	ation (1).	klsx - N	Aicrosoft Exe	cel	-								
Re	view	View															
ula Bar ngs	Zoom	100% Zoom	Zoom to Selection	New Window	Arrange All	Freeze Panes *	Split Hide	e 11] View : ‡ Synch € Reset Windov	Side by Side ronous Scro Window Po v	e olling osition	Save Workspa	Switch ce Windows	Macros			
	0.54						0						AP	40	AP	45	
L .	AIVI	AIN					AU						AP	AQ	46	AS	-
							Veloc	ity d	ofto	owers							
			Irri	gated p	eriod	(time	of wett	ing p	per da	ay) (hr)			18				
			V=	D/T									m/hr				
			tow	ver No.	1								1.67				
			tow	ver No.	2								3.33				
			tow	ver No.	3								5.00				
			tow	ver No.	4								6.67				
			tow	ver No.	5								8.33				
		16	tow	ver No.	6							1	10.00				
			tow	ver No.	7							1	11.67				
			tow	ver No.	8							1	13.33				
			tow	ver No.	9							1	15.00				
			tow	ver No.	10							1	16.67				
			tow	ver No.	11							1	18.33				
			tow	ver No.	12							1	20.00				
			tow	ver No.	13							1	21.67				
			tow	ver No.	14							2	23.33				
											Averac	12 0625	Count: 24	Sum: 200		100%	
w	X										Averag	ye. 15:0625	Count: 54	3uni: 209	EN	- 🛛	

Fig. 3: Span velocity output data of center pivot irrigation system based on the developed spread-sheet

X		5	6.	- -		_								-				verif	ication	(1).xl	sx - M	icrosof	t Excel						-	-						
	File		Home	Ι	nsert	Pa	ge Layou	ıt	Formu	ulas	Data	a Re	view		View																					
]			\checkmark	Ruler	J] Form	iula Bar	(R	100		्र					Spl	lit de	View	v Sid	e by S nous S	ide crollin	a				7		2		
No	Normal Page Page Break Custom Full Views Screen													oom	100%	Zoo Sele	m to ction	to New Arrange Freeze Unhide Arrange Reset						t Wi	ndow	Positi	on	Sav Norks	re pace V	Swite Vindov	h vs ∗	Macros				
_			Work	kbook	Views			_		Sho	w		Zoom Window								w Macros															
		AL:	23		• (f_x																													
	A	В	С	D	E	F	G n length 3	H 30 m	1	J	K	L	M	N	0	P	Q	B Span	\$ length 3	T 30 m	U	V	W	X	Y	Z	88	AB	AC	AD Span I	AE ength 3	AF 0 m	AG	AH	AI	AJ A
2							4 outlets											6	outlets											12	outlet	5				
3		s,	7.5											S,	5											S,	2.5									
4		S1	3.75											S1	2.5											S1	1.25									
5	N	Intel	Quet	Quet		Het	Patt	deer					N.	(Nzp	Qrelt	QreN			Prett	drett					N	(Nzp	QSeP	Que		Here	Prett	drett				
6	P	(m)	(m²/h)	(l/s)	XepN	(m)	(Kpa)	(mm)	Dv	Ra	Do	Tw		(m)	(m²/h)	(IIs)	XepN	Hren(m)	(Kpa)	(mm)	Dw	Ra	Do	Tw		(m)	(m²/h)	(IIs)	Xeph	(m)	(Kpa)	(mm)	Bw	Ra	Do	Tw
7	1	3.75	0.079	0.022	0.0089	42.548	386.606	1.020	12.053	0.878	9.776		1	2.5	0.035	0.010	0.006	42.585	****	0.680	11.870	0.594	8.435		1	1.25	600.0	0.002	0.003	41.264	****	0.343	11.405	0.303	6.353	
9	3	18.75	0.397	0.110	0.0446	42.103	382.560	2.286	12.663	4.175	25.085		3	12.5	0.176	0.049	0.030	42.288		1.522	12.280	2.871	18.640		3	6.25	0.044	0.012	0.015	41.146	****	0.766	11.618	1.517	12.053	
10	4	26.25 33.75	0.555	0.154	0.0625	41.881	378.541	3.075	12.859	7.313	40.259	432.574	4	22.5	0.247	0.069	0.042	42.140	****	2.046	12.406	5.073	28,756		4	8.0	0.052	0.017	0.021	41.087	****	1.029	11.685	2.112	14.592	
12	6	41.25	0.873	0.242	0.0382	41.441	376.547	3.404	13.157	8.843	47.823		6	27.5	0.388	0.108	0.065	41.844	****	2.264	12.603	6.155	33.801	447.421	6	13.75	0.097	0.027	0.033	40.363	****	1.138	11.783	3.230	13.645	_
14	8	56.25	1.190	0.331	0.1339	41.007	372.605	3.986	13.392	11.848	62.346	416.601	8	37.5	0.529	0.147	0.089	41.550	****	2.649	12.757	8.292	43.878		8	18.75	0.132	0.032	0.045	40.851	371.189	1.330	11.872	4.455	24.686	
15	3	63.75	1.349	0.375	0.1518	40.793	370.661	4.243	13.435	13.325	70.497		3	42.5	0.533	0.167	0.101	41.404	****	2.822	12.823	9.349	48.912		3	21.25	0.150	0.042	0.051	40.732	370 121	1.416	11.308	5.034	27.204	
17	11	78.75	1.666	0.463	0.1875	40.372	366.839	4.735	13.679	16.239	85.589		11	52.5	0.740	0.206	0.125	41.115	****	3.142	12.942	11.442	58.971		11	26.25	0.185	0.051	0.063	40.675	####	1.575	11.973	6.184	32.236	
18	12	86.25	1.825	0.507	0.2054	40.166	364,967	4.961	13,763	17.677	93.131 100.671	410.313	12	57.5	0.811	0.225	0.137	40.371	****	3,291	12.996	12.481	63,998	423.562	12	28.75	0.203	0.056	0.068	40.616	****	1.643	12.002	6.757	34,751	****
20	14	101.3	2.142	0.595	0.2411	39.764	361.310	5.389	13.918	20.520			14	67.5	0.352	0.264	0.161	40.687		3.572	13.093	14.541	74.047		14	33.75	0.238	0.066	0.080	40.499		1.788	12.055	7.897	39.778	
21	15	108.8	2.301	0.639	0.2589	39,568	353,523	5.592	13.991	21.925	115.745	407 358	15	72.5	1.023	0.284	0.173	40.546	****	3,705	13,139	15.565	79.069		15	36.25	0.256	0.071	0.086	40.441	****	1.854	12.080	8.465	42.290	
23	17	123.8	2.618	0.727	0.2346	39.188	356.075	5.980	14.128	24.707			17	82.5	1.164	0.323	0.136	40.263		3.353	13.223	17.599	83.111		17	41.25	0.291	0.081	0.098	40.325		1.979	12.126	3.536	47.313	
24	18	131.3	2.777	0.771	0.3125	38,004	354.405	6.165	14.194	26.083			18	87.5	1.234	0.343	0.208	40.132	****	4.081	13.263	18.610	94,131	415.331	18	43.75	0.309	0.086	0.104	40.267	****	2.033	12.147	10.159	49.824	
26	20	146.3	3.034	0.859	0.3482	38.650	351.190	6.523	14.320	28.807	153.410	406.131	20	37.5	1.375	0.382	0.232	33.863		4.315	13.337	20.620	****		20	48.75	0.344	0.035	0.116	40.152		2.154	12.187	11.283	54.844	
27	21	153.8	3.253	0.904	0.3661	38.480	349.648	6.636	14.381	30.156	168 471		21	102.5	1.446	0.402	0.244	39,731	****	4.428	13.373	21.620	103.187		21	51.25	0.361	0.100	0.122	40.034	****	2.203	12.206	11.843	57.353	
29	23	168.8	3.570	0.992	0.4018	38.156	346.703	7.029	14.501	32.826			23	112.5	1.587	0.441	0.268	39.471	****	4.647	13.441	23.609	119.221		23	56.25	0.397	0.110	0.134	39.980	****	2.316	12.242	12.960	62.371	
30	24	176.3 183.8	3.729	1.036	0.4196	38.002	345.303	7.191	14.559	34.147	191.058	404.830	24	117.5	1.657	0.460	0.280	33,344	****	4.753	13.474	24,598	****	411.124	24	58.75	0.414	0.115	0.140	39.923	****	2.368	12.253	13.518	64.880 67.388	****
32	26	191.3	4.046	1.124	0.4554	37.711	342.654	7.505	14.674	36.763			26	127.5	1.798	0.500	0.304	39.095	****	4.959	13.537	26.567	****		26	63.75	0.450	0.125	0.152	39.810	****	2.468	12.292	14.629	69.896	
33	27	198.8	4.205	1.168	0.4732	37.573	341.408	7.658	14.731	38.057	206.115	403 333	27	132.5	1.863	0.519	0.315	38.374	354.131	5.053	13,568	27.546	****		27	66.25	0.467	0.130	0.158	33,754	****	2.517	12.308	15,184	72.404	
35	29	213.8	4.522	1.256	0.5089	37.317	339.074	7.956	14.844	40.618	221.172		29	142.5	2.010	0.558	0.339	38.737	####	5.254	13.628	29.495			29	71.25	0.502	0.140	0.170	39.642		2.612	12.337	16.230	77.419	
36	30	221.3	4.681	1.300	0.5268	37.197	337.989	8,100	14.300	41.885			30	147.5	2.080	0.578	0.351	38.621	****	5.350	13.657	30.464	****	408.562	30	73.75	0.520	0.144	0.176	39,586	****	2.658	12.352	16.842	79.926	
38	32	236.3	4.998	1.388	0.5625	36.977	335.985	8.383	15.012	44.330		403.318	32	157.5	2.221	0.617	0.375	38.397		5.536	13.715	32.393			32	78.75	0.555	0.154	0.188	39.476		2.749	12.379	17.344	84.940	
39	33	243.8	5.157	1.432	0.5804	36.876	335.066	8.521	15.068	45.629			33	162.5	2.292	0.637	0.387	38,289	****	5.627	13.743	33.352	****		33	81.25	0.573	0.159	0.193	39.421	****	2.793	12.333	18.493	87.446	
41	35	258.8	5.474	1.521	0.6161	36.632	333.395	8.790	15.180	48.079			35	172.5	2.433	0.676	0.411	38.079		5.806	13.799	35.261			35	86.25	0.608	0.163	0.205	33.312		2.880	12.418	19.591	32.453	
42	36	266.3	5.633	1.565	0.6333	36.603	332.643	8.322	15.237	43.283	****	402.793	36	177.5	2.503	0.635	0.423	37.977	****	5.893	13.827	36.210	****	406.840	36	88.75	0.626	0.174	0.211	33.258	****	2.922	12.431	20.138	34.365 37.472	419.012
14	4 1	►I.	Desid	ın dat	a inpu	its	span 3	0	Sheet	3 / 9					2.514														1.0411							
	_					A		- 4		- ^ *	-																		_		_	_				_

Fig. 4: Technical characteristic's outputs data of center pivot irrigation system based on the developed spread-sheet

3. RESULTS AND DISCUSSION

3.1. Nozzle Flow Rate

Fig. 5 shows the average flow rate of the nozzle for different designed scenarios and observed data. Average nozzle flow rates do not differ significantly across scenarios and observed data at the p<0.05 level (sig. 0.211). However, the highest rate of convergence was in scenarios 2, 3, 6, and 9. With a deeper analysis of this comparison, there is a notable declination of the mean of nozzle flow rate in scenarios 3 and 6 by 36.17%, 17.02%, respectively, While the mean of nozzle flow rate has a slight increasing in

scenarios 2 and 9 by 19.15%, 4.26%, respectively. On the contrary, there is a diverging the mean of nozzle flow rate in scenarios 5 and 8 by a large margin of 65.96%, 80.85%, respectively. Scenarios 1, 4, and 7 have abnormal results from the mean of nozzle flow rate that are increasing by more than 90%.

On the other hands, unlike the Nozzle flow rate and application flow rate, there is a significant difference between means of throw diameter of the scenarios and manufactured data at the p<0.05 level (sig. 0.012).

Fig. 5: Average versus estimated nozzles flow rate under different center pivot irrigation system span lengths (30, 40 and 50 m).

3.2. Application rate

Fig. 6 indicated that, the absence of any significant difference between means of the scenarios and manufactured data at the p<0.05 level (sig. 0.905). By comparing these curves, we found that the highest rate of convergence between simulated and manufactured data was in scenarios 4, 7, and 8 with an increasing percentage of 5.83%, 7.50%, and 4.17 respectively, then scenarios 1, 2, and 5 by 22.64%, 21.53%, and 20.83 respectively. Whereas, the farthest mean of water application rate was in scenario 3 by 34.44%.

ig. 6: Average versus estimated application rate under different center pivot irrigation system span lengths (30, 40 and 50 m).

3.3. Throw diameter

Fig. 7 shows the mean throw diameter for different scenarios and manufactured data. Therefore, the post-hoc comparison was applied using the multiple comparisons (Tamhane test) to test the difference between each pair of means. Results of Tamhane test indicate that the mean of scenarios 2, 3, 6, and 9 were significantly different with the manufactured data. However, scenarios 1, 4, 5, 7, and 8 did not significantly differ from the manufactured throw diameter.

prvot span tenguis.

3.4. Validations of the developed simple spread-sheet

Regression analysis is done in order to estimate the relation between the independent variable (observed/manufactured) and the dependent variable (simulated). R^2 is the proportion of the total variation in predicted values that can be accounted by the relationship with measured or manufactured values. R^2 values near to 1 indicate that the data points fall in a well-defined equation, as shown in Table 2.

Table (2): The developed equations based on regression analysis under different design scenarios.

Scena	Nozzle flow rate, m	³ /h	Application rate, mm/	h	Throw diameter, m	1
rio	Model	\mathbf{R}^2	Model	\mathbf{R}^2	Model	R^2
1	Q _{SIM} =	0.9	Ra $_{SIM}$ = 1.798 (Ra $_{MFD}$) -	0.9	Dw _{SIM} = 3.9064 (Dw	0.9
1	$0.1383e^{4.0428(Q_{obs})}$	60	2.194	98	MFD) ^{0.4361}	42
2	Q _{SIM} =	0.9	$Ra_{SIM} = 1.2472 (Ra_{MFD})$	0.9	$Dw_{SIM} = 4.8482 (Dw)$	0.8
2	$0.0574e^{4.2448(Q_{obs})}$	66	- 1.5135	97	$_{\rm MFD})^{0.3447}$	88
3	Q _{SIM} =	0.9	$Ra_{SIM} = 0.649 (Ra_{MFD})$	0.9	Dw _{SIM} = 9.3966 (Dw	0.8
	$0.0754e^{2.0831} \left(Q_{obs} \right)$	36	+ 1.962	97	$_{\rm MFD})^{0.1013}$	70
4	Q _{SIM} =	0.9	$Ra_{SIM} = 2.2664 (Ra_{MFD})$	0.9	Dw _{SIM} = 1.7812 (Dw	0.8
-	$0.0537e^{6.803}(Q_{obs})$	48	- 5.1754	99	$_{\rm MFD})^{0.7291}$	98
5	Q _{SIM} =	0.9	Ra $_{\rm SIM}$ = 1.5587 (Ra $_{\rm MFD}$)	0.9	$Dw_{SIM} = 4.302 (Dw)$	0.9
	$0.1067e^{4.1131(Q_{obs})}$	67	- 1.7341	97	$_{\rm MFD})^{0.4015}$	17
6	Q _{SIM} =	0.9	$Ra_{SIM} = 0.8492 (Ra_{MFD})$	0.9	Dw _{SIM} = 7.9064 (Dw	0.8
0	$0.075e^{2.7614(Q)}$	49	+ 0.771	97	$_{\rm MFD})^{0.1673}$	77
7	Q _{SIM} =	0.9	$Ra_{SIM} = 2.7596 (Ra_{MFD})$	0.9	Dw _{SIM} = 1.3446 (Dw	0.8
1	$0.0911e^{6.4923} \left(Q_{obs} \right)$	48	- 6.3291	99	$_{\rm MFD})^{0.8409}$	68
8	Q _{SIM} =	0.9	$Ra_{SIM} = 1.9854 (Ra_{MFD})$	0.9	$Dw_{SIM} = 2.6007 (Dw)$	0.9
0	$0.0441e^{6.2973} (Q_{obs})$	44	- 4.6628	98	$_{\mathrm{MFD}})^{0.5846}$	18
9	Q _{SIM} =	0.9	$Ra_{SIM} = 1.0428 (Ra_{MFD})$	0.9	$Dw_{SIM} = 6.609 (Dw$	0.8
	$0.0761e^{3.325(Q_{obs})}$	57	- 0.1537	97	$_{\rm MFD})^{0.2355}$	83

Table (2): The developed equations based on regression analysis under different design scenarios.

However, results obtained from the regression analysis with R² are indicated that there are three groups of models explain the relation between that could the observed/manufactured data and simulated data. Firstly, exponential models that interpret the relationship between the observed and simulated for nozzle flow rate (m^3/h) . The best model that explains the relationship between observed and simulated for Nozzle flow rate (m³/h) among scenarios was obtained from the scenario no. 5 with $R^2 = 0.967$. Secondly, linear models that interpret the relationship between manufactured and simulated application rate (mm/h) with a very high R^2 (more than 0.99) for all scenarios. Finally, power models that interpret the relationship between manufactured and simulated throw diameter (m). The best model that could explain the relationship between manufactured and simulated for throw diameter (m) among scenarios was obtained from the scenario no. 1 with $R^2 = 0.942$.

4. REFERENCE

- Al Ghobari, H. M., 2004. Sprinkler Irrigation systems. Textbook, College of Food and Agricultural Sciences, King Saud University, Saudi Arabia (Arabic).
- [2] Bremond, B., and B. Molle, (1995). Characterization of rainfall under center-pivot: influence of measuring procedure. Journal of Irrigation and Drainage Engineering: ASCE, 121(5), 347–353.
- [3] Cape, J., 1998. Using software to review sprinkler performance. Irrigation Australia, 13(3): 18-20.
- [4] Carrion, P., J. M. Tarjuelo and J. Montero, 2001. SIRIAS: A simulation model for sprinkler irrigation 1, Description of the model. Irrigation Science, 20(2): 73-84.
- [5] Chung, C. A., 2003. Simulation Modeling Handbook: A Practical Approach, Taylor & Francis.
- [6] Doane, D. P. and L. E. Seward, 2011. Measuring Skewness Journal of Statistics Education, 19(2), 1-18.
- [7] Evans, R. G., S. Han, L. G. James and M. W. Kroeger, 1993. CPIM- A computer simulation program for center pivot irrigation systems. ASAE Paper No. 93-3065. St. Joseph, MI, USA: ASAE.
- [8] Faci, J. M., R. Salvador, E. Playán and H. Sourell, 2001. "Comparison of fixed and rotating spray plate sprinklers". Journal of Irrigation and Drainage Engineering: ASCE, 127(4), 224–233.
- [9] Heermann, D. F. and K. Stahl, 2004. Center pivot evaluation and design package (CPED) – Users' manual. Ft. Collins, CO, USA: USDA-ARS-NPA-WMU.
- [10] Merkley, G. P. and R. G. Allen, 2007. Sprinkler and Trickle Irrigation. Lecture Notes, Utah State Univ., Logan, UT. Biological and Irrigation Engineering Department.
- [11] Montero, J., J. M. Tarjuelo and P. Carrion, 2001. SIRIAS: A simulation model for sprinkler irrigation 2, Calibration and validation of the model. Irrigation Science, 20(2): 85-98.
- [12] Martin, W. E. and K. D. Bridgmon 2012. Quantitative and Statistical Research Methods: From Hypothesis to Results. John Wiley and Sons, Somerset, NJ, US.
- [13] Razali, N. M. and Y. B. Wah, 2011. Power comparisons of Shapiro-Wilk, Kolmogorov-Smirnov, Lilliefors and Anderson-Darling tests. Journal of Statistical Modeling and analytics, 2(1), 21-33.
- [14] Smith, R. J., M. H. Gillies, G. Newell and J. P. Foley, 2008. A decision support model for travelling gun irrigation machines. Biosystems Engineering, 100(1): 126-136.
- [15] Summers, C. G. and D. H. Putnam, 2008. Irrigated Alfalfa Management for Mediterranean and Desert Zones, University of California, Agriculture and Natural Resources.