
A Different Strategies of All Efficient Grid-Scheduling Techniques.

 Mr. Pottigar Vinayak V. Dr. Prof. Thool R. C.
 CSE DEPT,NBNSCOE. Head of IT dept.,SGGS

 Solapur,MH,India Nanded,Maharashtra,India

Abstract Computational grids have become an appealing

research area as they solve compute-intensive problems within

the scientific community and in industry. A grid computational

power is aggregated from a huge set of distributed

heterogeneous workers; hence, it is becoming a mainstream

technology for large-scale distributed resource sharing and

system integration. Unfortunately, current grid schedulers suffer

from the haste problem, which is the schedule inability to

successfully allocate all input tasks. Accordingly, some tasks fail

to complete execution as they are allocated to unsuitable

workers. Others may not start execution as suitable workers are

previously allocated to other peers. This paper is the attempt to

survey the scheduling haste problem, and their available

solutions. It also presents a reliable grid scheduler. The proposed

scheduler selects the most suitable worker to execute an input

grid task using a fuzzy inference system. Hence, it minimizes the

turnaround time for a set of grid tasks. Moreover, our scheduler

is a system-oriented one as it avoids the scheduling haste

problem. Experimental results have shown that the proposed

scheduler outperforms traditional grid schedulers as it introduces

a better scheduling efficiency.

Keywords grids Scheduling, grid computing,

I Introduction

In recent years, due to the dramatic development of net-
work technologies and the popularity of the Internet, grid

computing has become an appealing research area (Jens et

al. 2009; Lee et al. 2009). It is becoming a mainstream

technology for large-scale distributed resource sharing and

system integration. Moreover, grid technology has

emerged as an important tool for solving compute-

intensive problems within the scientific community and in

industry as they have led to the possibility of using

distributed computers as a single, unified computing

resource.

Computational grids are the next generation of

computer clusters. They aim to maximize the utilization of

resources owned by a set of distributed heterogeneous

systems (He et al. 2005; Sacerdoti et al. 2003).

Moreover, grids can be considered as the recent

instances of meta computing (Wolski et al. 1999). The

primary goal of grid computing is to provide a transparent

access to geographically distributed heterogeneous

resources owned by different individuals or organizations

(Jen and Yuan 2009). Hence, the grid provides hardware

and software infrastructures to create an illusion of a

virtual supercomputer that exploit the computational

power aggregated from a huge set of distributed workers

(Buyya et al. 1999). This allows the execution of tasks

whose computational requirements exceed the available

local resources. However, although the notion of grid

computing is simple and attractive, its practical realization

poses several challenges and open problems that need to

be addressed (Min-Jen and Yin-Kai 2009; Michael and

William 2008). These challenges include resource

discovery, failure management, fault tolerance, resource

heterogeneity, reliability, scalability, security, and more

importantly the scheduling of incoming tasks among

available grid resources (Tseng et al. 2009).

Scheduling is the major puzzle in developing a grid-

based computing paradigm (Tseng et al. 2009; Iavarasan

et al. 2005). It involves the matching of task or

application requirements with the available resources

(Tseng et al. 2009). Scheduling in grids can be carried out

in three different phases which are: (1) resource

discovery, (2) scheduling, and (3) executing (Li and

Hadjinicolaou 2008). However, to achieve the expected

potentials of the avail-able resources, efficient scheduling

algorithms are required (Daoud and Kharma 2008).

Unluckily, scheduling algorithms previously employed in

computer clusters cannot be used in grids as they run on

homogenous and guaranteed resources over the same

LAN. A scheduler used in a computer cluster only

manages such cluster; hence, it owns the resources with

no need to discover new ones (Sacerdoti et al. 2003).

Also it assumes both the availability and stability of

resources. On the other hand, scheduling in grids is

significantly complicated as a result of grid heterogeneity

and dynamic nature (Kiran et al. 2009)

3255

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 12, December - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS121314

Unlike the cluster scheduler, a grid scheduler should have

the ability to discover new computing resources over

multiple administrative domains (Yan et al. 2005). The

dynamic nature of grids is a result of both the network

connectivity and grid resources. The network may be

unreliable as it cannot guarantee its bandwidth. Moreover,

grid resources change their availability and capability over

time as they may join or leave the grid without any

notification (Shah et al. 2007; Kousalya and

Balasubramanie 2008).

Two alternative views may be considered when

developing a grid-scheduling system. The first is the user

view (UV) while the other is the system view (SV). On

one hand, the user aims to achieve the maximum quality

of service (QoS); hence, he asks the scheduler to elect the

best currently available resources for executing his task.

On the other hand, the grid system tries to manage the

available resources in a way for achieving the maximum

QoS for all users not for a specific one. Based on these

alternative views, grid schedulers can be categorized into

two major categories, which are: (1) Task-Oriented Grid

Schedulers (TOGS), and (2) System-Oriented Grid

Schedulers (SOGS). The former supports the user’s

demands, and therefore, it tries to minimize the execution

time of each input task. The latter category supports the

system’s demands, and therefore, it tries to introduce a

high-throughput computing. Unlike TOGS, SOGS aims to

maximize the processing ability of the system over the

long run. Also, it introduces a better resource management

scheme by allocating the grid task to the most suitable

resource, not the best available one.

To the best of our knowledge, most of the proposed

grid schedulers were task-oriented ones (Aggarwal et al.

2005), which usually suffer from the haste problem. The

haste problem is the ability of the scheduler to present a

good scheduling performance in the present; however, an

overall degraded performance is presented in the long run.

More-over, implementing an efficient SOGS has not been

addressed yet. Hence, scheduling in grids is still more

complex than the proposed solutions. Many hurdles stand

in the way of achieving the maximum utilization of grid

resources (Liu et al. 2006). Accordingly, scheduling in

grids is still an elusive problem that attracts the interests

of many researchers (Aggarwal and Kent 2005; Hsin

2005).

This paper discusses the scheduling haste problem in

details. Then, a novel system-oriented grid scheduler is

introduced as a solution for this problem, which is the first

to study the scheduling by mapping the tasks to the

suitable workers not the best available ones. This has a

great impact in minimizing the turnaround time of

executing a set of tasks in the long run. The proposed

scheduler maps the suitable task to the available worker in

two steps. During the first, a candidate set of the ready-to-

run tasks is formulated. Those candidate tasks are the ones

whose resource requirements not only be satisfied by the

available worker, but also do not waste the worker

resources. Such aim was carried out be representing all the

ready-to-run tasks as well as the available worker in a

proposed n-dimensional parameter space (Parm-Space),

then, the k-nearest neighbors technique is used to elect the

candidate set of tasks, which are the k-nearest tasks to the

available worker in the Parm-Space. During the next step,

a novel fuzzy-based matchmaking procedure is applied to

choose the most suitable task to be executed on the

available worker. Experimental results have shown that

the proposed scheduler outperforms traditional ones as it

introduces a better scheduling efficiency as well as

avoiding the scheduling haste problem.

II Related work

Tremendous amount of research had been introduced in

the area of task scheduling.

Chandak et al. (2011) surveys heuristic-based task

allocation strategies and their efficiency. This strategy

optimizes various performance parameters such as

makespan, resource utilization, response time, workload

balancing, service reliability, fairness deviation and

throughput. A task life cycle model has been suggested in

computational grid. We have also proposed a

classification of heuristic task allocation strategies for

computational grid. In Salehi et al. (2008), based on

swarm intelligence, an echo system of adaptive fuzzy

artificial ants had been presented for grid load balancing.

The ants in this environment can create new ones and may

also commit suicide depending on the existing conditions.

A new concept called ant level load balancing is presented

here for improving the performance of the mechanism.

Another Hybrid Ant Colony Optimiza-tion (HACO)

scheduling algorithm is proposed in Nithya and

Shanmugam (2011). HACO is based on Ant Colony

Optimization (ACO) algorithm which uses batch mode

heuristic mapping. In this ant colony algorithm each job is

considered as an ant and optimal solution is provided with

the help of pheromone detail. Heuristic-based ant colony

algorithm is used in the second phase of the scheduler. In

Saravanakumar and Prathima (2010), a load-balancing

algorithm adapted to the heterogeneous grid computing

3256

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 12, December - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS121314

environment has been presented, which is an adaptive

decentralized sender-initiated load-balancing algorithm. In

Tchernykh et al. (2005), a two-level hierarchy scheduling

has been introduced. At the first level, broker allocates

computational jobs to parallel workers. At the second

level each worker generates schedules of the parallel jobs

assigned to it by its own local scheduler. Selection, allo-

cation strategies, and efficiency of proposed hierarchical

scheduling algorithms are also discussed in Heymann et

al. (2000), a simple but effective scheduling strategy that

dynamically measures the execution times of tasks and

uses this information to dynamically adjust the number of

workers to achieve a desirable efficiency, minimizing the

impact in loss of speedup. The scheduling strategy has

been implemented using an extended version of MW, a

runtime library that allows quick and easy development of

master– worker computations on a computational grid.

As per our knowledge, no grid-scheduling strategy till

date taking the scheduler haste problem into account. All

schedulers tend to choose the best available resource for

executing an input task not the suitable one. However,

choosing the suitable worker for the input task guarantees

the system reliability as it maximizes the capability to

execute the incoming future tasks.

III Background and basic concepts

Grid computing provides a high performance

computing platform to solve larger scale applications by

coordinating and sharing computational power, data

storage and network resources across dynamic and

geographically dispersed organizations. Scheduling onto

the Grid is NP-complete, so there is no best scheduling

algorithm for all grid computing systems. An alternative is

to select an appropriate scheduling algorithm to use in a

given grid environment because of the characteristics of

the tasks, machines and network connectivity. Job

scheduling is one of the key research area in grid

computing. The goal of scheduling is to achieve highest

possible system throughput and to match the application

need with the available computing resources. Motivation

of this study is to encourage and help the amateur

researcher in the field of grid computing, so that they can

understand easily the concept of scheduling and can

contribute in developing more efficient and practical

scheduling algorithm. This will benefit interested

researchers to carry out further work in this thrust area of

research.

A Cluster computing
Computer clusters are three-tier structural systems inter-

connected via two functional relationships (He et al.

2005). Those tiers are: (1) clients, (2) cluster server

(master

node or scheduler), and (3) cluster workers. The server is

a dedicated machine that receives incoming tasks from the

clients; this is a client–server relationship. It is the server’s

responsibility to schedule the incoming tasks among a set

of identical, dedicated, and usually fixed workers for exe-

cution; this is a master–slave relationship. In clusters, the

underlying interconnection network is usually a private

and

high-speed network, which in turn guarantees the high

quality of communication service (Sacerdoti et al. 2003).

Certainly, this infrastructure is different from

computational grids which are heterogeneous and

dynamic in both resource and communication

availabilities.

As depicted in Fig. 1, scheduling in clusters is quite

simple. Initially, incoming tasks as well as their

requirements are kept in an input queue. The task

requirements include both the expected execution time

and the number of workers needed to execute the task.

The cluster server (scheduler), on the other hand,

continuously reports the availability of cluster workers.

Once a worker completes executing a task, it notifies the

server that it is available and ready to receive a new one.

Many scheduling algorithms can be used to pick a task for

execution when a worker is available such as: First Come

First Serviced (FCFS), Minimum Request Job First

(MRJF), and Shortest Job First (SJF) (Buyya et al. 1999).

B Task-oriented versus system-oriented grid schedulers

Recent work in grid scheduling aims to introduce task

oriented schedulers. A TOGS manages the scheduling for

the benefit of the end user, who has initialized the task,

with no awareness of the overall system efficiency. From

one point of view, TOGS considers only the current state

of the grid system. It gives no awareness to the future

needs of the other grid users. This behavior degrades the

system performance as the newly incoming tasks may be

blocked (starved) for a long period of times (as their

execution requirements are not currently available). From

another point of view, TOGS is a greedy scheduler as it

exploits all the currently available grid resources for the

current task to be scheduled. It gives no attention to the

needs of the future incoming tasks.

3257

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 12, December - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS121314

Fig 1 clustering system infrastructure

IV The proposed Work

Much of the work on the scheduling strategies are

carried out. Some of the work which are best suited to be

implemented are given with its working strategies.

A Strategies based on fuzzy matchmaking approach

The following strategy is something which uses fuzzy

matchmaking approach to use the task scheduling in grid

computing.

Fig.2. The proposed 3 tier scheduling system structure

As depicted in Fig. 2, the proposed grid-scheduling

system consists of three different tiers, which are: (1) grid

clients tier (GCT), (2) grid scheduler tier (GST), and (3)

grid workers tier (GWT). GCT represents the grid users

who are sitting behind a set of client machines and willing

to execute their tasks using the grid computational power.

On the other hand, GWT provides the infrastructure that

creates an illusion of a virtual supercomputer. It exploits

the computational power aggregated from a large set of

geographically distributed workers. The last tier is the

GST, which represents the core of the proposed

scheduling framework. GST is responsible of carrying out

the scheduling decisions. It determines where and when to

execute an input task T by applying a set of heuristic

rules. GST also appoints when T should be interrupted

and resume its execution. Moreover, GST is responsible

of collecting the results of T, and then sending them to the

task initiator. Executing a task T in the proposed

framework is carried out in the sequential steps shown in

Fig. 3. As depicted in the figure, the grid scheduler stands

as an interface between the two other tiers. The following

subsections describe the internal structure of GST as well

as the functionality of its modules in more detail

Fig 3 steps to execute a task in a grid

As depicted in the figure, the grid scheduler stands as an

interface between the two other tiers. The following

subsections describe the internal structure of GST as well

as the functionality of its modules in more detail

B A job grouping based approach for task scheduling:

Grid computing provides a high performance

computing platform to solve applications with large

number of independent jobs. However, user jobs

developed for grid might be small and of varying lengths

according to their computational needs and other

requirements. In fact, it is a big challenge to design an

efficient scheduler, but there exists some grouping based

job scheduling strategy that intends to minimize total

processing time by reducing overhead time and

computation time, and on the other hand maximizing

resource utilization than without grouping based

scheduling. Further analysis and research on job

scheduling can be carried out to enhance the performance

of grouping based scheduling algorithm in grid

computing. This study intends to achieve better

3258

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 12, December - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS121314

performance by extending the concept of grouping based

job scheduling. Therefore, this paper proposes &x201C;A

modified grouping-based job scheduling in computational

grid&x201D; with the objective of minimizing overhead

time and computation time, thus reducing overall

processing time of jobs. The work is verified through

simulation and the results obtained shows that the

proposed grouping-based scheduling algorithm is better

than, others.

C Resource management for task allocation with Virtual

Organization concept.

The Optimized Resource Management Structure with VO
A. The resource management frame
To manage grid resource more efficient, the resource

organization and manage constructor must correctly

materialize the resource constitutes in grid computing

environment. As a result, the VO constructor should

display the following mode characters: Wide distributed,

part centralized and local application controlled. In order

to demonstrate the thought of grid computing, i.e. service

oriented, VO must confirm the real times waken rule as

“task treatment and job requirement oriented” in allusion

to the resource management form and the resource waken

course. It should dynamically change its own resource

quantity with the transformation of task scale and should

also modify the way to dispose information in order

to optimize the managing method and the system

efficiency[1].

In the process of resource matching with VO, the

following assumption always exists: Huge scale task

group activate in actual grid computing environment, the

VO group that takes charge of scheduling task group and

matching resource has already engrossed plentiful

resources that belong to the specified area. If some task

entity refers a huge scale task requirement T1 this time,

the produced virtual organization VO1 must occupy

propriety resources to match the requirement. But the idle

resources of this area can not satisfy the actual needs,

VO1 has to acquire the great mass of resources from Wide

Area Grid Computing environment (WAGC). Thus it

leads to serious

net delay and load, affects the performance of task

management heavily, and also results in resource blind

search and the phony failure phenomena of the task

schedule process. As a result, besides the characters of

interactivity, dynamic adaptation and periodicity, the VO

should also create proper quantity Sub Virtual

Organization (SVO) to assort with the integral

management action according to the task character and the

resource distribution. Suppose there are many tasks be

disposed in the grid computing environment, the three

arbitrary task entities put in three sweeping task disposal

requirements T1, T2 and T3. System responds the

requirement and creates three corresponding virtual

organization called VO1, VO2 and VO3. They take

charge of resource searching, resource locating, resource

possessing and resource matching. Because of the

sweeping task group existing in grid environment, great

deals of resources are possessed by task group[2]. The

three virtual organizations have to

gain enough resources from distributed computing

resource in WAGC. This causes the three VOs resource

distribution very decentralized. So the VO1,

VO2 and VO3 must create SVO to manage dispersive

resources, as shown in Fig.1. In the map, the VOi -j (i

=1,2,3; j is integer) is the SVO of main virtual

organization VOi.

 B The resource organization strategy of simple task

As we know, the scale of virtual organization that

derives from specific task requirement is different with the

task scale. Generally speaking, when the task scale is

huge, the resource distribution presents wide area,

aggregative and clotty characters. So we introduce

classified resource management method to optimize the

resource management and minimize the task dispose cost.

Each resource part

via division is managed by the corresponding SVO. This

shows that the resource organization based on

virtual organization of simple task takes on multilevel

allots and concentrative management mode,

see

Fig 4.Virtual organization of a nodes in Grid

References

1.Aggarwal M, Kent R (2005) An adaptive generalized

scheduler for grid applications. In: The 19th annual

international symposium on high performance computing

systems and applications (HPCS’05), 2005, pp 15–18

2.Aggarwal M, Kent R, Ngom A (2005) Genetic

algorithm based scheduler for computational grids. Int

Symp High Per form Comput Syst Appl 15(18):209–215

3259

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 12, December - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS121314

3.Berman F, Wolski R, Figueira S, Schopf J, Shao G

(1996) Application-level scheduling on distributed

heterogeneous networks.In: Proceedings of the 1996

ACM/IEEE conference on Supercomputing, 1996, p 39

4.Boutammine S, Millot D, Parrot C (2006) An adaptive

Scheduling Method for Grid Computing. Euro-Par

2006:188–197

 5.Buyya R (1999) High performance cluster computing:

systems and architectures. Prentice Hall, USA

Buyya R, Vazhkudai S (2001) Compute power market:

towards a market-oriented grid. In: The 1st international

symposium on cluster computing and the grid, 2001, p

574

6.Casanova H, Kim M, Plank J, Dongarra J (1999)

Adaptive scheduling for task farming with grid

middleware. Int J Supercomp ut Appl High-Perform

Comput 13(3):231–240

7. An efficient grid-scheduling strategy based on a fuzzy

matchmaking approach Ahmed I. Saleh Published online:

14 September 2012

3260

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 12, December - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS121314

