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Abstract— In this article, we consider a two-commodity 

inventory system under discrete time review. The demands for 

each commodity - )2,1( ii  arrive according to a independent 

Bernoulli process. The maximum inventory level for the 

1,2)=(iith
 commodity is fixed as 1,2=, iSi  and the 

reorder level as 1,2=, isi . The ordering policy is defined as, 

when both the inventory levels are less than or equal to their 

respective reorder levels, we place an order for 

1,2=),(= isSQ iii   units . The lead time distribution is 

assumed to be geometric. The demands that occur during the 

stock-out period are considered to be lost. Some system 

performance measures in the steady state are derived and the 

total expected cost rate under a suitable cost structure is 

calculated. The results are illustrated numerically.  

 

Keywords — D   iscrete time; two -commodity; inventory system; 

joint order policy; 

I.  INTRODUCTION  

One of the factors that contribute the complexity of the 

present day inventory system is the multitude of items 

stocked and this necessitated the multi-commodity systems. 

In dealing with such systems, in the earlier days models were 

proposed with independently established reorder points. But 

in situations were several product compete for limited storage 

space or share the same transport facility or are produced on 

(procured from) the same equipment (supplier) the above 

strategy overlooks the potential savings associated with joint 

ordering and, hence, will not be optimal. Thus, the 

coordinated, or what is known as joint replenishment, reduces 

the ordering and setup costs and allows the user to take 

advantage of quantity discounts. 

Inventory system with multiple items have been 

subject matter for many investigators in the past. Such studies 

vary from simple extensions of EOQ analysis to sophisticated 

stochastic models. References may be found in [15, 2, 22, 24, 

27, 17] and the references therein. 

Kalpakam and Arivarignan [9] have introduced (s, 

S) policy with a single reorder level s defined in terms of the 

total number of items in the stock. This policy avoids 

separate ordering for each commodity and hence a single 

processing of orders for both commodities has some 

advantages in situation where in procurement is made from 

the same supplies, items are produced on the same machine, 

or items have to be supplied by the same transport facility. 

Krishnamoorthy and Varghese [10] have considered 

a two commodity inventory problem without lead time and 

with Markov shift in demand for the type of commodity 

namely ‘‘commodity-1’’, ‘‘commodity-2’’ or ‘‘both 

commodity’’, using the direct Markov renewal theoretical 

results. Anbazhagan and Arivarignan [4, 5, 6, 7] have 

analyzed two commodity inventory system under various 

ordering policies. Yadavalli et al. [26] have analyzed a model 

with joint ordering policy and varying order quantities. 

Yadavalli et al. [27] have considered a two-commodity 

substitutable inventory system with Poisson demands and 

arbitrarily distributed lead time. 

A two-commodity inventory system under 

continuous review is analyzed by Sivakumar [21]. They 

assumed that both the commodities are substitutable in the 

sense that at the time of zero stock, the other commodity is 

used to meet the demand. During the stock-out of both 

commodities an arriving demand entered the orbit of infinite 

size. They assumed constant retrial policy with exponential 

retrial time. 

In all the above models, the authors assumed that the 

time axis is continuous. But, the discrete time systems, are 

more appropriate than their continuous time counterparts for 

modelling diverse productive processes, since the basic units 

in these systems are digital. In discrete time setting, it is 

assumed that the time axis is calibrated into epochs by small 

units and that all the events are deemed to occur only at these 

epochs. With the advent of fast computing devices and 

efficient transaction reporting facilities, such epochs with 

small gaps can be conveniently assumed so that events can 

occur at these epochs. 

The analysis of discrete time queueing models has 

received considerable attention in the literature over the past 

years, in view of its applicability in the study of many 

computer and communication systems in which time is 

slotted ([23], [25]). An important application stems from the 

secondary and tertiary sector since, for example the current 

production systems of numerous factories operate on a 

discrete time basis where events can only happen at regularly 

spaced epochs. 

In the case of inventory modelling under discrete 

times, the first paper was by Bar-Lev and Perry [8], who 

assumed that demands are non-negative integer valued 

random variables and items have constant life times. Lian and 

Liu [12] developed a discrete time inventory model with 

geometrically distributed inter-demand times, bulk demands 
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and constant life time for items. They assumed )(0,S  

ordering policy, with instantaneous supply which clears any 

backlog and restores the stock to the maximum capacity .S  

This assumption helped them to have fixed life time for all 

items. They derived the limiting distribution of inventory 

level through matrix-analytic method. 

Lian et al. [13] developed a discrete time inventory 

system with discrete PH-renewal process for (batch) demand 

time points and assumed discrete-PH-distribution for life time 

of items. They also assumed zero lead time and that 

unsatisfied demand were completely backlogged. 

Abboud [1] studied a discrete inventory model for 

production inventory systems with machine breakdowns. 

They assumed that the demand and production rates were 

constant and that the failure and repair times of each item 

were independently distributed as geometric. 

In this paper we have considered a discrete time two 

commodity inventory system with independent reorder levels 

where a joint order for both commodities is placed only when 

the levels of both commodities are less than or equal to their 

respective reorder levels. The rest of the paper is organized as 

follows: In section 2, the mathematical model is described. 

Section 3 is the central one. The steady state analysis of the 

model is presented in section 4. Somekey system 

performance measures are derived and the total expected cost 

rate is calculated in section 5. In section 6, some numerical 

results are presented to illustrate the effect of the parameters 

on several performance characteristics.   

                II .         Model Description 

We consider a two-commodity inventory system where the 

time axis is divided into intervals of equal length, called slots. 

The end points of the slots are called slot boundaries. The 

system is monitored at the slot boundaries. The maximum 

storage capacity for the commodity - i  is 1,2)=(iSi  which 

is used to meet the demands. The demand is for single item 

per customer. We assume the following: 

     • The demand for the commodity - 1 arrives according to a 

Bernoulli process with probability 1a . Thus 1a  is the 

probability that a demand occurs at a slot and )1(= 11 aa  , 

is the probability that a demand does not occur in a slot. 

 

     • The demand for the commodity - 2 arrives according to a 

Bernoulli process with probability 2a . Thus 2a  is the 

probability that a demand occurs at a slot and )1(= 22 aa  , 

is the probability that a demand does not occur in a slot.  

 

 

 

 

 

 

 

 

 

     • The reorder level for the commodity - i  is fixed as 

)<(1 iii Sss   with an ordering quantity for the 

commodity - i  is 1,2)=1)(>(= issSQ iiii   items 

when both inventory levels are less than or equal to their 

respective reorder levels. The requirement 

1,2)=1(> isQ ii   ensures that after the replenishment the 

inventory levels of both commodities are above their 

respective reorder levels; otherwise it may not be possible to 

reorder (according to this policy) which leads to perpetual 

shortage. The lead time is assumed to be distributed as 

geometric distribution with parameter 0)(>b .  

     • The demands that occur during stock-out periods are 

considered to be lost.  

 

We assume that all the above activities are occurred in the 

slot. Therefore more than one event may occur in the same 

slot. For mathematical clarity, we need to define the order of 

the events to be occurred, here, first the replenishment of 

order, then the demand for the commodity - 1 and finally the 

demand for the commodity - 2 will be satisfied. 

                    3  Analysis 

Let tX  denote the inventory level of commodity - 1 and tY  

denote the inventory level of commodity - 2 at time t . From 

the assumptions made on the input and output processes, it 

can be shown that the stochastic process 

},0,1,2,=:),{( tYX tt  is a discrete time Markov chain 

with state space given by 

 

 

}.,0,1,2,=,,0,1,2,=:),{(= 21 SkSikiE   

 

The transition probability function is defined as for 

Eljki ),(),,( , 

 

 

].=,=|=,=[=)),(),,(( 11 kYiXlYjXPrljkip tttt   

 

The transition probability matrix P  of this process, 

 

 

EljkiljkipP ),(),,(),)),(),,(((=  

 

Hence, we have 

 

 =)),(),,(( ljkip   
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We define 

.,0,1,2,=)),,(,,1),(,0),((>=< 12 SiSiiii   By 

ordering the set of states as >),<,>,1<>,0(< 1S  the 

transition probability matrix P  of the discrete time Markov 

chain can be conveniently expressed in a block partitioned 

form with entries, 
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It may be noted that the matrices 154321 ,,,,, CAAAAA  and 

2C  are square matrices of size 1.2 S  

4  Steady State Analysis 

It can be seen from the structure of the transition probability 

matrix P , that the discrete time Markov chain 

},0,1,2,=),,{( tYX tt  on the finite state space )(E  is 

irreducible. Hence, the limiting distribution, exits and it is 

defined as 

 

],|=,=[lim= 00),( LXkYiXPr tt
t

ki


  

 

exists and is independent of the initial state. We group the 

probabilities ),( ki  as follows: 
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2
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  .,,,= )
1

((1)(0) Sand    

 

Then, the limiting probability distribution   satisfies the 

following equations 

 

  =P  (1) 

 1.=eand  (2) 
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The first equation of the above yields the following set of 

equations: 
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5  System Performance Measures 

 

In this section, we derive some importance system 

performance measures. 

 

5.1  Expected Inventory level 

 

Let 
1

I  denote the expected inventory level for the 

commodity - 1 in     the steady state.  

 .= ),(

2

0=

1

1=
1

ki

S

k

S

i

I i   (11) 

Let 
2

I  denote the expected inventory level for the 

commodity - 2 in the steady state.  

 .= ),(

2

1=

1

0=
2

ki

S

k

S

i

I k   (12) 

 

5.2  Expected Reorder Rate 

 

Let R  denote the expected reorder rate in the steady state.  
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5.3  Expected Shortage Rate 

 

Let 
1

SR  denote the expected shortage rate of commodity - 1 

in the steady state.  

 .= )(0,1

2

0=
1

k

S

k

SR a    (14) 

 Let 
2

SR  denote the expected shortage rate of commodity - 2 

in the steady state.  

 .= ,0)(2

1

0=
2

i

S

i

SR a    (15) 

 

5.4  Total Expected Cost Rate 

 

The long-run total expected cost per unit time for this system 

in the steady state is given by  

 

 

22112211
2121 =),,,( SRrSRrRsIhIh cccccssSSTC  

  

 where  

 

1
hc  

The inventory carrying cost of commodity - 1 per unit item per unit time. 

2
hc  

The inventory carrying cost of commodity - 2 per unit item per unit time. 

sc  
Setup cost per order. 

1
rc  

Shortage cost of commodity - 1 per unit item per unit time. 

2
rc  

Shortage cost of commodity - 2 per unit item per unit time. 

 

By putting the values of  s
'
 from the above measures of 

system performance, we obtain ),,,( 2121 ssSSTC  as  
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 Due to the complex form of the limiting distribution, it is 

difficult to discuss the qualitative behaviour of the cost 

function TC  analytically. Hence a detailed computational 

study of the expected cost rate function is carried out in the 

next section. 

A. 6  Numerical Analysis 

 

To study the behaviour of the model developed in this work, 

several examples were performed and the set of 

representative results are shown here. Although we have not 

shown the convexity of ),,( 21 ssTC  our experience with 

considerable numerical examples indicate that the function 

),,( 21 ssTC  is convex. 

A three dimensional plot of ),( 21 ssTC  is 

presented in Figure 1. We use simple numerical search 

procedure to get the optimal values of 1, sTC  and 2s  (say 

*

1

*, sTC  and 
*

2s  respectively). The minimum value of 

0.829224=TC  is obtained at (12,4)=),( *

2

*

1 ss . 
 

  

 
Figure  1: A three dimensional plot of total cost rate per unit time. 

  

We have studied the effect of varying the costs and other 

system parameters on the optimal values and some of our 

results are presented in Tables 1 to 12. The lower entry in 

each cell corresponds to the total optimal cost value 
*TC  

and the upper entries correspond to the local optima 
*

1S  and 

*

2S  respectively. 

Example 1: We start by examining the effect of the system 

parameters namely, demand for commodity-1 with the 

probability, 1a ,demand for commodity- 2 with the 

probability, 2a  and lead time distribution’s success 

probability, b , on the optimal values ),( *

2

*

1 SS  and the 

corresponding optimal cost 
*TC . From tables 1 to 3, we 

observe the following: 
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      • The total expected cost rate increases when 

each of 1a  and    2a  increase and it decreases with the 

increase in b .  

     • As is to be expected, 
*

1S  increase and 
*

2S  decrease with 

the increase in 1a . Similarly, 
*

1S  decrease and 
*

2S  increase 

with the increase in 2a . This is because, if 1a  and 2a  

increases, then more demands occur. To avoid frequent stock 

out we have to maintain larger inventory.  

     • 
*

1S  and 
*

2S  decrease with the increase in b . Because if 

the lead time is small, a smaller stock would be preferable.  

 

Example 2: Next, we study the impact of costs, namely, the 

holding cost of first commodity 
1

hc , the holding cost of 

second commodity 
2

hc , the setup cost sc , the shortage cost 

of first commodity 
1
rc  and the shortage cost of second 

commodity 
2

rc  on the optimal values ),( *

2

*

1 SS  and the 

corresponding total expected cost rate .*TC  From tables 4 to 

12, we observe the following: 

  

• The total expected cost rate increases with the 

increase in each of the costs 
2121

,,, rrshh candcccc .  

• As each of holding costs 
1

hc  and 
2

hc  increases, 

the optimal values 
*

1S  and 
*

2S  are decreasing. This is 

because if the holding cost is high, more cost is required to 

maintain the large inventory. To avoid this, we would prefer 

to maintain small amount of stock.  

• As the setup cost sc  increases, the optimal values 

*

1S  and 
*

2S  are increasing. If the setup cost is high, we 

should hold more items in the stock.  

• As the shortage cost 
1
rc  increases, the optimal value 

*

1S  

increases and the 
*

2S  decreases. Similarly the shortage cost 

2
rc  increases, the optimal value 

*

1S  decreases and the 
*

2S  

increases. 
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Table 1: Effect of 1a  and 2a  on the optimal values 

 
a

1  0.6  0.62  0.64  0.66  0.68  0.7 

a2                   

0.5 36  32 36  31 37  31 38  31 39  31 40  31 
             

 0.596968 0.602735 0.608424 0.614051 0.619615 0.625116 
             

0.52 35  32 36  32 37  32 38  32 38  31 39  31 
             

 0.601644 0.607352 0.613006 0.618606 0.624057 0.629384 
             

0.54 35  33 36  33 36  32 37  32 38  32 39  32 
             

 0.606411 0.612075 0.617655 0.623039 0.628377 0.633667 
             

0.56 35  34 35  33 36  33 37  33 38  33 38  32 
             

 0.611276 0.616877 0.62224 0.627569 0.63286 0.638019 
             

0.58 35  35 35  34 36  34 37  34 37  33 38  33 
             

 0.616228 0.621672 0.626976 0.632251 0.63737 0.642355 
             

0.6 35  35 35  34 36  34 37  34 37  34 38  34 
             

 0.620631 0.62609 0.631466 0.636824 0.641995 0.64691 
                   

 

Table 2: Effect of 1a  and b  on the optimal values 

 
a

1  0.64  0.66  0.68  0.7  0.72  0.74 

b                   
                   

0.2 37  35 37  34 38  34 39  34 40  34 41  34 
             

 0.637157 0.642385 0.647428 0.652465 0.6575 0.662533 
             

0.3 36  34 37  34 37  34 38  34 38  33 39  33 
             

 0.631466 0.636824 0.641995 0.64691 0.651736 0.656385 
             

0.4 35  34 36  34 37  34 38  34 38  33 39  33 
             

 0.627004 0.632242 0.637487 0.642732 0.647956 0.653081 
             

0.5 35  34 36  34 37  34 37  34 37  33 38  33 
             

 0.622057 0.62754 0.633048 0.638513 0.643441 0.648374 
             

0.6 35  34 35  34 36  34 36  33 37  33 38  33 
             

 0.617222 0.622643 0.627774 0.632791 0.63789 0.643072 
             

0.7 34  34 34  33 35  33 36  33 37  33 38  33 
             

 0.611996 0.617102 0.622171 0.627354 0.632645 0.63804 
                   

 

Table  3: Effect of 2a  and b  on the optimal values 

a2  0.55  0.56  0.57  0.58  0.59  0.6 

b                   
                   

0.1 39  36 38  36 38  36 38  37 38  37 38  38 
             

 0.649383 0.652975 0.65673 0.660404 0.664113 0.667944 
             

0.2 36  34 36  34 36  35 36  35 35  35 35  35 
             

 0.615055 0.617307 0.619912 0.621936 0.624798 0.626548 
             

0.3 35  33 35  34 35  34 35  35 35  35 35  35 
             

 0.608965 0.611276 0.613486 0.616228 0.618129 0.620631 
             

0.4 34  33 34  33 34  34 34  34 34  34 34  35 
             

 0.603423 0.605971 0.60882 0.610994 0.613707 0.616184 
             

0.5 34  33 34  33 34  33 34  34 33  34 33  34 
             

 0.597483 0.600673 0.603083 0.605841 0.608789 0.611194 
             

0.6 33  32 33  33 33  33 33  33 33  34 33  34 
             

 0.591711 0.594621 0.597293 0.600607 0.603158 0.60599 
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Table  4: Effect of 
1

hc  and 
2

hc  on the optimal values 

 
c

h1  0.01 0.011 0.012 0.013 0.014 0.015 
c

h2              

0.01 39  36 38 35 38 35 36 34 36 34 36 34 
             

 0.658962 0.671693 0.684347 0.695961 0.706759 0.717556 
             

0.011 38  35 38 35 37 34 36 34 35 33 35 33 
             

 0.681807 0.694461 0.706773 0.718256 0.728977 0.739367 
             

0.012 37  34 37 34 37 34 35 33 35 33 35 33 
             

 0.704464 0.716751 0.729038 0.74038 0.750771 0.761162 
             

0.013 37  34 36 33 36 33 35 33 35 33 34 32 
             

 0.726728 0.738965 0.750891 0.762175 0.772565 0.782552 
             

0.014 36  33 36 33 36 33 34 32 34 32 34 32 
             

 0.7488 0.760726 0.772652 0.783876 0.793861 0.803847 
             

0.015 36  33 35 32 35 32 34 32 34 32 33 31 
             

 0.770561 0.782485 0.794057 0.80517 0.815156 0.824974 
              

 

Table  5: Effect of 
1

hc  and sc  on the optimal values 

 
c

h1  0.01 0.011 0.012 0.013 0.014 0.015 
c

s              

6 34  30 33 30 32 29 32 29 32 29 31 28 
             

 0.559854 0.572914 0.583524 0.594086 0.604649 0.615116 
             

7 36  32 34 31 34 31 33 30 33 30 32 30 
             

 0.5878 0.600346 0.611571 0.622726 0.633614 0.644131 
             

8 37  33 36 33 35 32 35 32 34 32 33 31 
             

 0.613436 0.625831 0.637443 0.649015 0.660361 0.670101 
             

9 37  34 37 34 36 33 36 33 35 33 34 32 
             

 0.63714 0.649427 0.661682 0.673608 0.684192 0.694508 
             

10 39  36 38 35 38 35 36 34 36 34 36 34 
             

 0.658962 0.671693 0.684347 0.695961 0.706759 0.717556 
             

11 40  37 39 36 38 36 37 35 37 35 37 35 
             

 0.679541 0.692795 0.70546 0.717021 0.728226 0.739431 
              

 

Table  6: Effect of 
1

hc  and 
1
rc  on the optimal values 

 
c

h1 0.011 0.012 0.013 0.014 0.015 0.016 
c

r1             

0.7 37 36 36 36 36 36 35 36 34 35 34 35 
             

 0.652792 0.663201 0.672823 0.682189 0.690589 0.698903 
             

0.8 38 36 38 36 37 36 36 35 35 35 35 35 
             

 0.665074 0.676875 0.687695 0.697956 0.707688 0.716889 
             

0.9 39 36 38 35 37 35 37 35 36 35 35 34 
             

 0.674766 0.687933 0.699703 0.711105 0.721956 0.732028 
             

1.0 39 35 38 35 38 35 37 35 36 34 36 34 
             

 0.682774 0.696613 0.709516 0.722362 0.733689 0.744693 
             

1.1 39 35 39 35 38 35 37 34 37 34 36 34 
             

 0.68885 0.703775 0.718196 0.730973 0.743522 0.755986 
             

1.2 40 35 39 35 38 34 38 34 37 34 37 34 
             

 0.694616 0.70985 0.724622 0.739288 0.752122 0.764671 
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Table  7: Effect of 
1

hc  and 
2

rc  on the optimal values 

 
c

h1  0.006 0.007 0.008 0.009  0.01 0.011 
c

r2               

3 35  37 34 37 33 36 32 35 32  35 31 34 
              

  0.562557 0.577559 0.591813 0.605683 0.619037 0.632065 
             

3.5 35  38 34 37 33 36 32 35 32  35 31 35 
              

  0.564629 0.579275 0.59347 0.607279 0.620633 0.632951 
             

4 35  38 34 37 33 36 32 35 32  36 31 35 
              

  0.566403 0.58099 0.595126 0.608875 0.621751 0.633654 
             

4.5 35  38 34 37 33 36 32 36 32  36 31 35 
              

   0.568176 0.582706 0.596783 0.610192 0.622483 0.634356 
              

5 35  38 34 37 33 37 32 36 32  36 31 35 
              

  0.569949 0.584421 0.598219 0.610924 0.623215 0.635059 
             

5.5 35  38 34 38 33 37 32 36 32  36 31 35 
              

  0.571723 0.585905 0.598981 0.611656 0.623946 0.635761 
               

 

Table  8: Effect of 
2

hc  and sc  on the optimal values 

 
c

h2  0.01 0.011 0.012 0.013 0.014 0.015 
c

s              

6 34  30 33 29 33 29 32 28 32 28 31 27 
             

 0.559854 0.579678 0.598989 0.618152 0.636849 0.655391 
             

7 36  32 35 31 34 30 34 30 33 29 33 29 
             

 0.5878 0.60832 0.6287 0.648599 0.668356 0.687667 
             

8 37  33 36 32 36 32 35 31 35 31 34 30 
             

 0.613436 0.634927 0.655946 0.676762 0.697229 0.717445 
             

9 37  34 37 34 36 33 37 33 36 32 36 32 
             

 0.63714 0.659405 0.681352 0.702948 0.724093 0.745113 
             

10 39  36 38 35 37 34 37 34 36 33 36 33 
             

 0.658962 0.681807 0.704464 0.726728 0.7488 0.770561 
             

11 40  37 39 36 39 36 38 35 37 34 37 34 
             

 0.679541 0.703039 0.72631 0.749101 0.771788 0.794052 
              

 

  Table  9: Effect of 
2

hc  and 
1
rc  on the optimal values 

 
c

h2 0.012 0.013 0.014 0.015 0.016 0.017 
c

r1             

0.75 35 33 34 32 33 31 33 31 33 31 32 30 
             

 0.655662 0.675952 0.696178 0.715965 0.735751 0.755042 
             

0.8 35 33 34 32 33 31 33 31 33 31 32 30 
             

 0.661314 0.681624 0.701871 0.721658 0.741445 0.760759 
             

0.85 35 32 35 32 34 31 34 31 33 30 33 30 
             

 0.666932 0.68717 0.707301 0.727034 0.746706 0.765932 
             

0.9 35 32 35 32 34 31 34 31 33 30 33 30 
             

 0.671257 0.691494 0.711583 0.731316 0.750941 0.770167 
             

0.95 35 32 35 32 34 31 34 31 34 30 34 30 
             

 0.675581 0.695819 0.715865 0.735598 0.755173 0.774125 
             

1 36 32 36 32 35 31 35 31 34 30 34 30 
             

 0.679587 0.699618 0.719319 0.738814 0.757917 0.776868 
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Table  10: Effect of 
2

hc  and 
2

rc  on the optimal values 

 
c

h2 0.012 0.013 0.014 0.015 0.016 0.017 
c

r2             

2.5 36 32 36 32 35 31 35 31 34 30 34 30 
             

 0.679931 0.699962 0.71973 0.739225 0.758413 0.777365 
             

3 35 32 35 32 35 31 35 31 34 30 34 30 
             

 0.680019 0.700256 0.720141 0.739636 0.75891 0.777861 
             

3.5 35 32 35 32 34 31 35 31 34 30 34 30 
             

 0.680075 0.700313 0.720338 0.740046 0.759406 0.778358 
             

4 35 32 35 32 34 31 34 31 33 30 34 30 
             

 0.680132 0.70037 0.720402 0.740135 0.7597 0.778854 
             

4.5 35 32 35 32 34 31 34 31 33 30 33 30 
             

 0.680189 0.700427 0.720466 0.740199 0.759772 0.778999 
             

5 35 32 35 32 34 31 34 31 33 30 33 30 
             

 0.680246 0.700484 0.72053 0.740263 0.759845 0.779071 
             

 

Table  11: Effect of sc  and 
1
rc  on the optimal values 

cs  6  7  8  9  10  11 
c

r1               

0.5 32 31 33 33 34 35 35 36 35  37 36  38 
             

 0.520918 0.545697 0.568678 0.589853 0.609871 0.628745 
             

0.55 32 31 34 33 35 35 36 36 36  37 37  38 
             

 0.528152 0.553657 0.577177 0.598884 0.61914 0.638388 
             

0.6 33 31 35 33 35 34 36 36 37  37 38  38 
             

 0.534011 0.560708 0.584562 0.60691 0.627499 0.6472 
             

0.65 34 31 35 33 36 34 37 36 38  37 38  38 
             

 0.539671 0.566374 0.591075 0.613847 0.635036 0.655015 
             

0.7 34 31 35 32 36 34 37 35 38  37 39  38 
             

 0.543823 0.571555 0.596722 0.620002 0.641799 0.661972 
             

0.75 34 31 35 32 37 34 38 35 39  37 40  38 
             

 0.547975 0.575761 0.601546 0.625613 0.647485 0.668296 
               

 

  Table  12: Effect of sc  and 
2

rc  on the optimal values 

 cs  9  10  11  12  13  14 
c

r2                  

2.5 34 29 35  30 36  31 37  32 38  33 38  34 
             

 0.587972 0.608885 0.628377 0.646635 0.663832 0.679977 
             

3 34 29 35  30 36  31 37  32 38  33 38  34 
             

 0.588523 0.609261 0.628637 0.646818 0.663964 0.680007 
             

3.5 34 29 35  30 36  31 37  32 37  33 38  34 
             

 0.589075 0.609637 0.628898 0.647002 0.664033 0.680036 
             

4 34 29 35  30 36  31 37  32 37  33 38  34 
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