
A Distinct Approach to Vein Pattern Recognition
An Effective Design for Secure Systems in Developing Nations

Muntaka Ahmed Chowdhury Chaity, Imtiaz Ahmed Khan, Iqbalur Rahman Rokon
Department of Electrical and Computer Engineering

North South University

Dhaka, Bangladesh

Abstract— Biometric-based identification has steadily gained

immense popularity as the need for perfectly secure systems has

become a top priority issue these days. Among biometric

identifications such as fingerprint, vein pattern, iris, voice, face

recognitions, vein pattern recognition stands out as it provides

excellent security and further researches are still being

conducted to improve the system. This paper introduces the

skeleton of a vein pattern recognition system that we have

designed using Verilog HDL (Hardware Description Language)

keeping FPGA (Field Programmable Gate Array)

implementation in mind. Developing nations can greatly benefit

from using FPGA-based security systems as FPGAs are

reconfigurable, faster but consume lower power and are thus

more cost-effective than general purpose processors. We have

used slightly modified existing algorithms to program most

parts of our system. Our vein pattern recognition system

ensures a far simpler but effective pattern extraction using

Verilog HDL .

Keywords—Vein pattern; Verilog HDL; FPGA

I. INTRODUCTION

Perfectly secure systems are very essential in today‟s
world. Biometric identification has been used for
authentication purposes for quite some time now. Biometrics
refers to methods of recognizing a person based on a certain
feature of his body like the voice, iris, fingerprint, retina etc
[1]. Biometrics has numerous advantages over other means
of authentication. Authentication using passwords and cards
have numerous disadvantages such as the fact that passwords
can be forgotten, and cards lost or stolen. Vein pattern
recognition stands out among all other biometric
identification, as vein patterns cannot be forged. Each person
has a unique vein pattern. . Moreover, a person has to be alive
with blood flowing through his veins for this system to work,
making it impossible to breach.

Various vein pattern recognition systems have been
designed and researched on in the current years. Most of
these systems have been designed using software in
computers, using languages such as C, Matlab. Examples of
recent work involving hardware implementation of vein
pattern recognition systems include FPGA-based systems
with Nios 2 Linux Operating systems running at 50 MHz
clock rate [2]. Inspired by such work, we have designed the
framework of a pattern recognition system using Verilog
HDL which would allow direct hardware implementation.

FPGA based systems have numerous advantages over the
ones based on general purpose processors. There is a large
computational speed-up compared to programs running on

CPUs as FPGAs allow parallel processing [3]. Complex
biological calculations, such as pattern recognition can take
advantage of this as this allows a much faster evaluating of
data. Getting the work done much faster at significantly fewer
clock rates than general purpose processors allows the FPGA
to consume much lower power. A FPGA-based Vein Pattern
recognition system would thus be a very cost-effective,
secure system. Developing countries where living standards
demand products of lower cost could make great use of such
a system for authentication. A vein pattern recognition
system can be used in a lot of places such as hospitals, banks,
passport offices, government offices, libraries, personal
computers etc [1].

Throughout this paper, we have explained the structure
and methods we have used to design a vein pattern
recognition system using Verilog HDL. These steps have
been used by existing systems, and the algorithms used have
been modified to accommodate our design. A new approach
to pattern matching for future work has also been introduced
in the end.

II. GENERAL SYSTEM OVERVIEW

 In this section, we have explained the basic steps that

have been used to design typical vein pattern recognition

systems so far. The four basic consecutive steps are image

acquisition, preprocessing, image segmentation and

postprocessing, features extraction and matching.

A. Image Acquisition

 In a vein pattern recognition system, the first step is
image acquisition. An image of the veins in a person‟s palm,
finger or back of hand is captured, and stored in the system.
Different methods of capturing an image of the vein patterns
are used. These patterns cannot be captured in visible light as
the veins are beneath the skin. But hemoglobin in human
blood absorbs Infrared (IR) rays of 700nm-1000nm [4]. Thus,
low cost modified webcams with attached IR filters can be
used to capture these images, where vein appear as dark
patterns against a lighter background [4]. This image is then
cropped to get the Region of Interest (ROI).

B. Preprocessing

At this stage, the cropped image undergoes a few stages
which improve the quality of the image [5]. These processes
vary for different pattern recognition systems. The Gaussian
low-pass filter and median filter can be used to reduce noises,
and then Histogram stretching can be applied for contrast
enhancing. [5]. Then the preprocessed image is sent for
segmentation.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.orgIJERTV4IS060862

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 4 Issue 06, June-2015

865

C. Image Segmentation and Postprocessing

This is very important step and several methods exist.
Different pattern recognition systems have preferred different
methods according to the need of their system. Segmentation
methods include Repeated Line Tracking which traces lines
along veins, Local Thresholding which binarizes the image,
Laplacian of Gaussian which is used for edge detection and
reduction of noise etc [5]. The segmented image is then
postprocessed to reduce further noise and remove pixel blobs
from image [5].

D. Features Extraction and Matching

The postprocessed image undergoes features extraction.
Extraction can be done using a method which finds maximum
curvature points in images [6]. Then Thinning is applied to
the image by implementing Zhang-Suen‟s thinning algorithm
[7], which makes the vein pattern one pixel thick. Finally the
intersecting points of the veins can be found using algorithms
which vary across different systems. Then matching can be
done by using several methods, one of which being Modified
Hausdorff distance formula. Hausdorff distance measures the
distance between two sets of points, and ultimately measures
accurately the difference between two images [5]. When a
stored image in the database matches a newly entered image
of vein pattern, access to the system is granted. Otherwise,
access is denied.

III. OUR SYSTEM

Our pattern recognition system is mainly focused on
features extraction and matching. The system was designed
using Verilog HDL. We have processed a „dummy‟ image
that we made by placing black and white pixels in desired
places to create a certain pattern. We worked on this
„dummy‟ image through the following steps: preprocessing,
segmentation and postprocessing, and features extraction.
The algorithms we have used, and the methods we have
implemented have worked out successfully, and we can
ascertain that this process of pattern extraction and matching
will work on real vein patterns when a NIR image is taken
from a camera, grey-scaled, and then processed through our
suggested method.

We have 19 modules for synthesis in our Verilog-based
design- one for each step in the process, a few MUXs and
DeMUXs, two RAMs to store the image after each step, and
one main module. We have also created 1 testbench module
(stimulus) for verification of our design.

A. Functions of modules in brief

 top.v: This is the main module which controls the whole
operation as all the other modules are instantiated here.

 image.v: This is a memory location from where images
are called into the system to be processed, to check
whether our system functions correctly or not. It is treated
as an external storage.

 crop.v: This module crops a 30×30 image to a 20×20
image pixel by pixel at every positive clock edge.

 hextraction.v: This module applies horizontal extraction
serially to rows of pixels in an image. It takes one row at a
time, and using the curvature formula, identifies the

maximum curvature points as veins, and sets these points
to a pixel value of „1‟ while the other pixels remain „0‟.

 vextraction.v: This module applies vertical extraction
serially to columns of pixels in an image. It takes one
column at a time, and using the curvature formula,
identifies the maximum curvature points as veins, and sets
these points to a pixel value of „1‟ while the other pixels
remain „0‟.

 thin1.v and thin2.v: These modules apply the Zhang
Suen‟s thinning algorithm to the image being processed.
It targets each pixel, scans the neighboring pixels, and by
applying the algorithm, finally gives a pattern which is
just one pixel thick.

 intersections.v: This module finds the intersecting points
or cross pointa in the pattern by scanning the surrounding
pixels and applying a suitable algorithm.

 coordinates.v: This module gives the coordinates of the
intersecting points found by intersections.v.

 prepro.v: It is a RAM we have created which is to be used
in the vein pattern recognition system. The image being
processed is stored here pixel by pixel before going
through each step in the process.

 postpro.v: It is a RAM we have created which is to be
used in the vein pattern recognition system. The
processed image is stored here after each step of image
processing.

 load.v: It is used to load an image from any external
device or storage into the RAM in our system, that is,
prepro.v. It is used only once in the entire process just to
bring an image into the system.

 reload.v: It is used to reload images from postpro.v to
prepro.v after each step in the process reaches completion.

 clear.v: Clear changes all the pixel values of postpro.v to
„1‟.

 eraseto0.v: Eraseto0 changes all the pixel values of
postpro.v to „0‟.

 mux2×1.v: This MUX takes in 2 inputs and gives 1
output. The inputs and outputs are 32 bits each. This
MUX is used to take input from load.v and reload.v and
give out requested data to a specific functioning module.

 mux16×1.v: This MUX takes in 16 inputs and gives 1
output. The inputs and outputs are 32 bits each.

 demux1×16.v: This deMUX has 1 input and 16 outputs.
The inputs and outputs are 32 bits each.

 demux 1×161.v: This deMUX has 1 input and 16 outputs.
The inputs and outputs are 1 bit each. This deMux is used
to drive clock signals into each block.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.orgIJERTV4IS060862

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 4 Issue 06, June-2015

866

TOP

done enprocessing

datain [31:0]
j [31:0]

i [31:0]

coorb[31:0]

coora [31:0]

coornumber [31:0]

clk

Fig. 1. Main module of the system

B. Description of System

The system is set to work when the „enprocessing‟ signal
is set to 1 from 0 which triggers the top module to start
functioning. We have set apart a module named „image.v‟
which would be treated as a storage which currently stores
the image we would be working on. The stored images have a
predefined dimension of 30×30. We have two RAMs,
prepro.v and postpro.v, which would be frequently storing
our image all throughout the processing steps. When the top
module starts functioning, an image is transferred from
image.v to prepro.v with the help of load.v which takes each
pixel at every positive clock edge, and transfers it, pixel by
pixel, to prepro. load.v has no more work after this step in the
entire process. Then crop.v is enabled which calls the image,
pixel by pixel, and crops the 30×30 image to 20×20. „Pixel by
pixel‟ here means each pixel is considered individually,
processed, and sent to postpro. Once cropping is complete,
the signal done is „1‟ from „0‟. Then reload sets to work,
transferring the cropped image from postpro to prepro. This
action of reloading the processed image to prepro after each
step is always controlled by reload.v. Next, eraseto0.v
ensures that all the pixels in postpro are set to 0. This is the
only time during the entire process when eraseto0.v
functions. Then the system proceeds to the next step.

Next step is hextraction, which occurs when hextraction.v
is enabled. It is enabled when cropping is over and the
cropped image resides at prepro. Hextraction applies
horizontal extraction to the cropped image, and each pixel of
changed image is instantly uploaded to postpro. When
hextraction is complete and done signal is „1‟, the image is
now in postpro. But the image is not reloaded to prepro
instantly like the previous step. Instead, vextraction is applied
to it, and the combined hextracted and vextracted image is
reloaded to prepro. Next, thinning is applied to the image by
thin1.v and thin2.v in the same manner, and the one-pixel-
thick image is reloaded to prepro. That‟s when clear.v sets to
work for the first and only time. It clears the pixels of the
entire postpro to „1‟. Then intersections.v and finally
coordinates.v perform their actions on the image. The
coordinates.v is our final module, so when it signals „done‟ to
be „1‟, the coordniates of intersecting points of the pattern
(image) are reloaded to prepro from postpro, and the entire
process is complete.

Always block

Mux

j.v

Mux

i.v

Mux

dout.v

Mux

a.v

Mux

b.v

Crop.v

Reload.v

Hex.v

Vex.v

Thin1.v

Thin2.v

Clear.v

Intersections.v

Eraseto0.v

Coordinates.v

Demux

din.v

clk

Load.v

Mux

select.v

Prepro.

v

Postpro.v

Select

done

Enable/don

Coorb

Coora

coornumber

j

i

datain

Clk

enprocessing

done

Fig. 2. Block diagram of the system

C. Testing and Evaluation

Our system was designed in ModelSim-Altera 6.5b and
performance was tested using ISE Design Suite 14.5 (Xilinx).
The block diagram of our entire system with all the modules
is shown in Figure 2.

Screenshots of the waveforms of simulation of the design
using a particular image (Figure 3) as an input is shown in
Figure 4. The image we have used to show the waveforms is
a pattern which has two crossing points. Our system makes
the image undergo the series of processing steps described
earlier and gives the number of intersecting points, and their
coordinates as outputs, which can be seen in the waveforms.
Once the scanning for intersecting or cross points is over, the
done signal, which was „0‟ until now, changes to „1‟.

The RTL (Register Transfer Level) schematic, which
verified that our design is perfectly synthesizable and can be
easily implemented in hardware, is shown in Figure 5.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.orgIJERTV4IS060862

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 4 Issue 06, June-2015

867

Fig. 3. One of the „dummy‟ images

Fig. 4. Waveforms showing coordinates of intersections and number of

points

Fig. 5. RTL Schematic – Main module „top.v‟

IV. ALGORITHMS USED IN OUR SYSTEM

A. Hextraction and Vextraction

In our system, for horizontal extraction and vertical
extraction processes, we have used a slightly modified
version of finding maximum curvature points of image
profiles, which finds the centerlines of veins using evaluating
the maximum curvature points [6]. The algorithm has 3 steps
consecutively: extracting position of center of veins,
connecting center positions, and labeling images [6]. In our
system, the cross-sectional profile of the pattern is checked
which appear as dents because the pattern is darker then the
background. These curves have large curvature, so center
positions of the pattern are found by calculating maximum
curvature of cross-sections. [6]. Then a filtering operation is
done to connect the centerlines of the pattern and remove
noises. Then labeling of image is done by considering pixel
values smaller then a particular threshold as part of
background, while the equal or larger values are part of the
pattern [6]. This process is applied horizontally to rows and
vertically to columns of pixels and finally extraction is
complete.

B. Thinning

After applying horizontal and vertical extraction, we used
Zhang-Suen‟s thinning algorithm for making the pattern just
one pixel thick [7]. The pixel values of the pattern are
considered „1‟s with the background pixels beings „0‟s. The
Zhang-Suen‟s algorithm is applied in two steps to pixels with
values „1‟s whose surrounding 8 neighboring pixels are
observed. In the first step, a certain contour point X is
considered for deletion if the following conditions are met
[7]:

1. 2<= N(X1) <= 6

2. S (X1) = 1

3. X2*X4*X6

4. X4*X6*X8

Here N(X1) is the number of neighboring pixels of X1
which are non-zero, and S(X1) is the number of 0 to 1
transitions from X2 to X9. In the second step, conditions (1)
and (2) are still the same, but (3) and (4) become - (3)
X2*X4*X8=0 and (4) X2*X6*X8=0 respectively [7]. If one
or more conditions from (1) to (4) are not met, then the value
of the point being considered is not changed [7]. Otherwise, it
is changed to „0‟ from „1‟. In this way, the entire pattern is
thinned to a structure which is one pixel thick.

C. Finding end and cross-points

From the thinned image, we found the crossing points and
end points in the pattern using a simple process. We
inspected every black pixel‟s 3×3 local neighbors [5] to see if
the black pixel is a cross point or an end point. If it has one
black neighbor only or two black neighboring pixels together,
then this black pixel is an end point. If the chosen pixel has
three black neighbors, or three black neighbors separated at
least by one white pixel, then it is a cross point [5]. We
successfully found the coordinates of the cross points and the
number of cross-points in our pattern.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.orgIJERTV4IS060862

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 4 Issue 06, June-2015

868

V. CONCLUSION AND FUTURE SCOPES

A vein pattern recognition system is very essential for
today‟s world as the need for a perfectly secure system grows
every day. A person trying to use the system has his vein
patter‟s NIR image captured, processed, and matched to the
images stored in the database. The system, if implemented in
hardware, preferably FPGA, would be very advantageous and
cost-effective as FPGAs are reconfigurable, faster than
general processors due to parallel processing, and consume
less power. We have successfully designed a pattern
recognition system using Verilog HDL for hardware
implementation.

Our design is programmed to currently process an image
and give the coordinates of the intersections of veins. The
process currently ends here, but it makes way for an efficient
method that we would be using in future for matching an
image with a stored image in the database. The cross points
that we have found are certain distances away from each
other. If we calculate the maximum and minimum distances,
and then total distance from one cross point to another, and
store these three values in a database, the same image can be
matched with an exactly same image afterwards, because the
maximum, minimum and total distance values will match.
This would also ensure that system still functions accurately
even if the hand is displaced slightly, because the distances
between cross points will remain the same even if the
coordinates of these points change. Since each human has a
unique vein pattern, the values of distances will never be the
same for a different pattern, thus ensuring a perfectly secure
vein pattern recognition system.

.

REFERENCES

[1] M. A. Ahmed, H. M. Ebied, E. M. El-Horbaty, and A. M. Salem,
“Analysis of palm vein pattern recognition algorithms and systems,”
Int. J. Bio-Med. Informatics. E-Health, vol. 1, pp. 10-14, June-July
2013.

[2] P. C. Eng and M. Khalil-Hani, “FPGA-based embedded hand vein
biometric authentication system,” in Proc.TENCON 2009-2009 IEEE
Region 10 Conf., Singapore, 23-26 Jan, pp.1-5.

[3] D. Popig, D. Ryle, D. Pellerin, and E. Stahlberg, “Applying field
programmable logic arrays to biological problems,”. [Online].

[4] M. Khalil-Hani and P. C. Eng, “Personal verification using finger vein
biometrics in FPGA-based system-on-chip,” in Conf. ELECO 2011 7th
Intl. Conf. Elect. Electron. Eng., Bursa, Turkey, 1-4 Dec, pp. 151-156.

[5] C. Petitimbert, M. Distler, M. G. Myrtue, S. N. Jensen, T. B. Moeslund,
K. Nasrollahi, “Biometric identification using hand vein patterns,” P6
Student Project, Dept. Electron. Syst., Aalborg Univ., Aalborg,
Denmark, 2011.

[6] N. Miura, A. Nagasaka, and T. Miyatake, “Extraction of finger-vein
patterns using maximum curvature points in image profiles ,” IAPR
Conf. MVA 2005, Tsukuba Sci. City, Jpn., May 16-18, pp. 347-350.

[7] A. S. Karne and S. S. Navalgund, “Implementation of an image
thinning algorithm using verilog and MATLAB,” Proc. Nat. Conf.
Women Sci. Eng. (NCWSE 2013), Dharwad, India, pp. 333-337.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.orgIJERTV4IS060862

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 4 Issue 06, June-2015

869

