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Abstract—Additive manufacturing, popularly known as 3D 

printing, is the breakthrough process coming up for making 

components, which particularly helps high-performance industries 

such as aerospace, which rely largely upon performance 

optimization and ma-terial efficiency. The possible geometrical 

intricacies and minimal material waste have greatly improved the 

performance profile concerning fuel efficiency and power output. 

With these benefits, however, aerospace manufacturing is very 

cautious about full exploitation because of issues in process 

consistency, part reliability, and defect detection. This paper 

introduces a new framework for improving the predictive 

maintenance of AM processes, meeting the unique needs of 

aerospace manufacturing. The integration of AE sensors with 

infrared thermography provides a dual-sensor setup for complete 

internal and external anomaly monitoring in real-time during 

production. Data from these sensors can be fed into sophisticated 

machine learning algo-rithms to further enable earlier detection of 

defects in the process, increasing the overall consistency of the 

manufacturing run. Besides, the proposed research methodology 

intends to formulate a deep learning-based data analysis 

framework that can help with more accurate defect prediction and 

prevention. Such a dual-sensor system and predictive maintenance 

framework might open the route for much wider industrial con-

sequences than within the aerospace sector per se; extension 

toward automotive and even medical device manufacturing could 

also be interesting. This presented work highlights the opening of 

opportunities for defect detection and process control due to the 

integration of AE sensors, infrared thermography, and machine 

learning into the AM process. An approach like this opens the 

door for improved reliability of AM parts for mission-critical 

applications, which in turn leads to the increased adoption of these 

parts in industries where the stake is high, such as aerospace.  

I. INTRODUCTION
Additive Manufacturing (AM), often referred to as 3D printing, 
represents a transformative shift in the way components and 
systems are designed and manufactured. Unlike traditional 
subtractive manu-facturing processes that remove material to 
create a part, AM builds components layer by layer, allow-ing 
for unprecedented design flexibility and material efficiency [1]. 
This capability has made AM increas-ingly valuable across 
various industries, particularly in aerospace, where the demand 
for lightweight, high-performance components is critical. The 
ability to manufacture complex geometries, reduce material 
waste, and produce parts on demand offers significant 
advantages, such as reducing lead times and enabling rapid 
prototyping [2]. In the aerospace industry, the potential of AM 
is particularly compelling. The use of AM in aerospace has 
already demonstrated re-markable benefits, such as in the case 
of the Cessna Denali aircraft engine, where AM reduced the 
number of components from 855 to just 12, resulting in a 
10However, despite these advantages, the aerospace industry 
remains cautious about fully integrating AM into the production 
of mission-critical components. This hesitancy stems from 
several persistent chal-lenges associated with AM processes, 
particularly the lack of process consistency and the significant 
variation in the physical properties of parts [5]. Vari-ability in 
material properties, dimensional accuracy, and surface finish 
can lead to defects such as porosity, 

Index Terms—Additive Manufacturing, Acoustic Emission, 
Infrared Thermography, Predictive Mainte-nance, Defect 
Detection 

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV13IS090060
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

Vol. 13 Issue 9, September 2024

www.ijert.org
www.ijert.org


distortion, and residual stresses [6]. These defects are especially 
concerning in aerospace applications, where the failure of a 
single component can have catastrophic consequences. As a 
result, ensuring the defect-free production of parts is paramount 
to in-creasing the adoption of AM in the aerospace in-dustry 
[7]. To address these challenges, advanced monitoring and 
predictive maintenance strategies are crucial. Predictive 
maintenance involves the use of data-driven approaches to 
predict when equipment or processes will fail, allowing for 
timely intervention before defects manifest in the final product 
[8]. In the context of AM, predictive maintenance can 
significantly enhance the reliability and consistency of the 
manufacturing process by detecting incipient faults early in the 
production cycle [9]. Recent ad-vancements in computational 
modeling and sensor technologies offer promising avenues for 
improving predictive maintenance in AM [10]. For instance, 
real-time monitoring using in-situ sensors has been successfully 
employed in various industries to track critical process 
parameters and detect anomalies be-fore they result in defects 
[11]. In theory, com-bining these sensor data with advanced 
computa-tional models, such as digital twins, could provide a 
powerful tool for enhancing process control in AM. A digital 
twin, which is a virtual representation of the physical 
manufacturing process, can simulate the process in real-time, 
allowing for the predic-tion of temperature distribution, 
material behavior, and potential defects with high accuracy 
[12]. This hybrid approach—integrating physics-based models 
with real-time sensor data—has been shown to im-prove fault 
detection and process optimization in other manufacturing 
domains, making it a promising candidate for overcoming the 
challenges faced in AM 
[13]. The methods explored in this paper build on these 
advancements by applying them to the specific context of AM 
processes used in aerospace appli-cations. The goal is to 
develop a robust predictive maintenance framework that 
leverages the strengths of digital twins and in-situ sensor data to 
enhance process consistency, reduce defects, and ultimately 
increase the adoption of AM for mission-critical aerospace 
components [14]. 

A. Novel Contribution/Motivation
This paper introduces a novel approach to improving predictive
maintenance in Directed Energy Deposition (DED) and other
metal-based AM processes through the integration of an
advanced dual-sensor system combining Acoustic Emission
(AE) sensors with infrared thermography. This dual-sensor
system represents a significant advancement in process
monitoring, offering a more comprehensive solution for
detecting both internal and external anomalies during the AM
process [15].

1) Dual-Sensor Integration and Advanced-Data Analysis
Framework for Enhanced Predictive Maintenance: Application-
Specific Adaptation for Aerospace Manufacturing: The
proposed sensor integration is tailored to meet the stringent
reliability and precision requirements of aerospace

manufacturing. Aerospace components, particularly those 
produced using AM, must withstand extreme operational 
conditions and adhere to strict safety standards [21]. The dual-
sensor system is designed to address these needs by providing 
real-time monitoring that aligns with the high-reliability 
standards of the aerospace industry. For example, in the 
production of 3D-printed rocket engines or other critical 
aerospace components, early detection of internal material 
stresses and thermal anomalies is crucial [22]. The AE sensors 
enable the detection of microstructural changes that could 
compromise the part’s integrity, while infrared thermography 

ensures optimal thermal management during the build process 
[23]. 

2) Potential for Broader Industry Impact and Scal-ability:
While the proposed system is specifically designed for
aerospace applications, its principles of dual-sensor integration
and advanced data analysis can be adapted to other industries
where AM is crit-ical. The methodology’s adaptability and

scalability make it a valuable contribution to the broader field
of AM, with potential applications in industries ranging from
automotive to medical devices [24]. The novel contribution of
this paper lies in the introduction of a dual-sensor system
combining AE sensors and in-frared thermography, the
development of an advanced data analysis framework using
machine learning, and the application-specific adaptation for
aerospace man-ufacturing. This comprehensive approach
addresses key challenges in predictive maintenance for AM,
offering a robust solution that enhances the reliability,
efficiency, and scalability of 3D printing technologies in high-
stakes industries like aerospace [25].

II. METHODOLOGY

A. 3.1 Dual-Sensor Data Acquisition
3.1.1 Acoustic Emission Sensing: To effectively capture the
acoustic emissions during the additive manufacturing (AM)
process, a fiber Bragg grating (FBG) sensor should be selected
for its high sensitivity and broad frequency response. The
chosen FBG sensor should have a sensitivity range of -60 to
+60 dB and a frequency response from 100 kHz to 1 MHz. This
range ensures the capture of a comprehensive spectrum of
acoustic emissions relevant to the AM process. A custom-
designe mounting bracket for the FBG sensor should be
employed to secure the sensor to the build platform while
minimizing interference from vibrations. The optimal
positioning of the sensor is crucial; it should be placed as close
as possible to the build area—typically within 50-100 mm from
the melt pool—without obstructing the laser or powder delivery
system. Furthermore, a high-speed data acquisition system,
capable of sampling at 2 MHz, is necessary to accurately
capture rapid acoustic events.
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2) 3.1.2 Infrared Thermography: For thermal monitoring, a
high-resolution infrared camera is es-sential. A camera with a
resolution of 640x480 pixels or higher, operating within the
spectral range of 3-5 µm or 8-14 µm, is suitable for metals.
The camera should be mounted at an optimal angle (e.g., 45°
to the build platform) to capture the entire build area without
obstruction. The system should be capable of high frame rates
(e.g., 100 Hz or higher) to record rapid thermal changes
throughout the build process. To ensure accurate temporal
alignment of data streams, a triggering system must be imple-
mented to synchronize infrared image capture with acoustic
signal collection.

B. 3.2 Experimental Design
1) 3.2.1 Process Parameter Tuning: Identifying key process
parameters—such as laser power, scan speed, hatch spacing,
and layer thickness—is crucial for influencing part quality. A
design of experiments (DOE) approach should be used to
systematically vary these parameters and their interactions.
Process modeling software can assist in predicting parameter
combinations likely to achieve the target porosity levels for
each quality category. Preliminary builds should validate
these predictions, and parameter sets should be iteratively
refined to consistently achieve the desired quality levels.
2) 3.2.2 Sample Production: To ensure statistical
significance, a minimum of 30 samples should be fabricated
for each quality category. Test specimens must be designed to
include features relevant to typical AM parts, such as
overhangs, thin walls, and complex internal structures.
Consistency in en-vironmental conditions—such as oxygen
levels and chamber temperature—must be maintained across
all builds. Detailed documentation of process parame-ters,
environmental conditions, and any deviations or anomalies
observed during each build is essential for reliable results.

C. 3.3 Data Preprocessing and Feature Extraction
1) 3.3.1 Acoustic Signal Processing: Raw acoustic signals

should be processed by applying a band-pass filter to remove
low-frequency machine noise and high-frequency
electromagnetic interference. The continuous acoustic signal
must be segmented into discrete time windows corresponding
to individual laser scans or layers. A continuous wavelet
transform (CWT) using an appropriate mother wavelet, such
as Morlet or Daubechies, should be implemented to han-dle
transient signals. Spectrograms generated from the CWT
coefficients will provide time-frequency-amplitude
information. A spectral clustering algo-rithm, such as k-means
or DBSCAN, can be used to group similar acoustic signatures
and create encoded label representations.
2) 3.3.2 Thermal Image Processing: For ther-mal image
processing, flat-field and non-uniformity corrections must be
applied to raw images to ad-dress camera sensor variations.
Adaptive thresholding should be utilized to isolate the melt
pool from the surrounding area in each frame. Features such
as the melt pool area, aspect ratio, centroid position, and
maximum temperature should be extracted. Tempera-ture
gradients can be calculated using finite difference methods,
and cooling rates should be estimated by tracking temperature

D. 3.4 Data Fusion and Advanced Analysis Frame-work
1) 3.4.1 Sensor Data Integration: A temporal alignment
algorithm must be developed to precisely match acoustic
events with corresponding thermal images. A unified feature
vector combining acoustic and thermal features for each time
step should be created. Feature scaling and normalization are
neces-sary to ensure all inputs are on a comparable scale for
machine learning models. 
2) 3.4.2 Machine Learning Model Development: The deep
convolutional neural network (CNN) ar-chitecture should
include separate input branches for acoustic and thermal data,
with convolutional layers for feature extraction. Fusion layers
will combine features from both branches before classification
lay-ers. Transfer learning, utilizing weights from pre-trained
models on related tasks, can enhance perfor-mance. Data
augmentation techniques—such as ran-dom cropping,
rotation, and noise addition—should be employed to improve
model generalization.
3) 3.4.3 Classification and Anomaly Detection: The CNN
should be trained using a stratified k-fold cross-validation
approach to ensure robustness across all quality categories.
Ensemble methods, like bagging or boosting, can be applied
to improve clas-sification accuracy and reduce overfitting.
Anomaly detection modules, using techniques such as autoen-
coders or one-class SVMs, should be developed to identify
deviations from expected signal patterns. Calibration of
anomaly detection thresholds should be conducted using a
separate validation set to balance sensitivity and specificity.
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E. 3.5 Real-time Monitoring and Predictive Mainte-nance

System

1) 3.5.1 Online Data Processing Pipeline: A multi-threaded

data processing architecture must be developed to handle

parallel streams of acoustic and thermal data. A circular buffer

system will man-age continuous data input without memory

overflow, while feature extraction algorithms should be opti-

mized for GPU acceleration to minimize processing latency.

A queuing system will ensure that all samples are processed in

order.

2) 3.5.2 Dynamic Model Updating: An online learning

framework should allow for incremental updates to the model

as new data becomes available. A concept drift detection

algorithm will identify sig-nificant changes in the underlying

data distribution. A versioning system for model updates will

enable rollback in case of performance degradation, and a

feedback mechanism will incorporate post-build quality

assessments into the training dataset.

3) 3.5.3 Predictive Maintenance Integration: A rule-based

expert system should translate model out-puts and detected

anomalies into specific maintenance recommendations. Time

series forecasting models, such as ARIMA or LSTM, will

predict future quality trends based on historical data. A user

interface should display real-time quality predictions, anomaly

alerts, and maintenance suggestions, while a reporting system

will generate detailed build quality reports and maintenance

logs for each production run.

III. RESULTS

A. Overview of Model Performance

Additive manufacturing (AM) processes, particu-larly in

aerospace, demand highly accurate defect prediction systems

to ensure structural integrity and operational safety. In this

study, we implemented two machine learning models—

Random Forest and Logistic Regression—on a dataset

containing features related to defect detection in AM-produced

parts. Both models underwent a thorough hyperparameter

tuning process via RandomizedSearchCV, optimizing their

configurations to achieve the best performance in predicting

defects. The Random Forest model achieved a final accuracy

of 85.96%, with an F1-score of 0.92 for the defective class.

This indicates that the model is highly proficient in identifying

defec-tive parts, which is crucial in aerospace applications

where even small defects can lead to catastrophic failure. The

Logistic Regression model performed similarly, with an

accuracy of 85.34% and an F1-score of 0.92 for the defective

class. However, Lo-gistic Regression had slightly higher false

positives in the non-defective category.

Detailed Confusion Matrix Analysis 

Figure 1.  Random Forest Confusion Matrix 

Figure 2.  Logistic Regression Confusion Matrix 

Figures 1 and 2 show the confusion matrices for both the 

Random Forest and Logistic Regression models. The 

confusion matrix is a critical tool for understanding not only 

the accuracy of the models but also their weaknesses in 

misclassifying defective and non-defective parts. 

• The Random Forest model successfully pre-dicted 509
defective parts out of 546, while mis-classifying 37 defective
parts as non-defective. It also correctly identified 48 non-
defective parts, but misclassified 54 non-defective parts as de-
fective. This relatively high number of false positives in the
non-defective category could be a result of the model’s
sensitivity to noise or minor variations in the manufacturing
process that resemble defects. This high false positive rate,
while not ideal, is less critical than false negatives in
aerospace applications because it errs on the side of caution—

mislabeling a part as defective prompts further inspection
rather than allowing a defective part to pass unnoticed.

• Logistic Regression exhibited a somewhat dif-ferent
behavior. It identified 535 defective parts correctly but made
11 false negative predic-tions, where defective parts were
classified as non-defective. This is particularly concerning for
aerospace applications, as undetected de-fects could
compromise part integrity during operation. Additionally, it
misclassified 84 non-defective parts as defective, which is a
higher false positive rate than Random Forest. The model’s
tendency to overpredict defects could be attributed to its
linear nature, which struggles with capturing complex
interactions among fea-tures that non-linear models like
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Figure 3.Random Forest Feature Importance 

1) Feature Importance and Model Interpretability: The

importance of interpretability in defect detection models
cannot be understated, particularly in safety-critical
industries such as aerospace, where under-standing why
a model made a certain prediction is as important as the
prediction itself. One of the advantages of using Random
Forest is its ability to provide feature importance
metrics, which allow us to identify the most significant
predictors of defects in the dataset.

Figure 3 illustrates the importance of the top 10 principal 

components (PCs) extracted using PCA (Principal Component 

Analysis). It is evident from the figure that PC6 contributes 

the most to the model’s decision-making process, followed by 

PC5 and PC3. These principal components likely encap-sulate 

complex relationships between various features in the dataset, 

such as temperature variations, material composition, and 

layer adhesion—key factors known to influence the presence 

of defects in AM processes. 

• PC6: The high importance of this component suggests that

it might be capturing thermal anomalies during the AM

process, which are often precursors to defects such as

warping, cracking, or residual stresses. The integration of

real-time thermal data, as suggested in the

methodology section of this paper, could further improve the

model’s predictive power by allow-ing for the early detection

 of thermal defects.

• PC5 and PC3: These components could be re-lated to

material deposition consistency or laser power fluctuations,

both of which are known to significantly impact the structural

integrity of AM parts. The importance of these features

highlights the need for continuous monitoring and fine-tuning

of process parameters during production to minimize the risk

of defects.

The interpretability of these results aligns with existing 
knowledge in the AM field, where ther-mal management and 
material consistency are well-established factors influencing part 
quality. The Ran-dom Forest modelâ€™s ability to prioritize 
these factors gives it an edge in defect detection, especially when 
used in conjunction with real-time monitoring tools like infrared 
thermography.

Figure 4. Random Forest Feature Importance 

2) Model Comparison and Implications for Aerospace

Manufacturing: Figure 4 presents a side-by-side comparison 

of the accuracy of the Random Forest and Logistic Regression 

models. Although both models achieved similar overall 

accuracy, the Random Forest model’s more balanced 

approach to predicting both defective and non-defective parts 

makes it the preferable choice for real-world implementation 

in AM defect detection systems. The slightly higher accuracy 

of Random Forest (85.96% compared to Logistic Regression’s 

85.34%) may seem negligible, but its higher precision in 

predicting defective parts (F1-score of 0.92 compared to 

Logistic Regression 0.92) and its capacity to handle non-linear 

feature interactions provide significant advantages in high-

stakes industries. In the context of predictive maintenance, 

both models offer promising avenues for defect detection in 

AM processes. However, the Random Forest model 
demonstrates better resilience to false negatives (defective 

parts being misclassified as non-defective), which is of 

paramount importance in aerospace applications. Undetected 

defects can compromise component performance, leading to 

catastrophic failures, as seen in past incidents involving metal 

fatigue or structural weaknesses in aircraft components. The 

slight trade-off of higher false positives in Random Forest can 

be mitigated by implementing additional quality checks, 

ensuring that the occasional false alarm does not disrupt the 

production flow unnecessarily. Furthermore, the Logistic 

Regression model, while slightly less accurate, provides a more 

interpretable framework for understanding how linear 

relationships between process variables contribute to defect 

formation. This could be useful for identifying straightforward 

correlations, such as the impact of layer thickness or laser 

power on defect rates, which can help refine AM process 

parameters. 
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B. Broader Industry Impact and Scalability
The findings from this comparison between Ran-dom Forest 
and Logistic Regression models are di-rectly applicable to 
predictive maintenance systems in AM, especially in 
aerospace manufacturing. As discussed in the paper’s 

background, the aerospace industry has stringent requirements 
for part qual-ity and reliability. The ability to detect defects in 
real-time using machine learning models trained on data from 
in-situ sensors offers a revolutionary ap-proach to process 
monitoring and control. The dual-sensor system described in 
the paper, which inte-grates Acoustic Emission (AE) sensors 
with infrared thermography, complements the model 
predictions by providing real-time data that can further 
improve the accuracy and reliability of these predictions. The 
insights gained from the Random Forest model’s feature 

importance analysis can guide the placement and optimization 
of sensor arrays in AM machines. For instance, since thermal 
anomalies are a signif-icant predictor of defects (as suggested 
by PC6’s importance), optimizing infrared camera placement 
to capture a broader temperature range or improve spatial 
resolution could lead to even more accurate defect predictions. 
Similarly, the AE sensors could be tuned to detect 
microstructural changes that correlate with the principal 
components identified as important by the Random Forest 
model. 

C. Future Research Directions
While this study demonstrates the effectiveness of Random 
Forest and Logistic Regression models for defect detection in 
AM, there is still significant room for improvement. Future 
research could focus on integrating deep learning models, 
such as Con-volutional Neural Networks (CNNs), with the 
dual- sensor system described in this paper. CNNs could be 
particularly effective in analyzing thermal images and acoustic 
signals in real-time, providing a more nuanced understanding 
of defect formation. Addi-tionally, exploring ensemble 
methods that combine the strengths of both Random Forest 
and Logistic Regression could result in even more robust 
predic-tive maintenance systems, reducing false positives 
while maintaining high recall for defective parts. The 
integration of digital twins, as discussed earlier, could further 
enhance the predictive power of these models by simulating 
various AM scenarios and training the models on synthetic 
data generated from these sim-ulations. By continuously 
updating the digital twin with real-time sensor data, the 
models can adapt to changes in the manufacturing 
environment, ensuring consistent quality even as production 
scales. 

IV. CONCLUSION
The proposed dual-sensor framework for real-time monitoring 
by combining Acoustic Emission sensors with infrared 
thermography is a great stride in the field of AM. This allows 
early detection of inter-nal and external defects, enhancing 
process consis-tency and reliability by tackling some of the 
critical challenges in high-stake industries like aerospace. The 
integration of machine learning algorithms en-hances 
predictive maintenance further through dy-namic, data-driven 
insights into defect formation. This innovative approach 
surely will find its niche in enhancing not only safety but also 
performance for mission-critical components within 
aerospace; meanwhile, it will be possible to adapt it to a wide 
range of industries, from automotive to medical device 
manufacturing. Because of this fact, growth in adoption may 
increase in the future, especially in those applications where 
defect prevention and process optimization bear paramount 
importance. 
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