
A Fault Tolerant Approach For

Load Balancing In Grid Environment

Er. Kavita

M-Tech (C.S.E.)

M.M.University, Mullana(Ambala),

Haryana, India.

Sh. Sandip Kumar Goyal

Assoc. Professor, Dept. of CSE

M.M.University, Mullana (Ambala),

Haryana, India.

Er. Sahil Verma

M-Tech (C.S.E.)

M.M.University, Mullana(Ambala),

Haryana, India.

ABSTRACT

The popularity of the Internet and the availability of powerful

computers and high-speed networks as low-cost commodity

components are changing the way we use computers today.

These technical opportunities have led to the possibility of using

geographically distributed and multi-owner resources to solve

large-scale problems in science, engineering, and commerce.

Recent research on these topics has led to the emergence of a

new paradigm known as Grid computing.

 To achieve the promising potentials of tremendous distributed

resources, effective and

efficient load balancing algorithms are fundamentally important.

Unfortunately, load balancing algorithms in traditional parallel

and distributed systems, which usually run on homogeneous and

dedicated resources, cannot work well in the new circumstances.

In this dissertation, the state of current research on load

balancing algorithms for the new generation of computational

environments will be surveyed and a new method for a fault

tolerant approach for load balancing in grid environment is

proposed.

KEYWORDS

 Table 1: Notations used

Symbol Definition

Avgload Load of site

Ce Computing elements

CESO Overloaded computing elements set

CERU Underloaded computing elements Set

CENB Balanced computing elements set

CEijk ith CE of jth site of kth Cluster

CEsjk Computing element most overloaded

CErjk Computing element most lightly

overloaded

cntce Number of computing elements in

site cnts

cnts Randomly chosen site

cno Cluster number

clus Cluster whose load is less

cload Average load of cluster

eload Extra load

Lijk Actual Workload of Ceijk

noc Number of computing elements

nos Number of sites

nloadc Load to be shared for computing

element

nloads Load to be shared for each site in

Inter-cluster load balancing

qlen Queue length of computing element

qlength Queue length of computing elements

share Load taken by the underloaded site

site 1 Total number of sites in cluster

Sjk jth Site of kth Cluster

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 9, November- 2012

ISSN: 2278-0181

1www.ijert.org

IJ
E
R
T

IJ
E
R
T

1. INTRODUCTION

1.1 Grid Computing

“A Grid is a collection of distributed computing resources

available over a local or wide area network that appears to

an end user or application as one large virtual computing

system.”-IBM

 Grid computing [3] can mean different things to

different individuals. The grand vision is often presented as

an analogy to power grids where users (or electrical

appliances) get access to electricity through wall sockets

with no care or consideration for where or how the

electricity is actually generated. In this view of grid

computing, individual users (or client applications) gain

access to computing resources (processors, storage, data,

applications, and so on) as needed with little or no

knowledge of where those resources are located or what the

underlying technologies, hardware, operating system, and

so on are [4].

1.2 Data Grids

A Data Grid provides services [2] that help users discover,

transfer and manipulate large datasets stored in distributed

repositories and also, create and manage copies of these

datasets. At the minimum, a Data Grid provides two basic

functionalities: a high-performance, reliable data transfer

mechanism, and a scalable replica discovery and

management mechanism.

1.3 Fault Tolerance

A characteristic feature of distributed systems that

distinguishes them from single-machine systems is the

notion of partial failure. A partial failure may happen

when one component in a distributed system fails. This

failure may affect the proper operation of other

components, while at the same time leaving yet other

components totally unaffected. In contrast, a failure in

non-distributed systems is often total in the sense that it

affects all components, and may easily bring down the

entire system. An important goal in distributed systems

design is to construct the system in such a way that it

can automatically recover from partial failures without

seriously affecting the overall performance. In particular,

whenever a failure occurs, the distributed system should

continue to operate in an acceptable way while repairs are

being made, that is, it should tolerate faults and continue

to operate to some extent even in their presence. The key

technique for handling failures is redundancy. A system is

said to fail when it cannot meet its promises. Being fault

tolerant is strongly related to what are called dependable

systems. Dependability is a term that covers a

number of Useful requirements for distributed

systems including the following:

1. Availability

2. Reliability

3. Safety

4. Maintainability

1.4 Fault and Its Types

The cause of an error is called a fault. Clearly, finding out

what caused an

error is important. For example, a wrong or bad

transmission medium may easily cause packets to be

damaged. In this case it is relatively easy to

remove the fault. However, transmission errors may also be

caused by bad weather conditions such as in wireless

networks.

 Building dependable systems closely relates to

controlling faults. A distinction can be made between

preventing, removing, and forecasting faults. For our

purposes, the most important issue is fault tolerance,

meaning that a system can provide its services even in the

presence of faults. In other words, the system can tolerate

faults and continue to operate normally.

 Faults are generally classified as transient, intermittent,

or permanent.

 Transient faults occur once and then

disappear. If the operation is repeated, the fault

goes away. A bird flying through the beam of a

microwave transmitter may cause lost bits on some

network (not to mention a roasted bird). If the

transmission times out and is retried, it will

probably work the second time.

 Intermittent fault occurs, then vanishes

of its own accord, then reappears, and so on. A

loose contact on a connector will often cause an

intermittent fault. Intermittent faults cause a great

deal of aggravation because they are difficult to

diagnose. Typically, when the fault doctor shows

up, the system works fine.

 Permanent fault is one that continues to

exist until the faulty component is replaced. Burnt-

out chips, software bugs, and disk head crashes are

examples of permanent faults.

2 LITERATURE SURVEY

2.1 Introduction

Workload and resource management are two essential

functions provided at the service level of the grid software

infrastructure. To improve the global throughput of these

software environments, workloads have to be evenly

scheduled among the available resources. To realize this

goal several load balancing strategies and algorithms have

been proposed. Most strategies were developed in mind,

assuming homogeneous set of sites linked with

homogeneous and fast networks. However for

computational grids we must address main new issues,

namely: heterogeneity, scalability and adaptability.

 The development of computational grids and the

associated middleware has been actively pursued in recent

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 9, November- 2012

ISSN: 2278-0181

2www.ijert.org

IJ
E
R
T

IJ
E
R
T

years to deal with the emergence of greedy applications of

large computing tasks and amounts of data. Managing such

applications leads to some complex problems for which

traditional architectures are insufficient. There are many

potential advantages of using grid architectures, including

the ability to solve large scale advanced scientific and

engineering applications whose computational requirements

exceed local resources, and the reduction of job turnaround

time through workload balancing across multiple

computing facilities. In his reference book, Foster defined a

computational grid as an emerging computing infrastructure

that enables effective access to high performance

computing resources. An important issue of such systems is

the efficient assignment of tasks and utilization of

resources, commonly referred to as load balancing problem.

We seek to achieve load balancing that privilege workload

neighborhood, to reduce amount of messages. Our strategy

deals with a three layers algorithms (intra-site, intra-

cluster and intra-grid).

2.2 Motivation for Load Balancing

Load balancing algorithms [1] are essentially designed to

spread the resources load equally thus maximizing their

utilization while minimizing the total task execution time.

This is crucial in a computational grid where the most

pressing issue is to fairly assign jobs to resources. Thus, the

difference between the heaviest and the lightest resource

load is minimized. A flexible load sharing algorithm is

required to be general, adaptable, stable, scalable, fault

tolerant, transparent to the application and to also induce

minimum overhead to the system. The properties listed

above are interdependent.

 For example, a lengthy delay in processing and

communication can affect the algorithm overhead

significantly, result in instability and indicate that the

algorithm is not scalable. The load balancing process can be

defined in three rules: the location, distribution and

selection rule.

-The location rule determines which resource domain will

be included in the balancing operation. The domain may be

local, i.e. inside the node, or global, i.e. between different

nodes.

-The distribution rule establishes the redistribution of the

workload among available resources in the domain,

-The selection rule decides whether the load balancing

operation can be performed preemptively or not.

2.3 Typically, a load balancing scheme consists

of four policies:

1) The information policy is responsible to define when

and how the information on the Grid resources

availability is updated.

2) The location policy determines a suitable transfer

partner (server or receiver) once the transference policy

decided that this resource is server or receiver.

3) The selection policy defines the task that should be

transferred from the busiest resource to the idlest one.

4) The transference policy classifies a resource as server or

receiver of tasks according to its availability status.

2.4 Load Balancing Strategy

In accordance with the structure of proposed model, the

load balancing strategy [1] is also hierarchical. Hence, we

distinguish between three load balancing levels:

1) Intra-site load balancing: In this first level, depending

on its current load, each site decides to start a load

balancing operation. In this case, the site tries, in priority,

to load balance its workload among its computing

elements.

2) Intra-cluster load balancing: In this second level, load

balance concerns only one cluster, among the clusters of a

grid. This kind of load balance is achieved only if some

sites fail to load balance its workload among their

respective computing elements. In this case, they need the

assistance of its direct parent, namely cluster and balance

load to the less loaded site within the cluster.

3) Intra-grid load balancing: The load balance at this level

is used only if some clusters fail to load balance their

load among their associated sites.

 The main advantage of this strategy is to prioritize

local load balancing first (within a site, then within a cluster

and finally on the whole grid)

.

3 SYSTEM MODEL

3.1 Load balancing Generic model

Our model is represented by an incremental tree where root

of the tree is known as the grid and a software running on

the grid is grid manager which is responsible to manage all

cluster information of the grid and provide fault tolerance to

the grid. Leaf of the tree are known as computing elements

of a site. A grid consists of various clusters and clusters are

consists of various sites or we can say that various sites are

aggregated to form the cluster and various computing

elements are aggregated to form a site. Information about

the computing elements status is stored on site. A software

running on site is called computing elements manager. Each

cluster have information about the load of its sites which

are underlying under it. Software running on the cluster is

known as the sites manager as it manages the load of the

sites

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 9, November- 2012

ISSN: 2278-0181

3www.ijert.org

IJ
E
R
T

IJ
E
R
T

 Figure 3.1 Load Balancing Generic Model

which are under the cluster and if any site under it will fail

then it distribute its load to the less loaded site of it and

prevent from failure of whole cluster due to the failure of

site and hence provide fault tolerance to cluster. This model

is denoted by S/G/M, where S is the number of clusters that

compose a grid, G is the number of sites in each cluster and

M is the number of computing elements in each sites. This

model can be transformed into three specific model: S/G/M,

1/G/M, 1/1/M, depending on the values of S and G. It

represents a four–level tree. Each level has its own specific

function whose description is as follows.

 Level 0: It is the top level (root) of the

tree called grid having grid manager deployed on

it. Its main functions are:

(i) To maintain or manage all clusters workload

information of the grid.

(ii) All decision making regarding the allocation of

task for inter cluster load balancing are taken by it.

(iii) It provide fault tolerance to the grid as if any

cluster under it will fail then it prevent from the

failure of whole grid due to the failure of cluster

by taking the appropriate decision.

 Level 1: It contains S virtual nodes.

Nodes of this level are known as clusters having

sites manager deployed on it. Site manager is

responsible to manage workload of sites under the

cluster and provide fault tolerance to the cluster in

case of failure of site.

 Level 2: This is the third level and nodes

of this level are sites having computing elements

manager deployed on it. Nodes of this level are

responsible to provide fault tolerance to the site in

case of failure of any computing element of site

and it also manages the workload of their

computing elements.

 Level 3: This is the last level and this is

the leaves of the tree. It represents computing

elements associated with the various sites. Figure

3.1 shows the load balancing generic model, with

its three variants: 1/1/M, 1/G/M, S/G/M.

3.2 Characteristics of the proposed model

The main features of our proposed load balancing generic

model are listed below:

1) It is hierarchical: This characteristic facilitate the

information flow through the tree and well defines the

message traffic in our strategy.

2) It supports heterogeneity and scalability of grids: Adding

or removing entities (computing elements, sites or clusters)

are very simple operations in our model (adding or

removing nodes, subtrees).

3) It is totally independent from any physical architecture

of a grid: The transformation of a grid into a tree is an

univocal transformation. Each grid corresponds to one and

only one tree.

3.3 Proposed Algorithm

Step 1: Cluster Creation algorithm:

1. Initialize cno, site, ce, qlength, nos.

2. For cno=1 to 10.

i) Generate no of sites between 1 to 5 randomly.

ii) Generate computing element ce of each site between 1 to

5 randomly.

iii)Generate qlength of each computing element ce between

1 to 50 randomly.

end For

Step 2: Load Calculation for 10 cluster’s sites

algorithm:

1. Initialize site, cno.

2. For cno=1 to 10.

Call calculateLoad(cno,site).

end For

calculateLoad(cno,site)

1. Initialize avgload=0, load=0.

2. Calculate avgload of site s and cluster cno into variable

load.

3. Calculate avgload of grid into variable avgload.

4. Calculate newload=Math.abs((load-avgload)/load.

5. If(newload<=threshold)

then no need to balance.

else

load balancing is required.

end If

Step 3: Display Cluster algorithm:

1. Initialize cno.

2. Input cluster number into cno.

3. Call display(cno).

4. Call displayLoad(cno).

display(cno)

1. Display sites of each cluster and computing element in

each sites with its queue length.

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 9, November- 2012

ISSN: 2278-0181

4www.ijert.org

IJ
E
R
T

IJ
E
R
T

displayLoad(cno)

1. Calculate load of site1 in cluster number cno.

2. If(loaded.equals("1")) then

load balancing is required.

else

no need to balance.

end If

Step 4: Balancing Algorithm:

1. Initialize cno, site1.

2. Input cluster number into cno.

3. For each site site1 in cluster cno

Call balance(cno,site1).

end For

balance(cno,site1)

1. Initialize avg=0, k=0, l=0, m=0, n=0, qlen.

2. Take 4 strings CESO, CERU, CENB, ce.

3. For i =1 to site.

4. Initialize k=0, l=0, CESO="", CERU="", CENB="".

5. For Every CEijk of Sjk do

6. Switch

- Lijk > Avrg + T

CESO <- CESO U {CEijk}

- Lijk < Avrg

CERU <- CERU U {CEijk}

- Avrg = Lijk = Avrg + T

CENB <- CENB U {CEijk}

end Switch

end For

7. While (CESO !="" AND CERU !="") do

- Sort CESO by descending order of Lijk

- Sort CERU by ascending order of Lijk

- CEsjk <- CE most overloaded

- CErjk <- CE most lightly overloaded

- Load offered by CErjk = Avrg - Lrjk

- Tasks migration stage from CEsjk to CErjk

- Update current workload of CEsjk, CErjk.

Step 5: Failure of Computing Element

algorithm:

1. Initialize cno, cnts, qlen, uqlen.

2. Input cluster number into cno.

3. Choose site cnts from cluster number cno randomly.

4. Calculate number of computing element into variable

cntce in randomly choosen site cnts of cluster number cno.

5. If(cntce>1) then

- Choose computing element ce in site cnts in cluster

number cno randomly to fail.

- Calculate load of computing element ce of site cnts of

cluster cno into variable qlen.

- Calculate share uqlen=qlen/(cntce-1).

- For each computing element ce in site cnts of cluster cno.

i) update qlenth=qlength+uqlen.

ii) calculateLoad(cno,cnts).

end For

- After calculating load if site become overloaded then

Call intersite(cno,cnts).

else

- intersite load balancing is required.

Call intersiteLB(cno,cnts).

end If

intersite(cno,cnts)

1. Initialize nos=0, nos1=0, load=0, avgload=0, share=0,

cntce=0.

2. Calculate no of sites nos in cluster cno.

3. If(nos==1) then

- Number of site is 1 , inter site load balancing is not

possible.

else

- newsite = generateRandomSite(nos1,site).\\ For balancing

it randomly choosen site is newsite.

- Calculate load of site into load and average of grid into

avgload.

- Calculate share=Math.abs(avgload-load).

- Add share to the qlength q of computing element ce of

new site newsite of cluster cno.

- Subtract share from the load of site site of cluster cno.

- Call calculateLoad(cno,newsite).

- Call calculateLoad(cno,site).

end If

intersiteLB(cno,cnts)

1. Initialize load=0, i=0, eload=0, noc=0, qlen=0, maxc=0,

newload=0.

2. Calculate load of site cnts of cluster cno into variable

load.

3. Delete or fail site cnts of cluster cno.

4. Choose site with less load into variable s of cluster cno.

5. Calculate number of computing element noc of (site with

less load) s in cluster cno.

6. Calculate newload=load/noc.

7. Calculate extra load eload.

8. eload=load-(newload*noc).

9. For each computing element ce in site s of cluster cno

- Update qlength=qlength+newload.

End For

10. If(eload>0) then

- Choose computing element el in site s in cluster number

cno randomly.

- Update qlength of computing element e1.

qlength = qlength+eload.

end If

Step 6: Failure of Site algorithm:

1. Initialize cno, cnts.

2. Input cluster number into cno.

3. Choose site cnts from cluster number cno randomly.

4. Calculate no of site into variable site1 of cluster number

cno.

5. If(site1>1) then

- Choose site into variable cnts of cluster cno randomly.

- Call intersiteLB(cno,cnts)

else

- Call interCluster(cno)

end If

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 9, November- 2012

ISSN: 2278-0181

5www.ijert.org

IJ
E
R
T

IJ
E
R
T

Step 7: Failure of Cluster algorithm:

1. Initialize cno.

2. Choose cluster randomly into variable cno.

3. Call interCluster(cno).

interCluster(cno)

1. Initialize cload, clus, nos, nloads, noc.

2. Calculate avgload of cluster cno into variable cload.

3. Delete or fail cluster number cno.

4. Choose cluster with less load into variable clus.

5. Choose number of site into variable nos of cluster clus.

6. Calculate share for each site into variable nloads.

nloads= cload/nos.

7. For each site in cluster clus.

i) Calculate number of computing element into variable

noc.

ii) Calculate share for computing element ce.

nloadc = nloads/noc.

iii) Update qlength of each computing element

qlength=qlength+nloadc.

iv) Call calculateLoad(clus,site).

end For.

4 CONCLUSION AND FUTURE

WORK

In this dissertation, simulator of Fault Tolerant Approach

for Load Balancing in Grid Environment is build. In this 10

clusters are created. Each cluster have 1 to 5 sites and each

sites have 1 to 5 computing elements and queue length of

each computing element is from 1 to 50. When a computing

element is failed then the load of the failed computing

element is distributed to the other computing elements

within the site equally. And after within site load balancing

if site is overloaded then load is distributed to the randomly

selected site of the cluster. When a site is failed then load of

failed site is equally distributed among the computing

elements of the randomly selected site within the cluster

and when a cluster is failed then load of failed cluster is

distributed to the less loaded cluster of the grid and in this

way load balancing is done and fault tolerance is achieved.

 In this way we have implemented various scenarios

showing the intra-site, inter-site and inter-cluster load

balancing in grid environment.

 Future work may include following points:

i) Resources can be taken as heterogeneous.

ii) Random arrival of jobs can be considered.

REFERENCES

[1] Belabbas Yagoubi and Yahya Slimani , “Dynamic Load

Balancing Strategy for Grid Computing,” World Academy

of Science, Engineering and Technology, 2006.

[2] M. Baker, R.Buyya, and D. Laforenza, “Grids and grid

technologies for wide-area distributed computing,”

International Journal of Software Practice and Experience

(SPE), 2002.

[3] F. Berman, G. Fox, and Y. Hey, “Grid Computing:

Making the Global Infrastructure a Reality,” Wiley Series

in Communications Networking & Distributed Systems,

2003.

[4] M. Baker, R. Buyya, and D. Laforenza, “Grids and grid

technologies for wide area distributed computing,”

International Journal of Software: Practice and Experience

(SPE), vol. 32(15), 2002.

[5]B.Yagoubi, “Dynamic load balancing for beowulf

clusters,” In Proceeding of the 2005 International Arab

Conference On information Technology,pp 394–401, Israa

University, Jordan, December 2005.

 [6] B. Yagoubi, and M. Medebber, “A load balancing

model for grid environment,” In Proceeding of 22
nd

International Symposium on Computer and Information

Sciences (ISCISC 2007), pp. 1-7, 7 November 2007.

[7] C.Z. Xu and F.C.M. Lau, “Load Balancing in Parallel

Computers: Theory and Practice,” Kluwer, Boston, MA,

1997.

[8] K. Lu, and A. Zomaya, “A Hybrid Policy for Job

Scheduling and Load

Balancing in Heterogeneous Computational Grids,”

Proceeding of 6
th

 International Symposium on Parallel and

Distributed Computing, pp.19-26, 5 July 2007.

[9] P. K. Suri, and Manpreet Singh, “An Efficient

Decentralized Load Balancing Algorithm For Grid,” IEEE

2
nd

 International Advance Computing Conference, pp. 10-

13, February 2010.

[10] Bin Lu, and Hongbin Zhang, “Grid Load Balancing

Scheduling Algorithm Based on Statistics Thinking,” IEEE

9th International Conference, pp. 288-292, 2008.

[11] Gabor Vincze, Zoltan Novak, Zoltan Pap, and Rolland

Vida, “RESERV: A Distributed, Load Balanced

Information System for Grid Applications,” 8th IEEE

International Symposium on Cluster Computing and the

Grid, pp.

 596-601, 2008.

[12] Han Zhao, Xinxin Liu, and Xiaolin Li, “DLBEM:

Dynamic Load Balancing Using Expectation-Maximization,”

IEEE, August 2008.

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 9, November- 2012

ISSN: 2278-0181

6www.ijert.org

IJ
E
R
T

IJ
E
R
T

