
A FEATURE SUBSET SELECTION IN E-MAIL SPAM DETECTION
Sivannarayana Nerella

1
, K. Rajani Devi

2

1 Final year M.Tech student, N.I.E.T

2 Assoc. Professor, H.O.D., Department of IT, N.I.E.T.

Sattenapalli (M), Guntur (Dist.), A.P.

ABSTRACT

 In the recent in formation industry huge amounts of data is being collected and store continuously. For

frequent data updating data collecting agents may communicating with various sources from different places.

Likely electronic mail communication is indispensable nowadays, but the electronic mail spam problem continues

growing drastically. In present trends’ the notion of collaborative spam filtering with near-duplicate similarity

matching scheme has been widely discussed. The basic idea of the similarity matching scheme for spam detection is

to maintain a known spam database, information passed by the user, to block subsequent near-duplicate spams. on

purpose of achieving effective similarity matching and reducing storage utilization, prior works mainly represent

each electronic mail by a succinct abstraction derived from mail content text. However, these abstractions of mails

cannot fully catch the evolving nature of spams, and are thus not effective enough in near-duplicate detection. in

this paper, we propose a new electronic mail abstraction scheme, which considers e-mail layout structure to

represent electronic mails. we represent a procedure to generate the electronic mail abstraction using html content

in electronic mail, and this newly devised abstraction can more effectively capture the near-duplicate phenomenon

of spams. Moreover, we design a complete spam detection system cosdes (standing for collaborative spam detection

system), which possesses an efficient near-duplicate matching scheme and a progressive update scheme. the

progressive update scheme enables system cosdes to keep in most up-to-date information for near-duplicate finding.

we evaluate cosdes on a live data set gathered from a real electronic mail server and show that our system

outperforms the prior approaches in finding results and is applicable to the present world.

Index terms

Spam detection, electronic –mail abstraction, near-duplicate matching.

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 5, July - 2012

ISSN: 2278-0181

1www.ijert.org

I. INTRODUCTION

Electronic communication is prevalent and indispensable

although the techniques used by spammers vary nowadays.

However, the threat of unsolicited junk e- mails, also known

as spams, becomes more and more serious. According to a

survey by the website top ten- reviews. 40 percent of e-mails

were considered as spams in 2006. The statistics collected by

MessageLabs1 show that recently the spam rate is over 70

percent and persistently remains high. The primary challenge

of spam detection problem lies in the fact that spammers will

always find new ways to attack spam filters owing to the

economic benefits of sending spams. Note that existing filters

generally perform well when dealing with clumsy spams,

which have duplicate content with suspicious keywords or are

sent from an identical notorious server. Therefore, the next

stage of spam detection research should focus on coping with

cunning spams which evolve naturally and continuously.

 Although the techniques used by spammers vary

constantly, there is still one enduring feature: spams with

identical or similar content are sent in large quantities and

successively. Since only a small amount of e-mail users will

order products or visit websites advertised in spams,

spammers have no choice but to send a great quantity of

spams to make profits. It means that even with developing

and employing unexpected new tricks, spammers still have

to send out large quantities of identical or similar spams

simultaneously and in succession. This specific feature of

spams can be designated as the near-duplicate phenomenon,

which is a significant key in the spam detection problem.

In view of above facts, the notion of collaborative spam

filtering with near-duplicate similarity matching scheme has

recently received much attention. The primary idea of the

near-duplicate matching scheme for spam detection is to

maintain a known spam database, given by user feedback, to

block subsequent spams with similar content. Collaborative

filtering indicates that user knowledge of what spam may

subsequently appear is collected to detect following spams. .

Overall, there are 3 key points of this type of spam detection

approach we have to be concerned about.

First, an effective representation of e-mail (i.e., e-mail

abstraction) is essential. Since a large set of reported spams

has to be stored in the known spam database, the storage size

of e-mail abstraction should be small. Moreover, the e- mail

abstraction should capture the near-duplicate phenomenon of

spams, and should avoid accidental deletion of non spam e-

mails (also known as hams). Second, every incoming e-mail

has to be matched with the large database, meaning that the

near-duplicate matching process should be substantially

efficient. Finally, the latest spam’s have to be included

instantly and successively into the database so as to

effectively block subsequent near-duplicate spams. To

achieve the small storage size and efficient matching, prior

works mainly represent each electronic mail by a succinct

abstraction derived from electronic mail content text.

Moreover, hash-based text representation is applied

extensively. One major problem of these abstractions may be

too succinct and thus may not be robust enough to withstand

intentional attacks. A common attack to this type of

representation is to insert a random normal paragraph without

any suspicious key- words into unobvious position of an e-

mail.

In such a text, if the whole electronic mail content is utilized

for hash- based representation, the near-duplicate part of

spams cannot be captured. In addition, the fail positive rate

(i.e., the rate of classifying hams as spams) may increase

because the random part of e-mail content is also involved in

e-mail abstraction. On the other hand, hash-based text

representation also suffers from the problem is not suit for all

languages.

Finally, images and hyperlinks are important clues to spam

detection, but both are helpless to be included in hash based

text representation. In this paper, we explode to devise a more

sophisticated electronic abstraction. Which can more

effectively capture the near- duplicate phenomenon of spams.

Promoted by the fact that electronic mail users are capable of

easily recognizing similar spams by observing the layouts of

e-mails, we attempt to represent each e-mail based on the e-

mail layout structure. Fortunately, almost all e-mails

nowadays are in Multipurpose Internet Mail Extensions

(MIME) format with the text/html content- type.

 That is, HTML content is available in an e-mail and

provides sufficient information about e-mail layout structure.

Almost all e-mails nowadays are in Multipurpose Internet

Mail Extensions (MIME) format with the text/html content-

type. That is, HTML content is available in an e-mail and

provides sufficient information about e-mail layout structure.

In view of this observation, we propose the specific procedure

Structure Abstraction Generation (SAG), which generates an

HTML tag sequence to represent each e-mail. Different from

previous works, SAG focuses on the e-mail layout structure

instead of detailed content text. In this regard, each paragraph

of text without any HTML tag embedded will be transformed

to a newly defined tag <my text=>.

 Definition 1 (<my text=>). <my text=> is a newly

defined tag that represents a paragraph of text without any HTML

tag embedded.

 Since we ignore the semantics of the text,

the proposed abstraction scheme is inherently applicable to e-

mails in all languages. This significant feature is superior to

most existing methods. Once e-mails are represented by our

newly devised e-mail abstractions, two e-mails are viewed as

near-duplicate if their HTML tag sequences are exactly

identical to each other.

Note that even when spammers insert random tags into e-

mails, the proposed e-mail abstraction scheme will still retain

efficacy since arbitrary tag insertion is prone to syntax errors

or tag mismatching, meaning that the appearance of the e-

mail content will be greatly altered. Moreover, the proposed

procedure SAG also adopts some heuristics to better

guarantee the robustness of our approach.

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 5, July - 2012

ISSN: 2278-0181

2www.ijert.org

While a more sophisticated e-mail abstraction is intro- duced,

one challenging issue arises: how to efficiently match each

incoming e-mail with an existing huge spam database. To

resolve this issue, we devise an innovative tree structure,

SpTrees, to store large amounts of the e-mail abstractions of

reported spams, and SpTrees contribute to substantially

promoting the efficiency of matching. In the design of the

near-duplicate matching scheme based on SpTrees, we aim

at reducing the number of spams and tags which are required

to be compared.

By integrating above techniques, in this paper, we designa

complete spam detection system Collaborative Spam

Detection System (Cosdes). Cosdes possesses an efficient

near-duplicate matching scheme and a progressive update

scheme. The progressive update scheme not only adds in

new reported spams, but also removes obsolete ones in the

database. With Cosdes maintaining an up-to-date spam

database, the detection result of each incoming e-mail can be

determined by the near-duplicate similarity matching

process. In addition, to withstand intentional attacks, a

reputation mechanism is also provided in Cosdes to ensure

the truthfulness of user feedback.

To the best of our knowledge, there is no prior research in

considering e-mail layout structure to represent e-mails in

the field of near-duplicate spam detection.

In summary, the contributions of this paper are as follows:

i. We propose the specific procedure SAG

to generate the e-mail abstraction

using HTML content in e-mail, an

d t h is newly devised abstraction

can m or e effectively capture the

near-duplicate phenomenon of

spams.

ii. We devise an innovative tree structure, SpTrees, to

store large amounts of the e-mail abstractions

of reported spams. SpTrees contribute to the

accomplishment of the efficient near-duplicate

matching with a more sophisticated e-mail

abstraction.

iii. We design a complete spam detection

systemCosdes with an efficient near-duplicate

matching scheme and a progressive update

scheme. The progressive update scheme

enables system Cosdes to keep the most up-to-

date information for near- duplicate detection.

 The rest of this paper is outlined as

follows: In Section II, preliminaries including

the definition of near-duplicate and the related

works are given. In Section III, we introduce the

novel e-mail abstraction scheme. In Section IV,

the complete system model of Cosdes is

depicted. The experimental results are shown

in Section V, and finally, this paper is

concluded with Section VI.

II. PRELIMINARIES

In this section, the definition of near-duplicate, in this paper,

is presented in Section II.A We then review the related

works on spam detection in Section II.B.

II.A) Definition of NearDuplicate
The central idea of near-duplicate spam detection is to exploit

reported known spams to block subsequent ones which have

similar content. For different forms of e-mail representation,

the definitions of similarity between two e-mails are diverse.

Unlike most prior works representing e-mails based mainly

on content text, we investigate representing each e-mail

using an HTML tag sequence, which depicts the layout

structure of e-mail, and look forward to more effectively

capturing the near-duplicate phenomenon of spams.

Initially, the definition of <anchor> tag is given as follows:

Definition 2 (<anchor>). The tag <anchor> is one type of

newly defined tag that records the domain name or the e-mail

address in an anchor tag.

For example, the anchor tag <a href="http://arbor.ee.

ntu.edu.tw/index.htm"> is transformed to <arbor.ee.ntu.

edu.tw>. The anchor tag <a href="mailto:cytseng@arbor.

ee.ntu.edu.tw"> is transformed to <cytseng@arbor.ee.

ntu.edu.tw>. The purpose of creating the <anchor> tag is

to minimize the false positive rate when the number of

tags in an e-mail abstraction is short. The less the number

of tags in an e-mail abstraction, the more possible that a

ham may be matched with known spams and be

misclassified as a spam. Therefore, when the number of

tags in an e-mail abstraction is smaller than a predefined

threshold, for each anchor tag <a>, we specifically record

the targeted domain name or e-mail address, which is a

significant clue for identifying spams.

On the other hand, in this paper, the detailed definition of

near-duplicate is given as follows:

Definition 3 (Near-Duplicate). Let I ¼ ft1; t2; . . . ; ti; . . . ; tn;

<my text=>; <anchor>g be the set of all valid HTML tags

with two types of newly created tags, <my text=> and

<anchor>, included. An e-mail abstraction derived from

procedure SAG is denoted as <e1; e2; . . . ; ei; . . . ; em>, which is

an ordered list of tags, where ei 2 I. The definition of near-

duplicate is: "Two e-mail abstractions ff ¼ <a1; a2; . . . ;

ai; . . . ; an> and fi ¼ <b1; b2; . . . ; bi; . . . ; bm> are viewed as

near-duplicate if 8ai ¼ bi and n ¼ m."

Definition 4 (Tag Length). The tag length of an e-mail

abstraction is defined as the number of tags in an e-mail

abstraction. Note that we strictly define that two e-mail

abstractions are near-duplicate only if they are exactly

identical to each other. The major reason is that there are

numerous HTML tag patterns appearing commonly and

frequently. Partial matching of HTML tag sequences will

cause much higher rate of false positive error, and the

complexity will be too high to achieve efficient matching. In

addition, for further speed-up, while the tag length of an e-

mail abstraction is longer, we even apply a looser matching

criterion, which does not degrade detection results.

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 5, July - 2012

ISSN: 2278-0181

3www.ijert.org

II .B) RelatedWorks
Since the e-mail spam problem is increasingly serious

nowadays, various techniques have been explored to

relieve the problem. Based on what features of e-mails are

being used, previous works on spam detection can be

generally classified into three categories: 1) content-based

methods, 2) noncontent-based methods, and 3) others.

Initially, researchers analyze e-mail content text and model

this problem as a binary text classification task.

Representatives of this category are Naive Bayes [14], [20]

and Support Vector Machines (SVMs) [1], [10], [15], [27]

methods. In general, Naive Bayes methods train a

probability model using classified e-mails, and each word in

e-mails will be given a probability of being a suspicious

spam keyword. As for SVMs, it is a supervised learning

method, which possesses outstanding performance on text

classification tasks. Traditional SVMs [10] and improved

SVMs [1], [15], [27] have been investigated. While above

conventional machine learning techniques have reported

excellent results with static data sets, one major

disadvantage is that it is cost-prohibitive for large-scale

applications to constantly retrain these methods with the

latest information to adapt to the rapid evolving nature of

spams. The spam detection of these methods on the e-mail

corpus with various language has been less studied yet. In

addition, other classification techniques, including markov

random field model [3], neural network [6] and logic

regression [2], and certain specific features, such as URLs

[26] and images [19], [29] have also been taken into

account for spam detection.

The other group attempts to exploit non content

information such as e-mail header, e-mail social network [4],

[28], and e-mail traffic [5], [9] to filter spams. Collecting

notorious and innocent sender addresses (or IP addresses)

from e-mail header to create black list and white list is a

commonly applied method initially. MailRank [4] examines

the feasibility of rating sender addresses with algorithm

PageRank in the e-mail social network, and in [28], a

modified version with update scheme is introduced. Since e-

mail header can be altered by spammers to conceal the

identity, the main drawback of these methods is the

hardness of correctly identifying each user. In [5], [9], the

authors intend to analyze e-mail traffic flows to detect

suspicious machines and abnormal e-mail communication. It

is noted that these approaches have to operate in

coordination with other complementary methods to gain

better results. Moreover, some researchers consider com-

bining the merits of several techniques [2], [13], [18]. Even

though the performance of classifier integration seems

prominent, there is still no conclusion on what is the best

combination. In addition, how to efficiently update the

whole included classifiers is another unsolved issue.

On the other hand, collaborative spam filtering with near-

duplicate similarity matching scheme has been stu- died

extensively in recent years. Regarding collaborative

mechanism, P2P-based architecture [8], [12], [31], centra-

lized server-based system [16], [21], [22], [30], and others

[17], [23] are generally employed. Note that no matter

which mechanism is applied, the most critical factor is how

to represent each e-mail for near-duplicate matching. The e-

mail abstraction not only should capture the near-duplicate

phenomenon of spams, but should avoid accidental deletion

of hams. In [30], the first N hash values of each length L

substring are used as vector representation of the e-mail. In

[7], [8], [17], a 32-byte code derived from a variation of

Nilsimsa digest technique is utilized to represent the

distribution of word trigrams in e-mail. In [23], [24], [25],

the authors improve the open digest technique [7] by

representing each e-mail with multiple digests produced

from the strings of fixed length sampled at randomized

positions within e-mail. In [12], [31], a feature vector of a

block text fingerprint generated from the set of checksums of

each length L substring is exploited.

Fig. 1 . Algorithmic form of procedure SAG

 In [22], the authors make use of spam-vocabulary patterns

produced by Teiresias pattern discovery algorithm. In [16],

the I-Match signature determined by a set of unique terms

shared by spams and the I-Match lexicon is put to use.In

[21], the content similarity of e-mails computed using

extracted words is measured. It is noted that most existing

methods generate e-mail abstractions based mainly on

content text. However, randomized and normal paragraphs

are commonly inserted in spams nowadays, and thus if an e-

mail abstraction is generated by the whole content text, the

near-duplicate part of spams cannot be captured. Moreover,

generating e-mail abstraction with the content text also

suffers from the problem of not being applicable to all

languages.

Fig. 2. An example of the preprocessing step in Tag Extraction
Phase of procedure SAG.

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 5, July - 2012

ISSN: 2278-0181

4www.ijert.org

In light of the above problems, it deserves further studies

to design a better e-mail abstraction approach that is more

robust to withstand intentional attacks.

III .E-MAIL ABSTRACTION SCHEME
In this section, a novel e-mail abstraction scheme is

introduced. In Section III.A, procedure SAG is presented to

depict the generation process of an e-mail abstraction. The

devised data structures SpTable and SpTrees are illustrated in

Section III.B. Finally, the robustness issue is discussed in

Section III .c.

III.A Structure Abstraction Generation
We propose the specific procedure SAG to generate the e-

mail abstraction using HTML content in e-mail. SAG is

elaborated with the example of Fig. 3, and the algorithmic

form of SAG is outlined in Fig. 1. Procedure SAG is

composed of three major phases, Tag Extraction Phase, Tag

Reordering Phase, and <anchor> Appending Phase. In Tag

Extraction Phase, the name of each HTML tag is extracted,

and tag attributes and attribute values are eliminated. In

addition, each paragraph of text without any tag embedded

is transformed to <mytext=>. In lines 4-5, <anchor> tags

are then inserted into AnchorSet, and the first 1,023 valid

tags are concatenated to form the tentative e-mail abstraction.

Note that we retain only the first 1,023 tags as the tag

sequence. The main reason is that the rear part of long e-

mails can be ignored without affecting the effectiveness of

near-duplicate matching. Sub- sequently, in line 6 of Fig. 1,

we preprocess the tag sequence of the tentative e-mail

abstraction. One objective of this preprocessing step is to

remove tags that are common but not discriminative between

e-mails. The other objective is to prevent malicious tag

insertion attack, and thus the robust- ness of the proposed

abstraction scheme can be further enhanced.

The following sequence of operations is performed in the

preprocessing step.

1. Front and rear tags (as shown in the gray area of the

example e-mail in the top of Fig. 3) are excluded.

2.Nonempty tags2 that have no corresponding start tags or

end tags are deleted. Besides, mismatched nonempty tags

are also deleted.

3. All empty tags2 are regarded as the same and are

replaced by the newly created <empty=> tag.Moreover,

successive <empty=> tags are pruned and only one

<empty=> tag is retained

4. The pairs of nonempty tags enclosing nothing are

removed.

Example 1. Consider the example e-mail abstraction in Fig. 2

 that has been produced through the execution of lines 1-5

in procedure SAG. The first operation of the reprocessing step

is to remove tags which are in front of the <body> tag and

which are in rear of the <=body> tag. With regard to

operation 2, since there is no end tag of <a>, this tag is

deleted. Besides, the tags and < =font > are also

deleted because the position of <=font> is incorrect. Note

that we can utilize the stack data structure to determine

whether nonempty tags are mismatched. After that, empty

tags are transformed to < empty=> in operation 3. More- over,

since <mytext=><img=><hr=> appear consecu- tively, only

one <empty=> tag is retained. Finally,

<div><=font><=div> are removed due to the lack of

content.

 The middle part of Fig. 3 shows an example of a tentative

e-mail abstraction and AnchorSet (i.e., <spam:com>)

derived from Tag Extraction Process. On purpose of

accelerating the near-duplicate matching process, we reorder

the tag sequence of an e-mail abstrac- tion in Tag Reordering

Phase. Note that since the arrange- ment of HTML tags is

regular and in pairs, various sequential patterns of tags are

contained in e-mails. In the worst case, if we consider two e-

mail abstractions which have the same tag length and differ

only in their last tags, the difference cannot be detected until

the last tags are compared. To handle this problem, we

destroy the regularity by rearranging the order of tag

sequence to lower the number of tag comparisons. Note that

this process ensures that the newly assigned position numbers

of e-mail abstractions with the same number of tags are

completely identical. As such, the matching process can be

accelerated without violating the definition of near-duplicate

in this paper. In lines 8-11 of Fig. 1, each tag is assigned a

new position number by function ASSIGN_PN (PN denotes

for

Position Number) with following expressions,

pffff b ¼ d Le; r ¼ ðP Norig À 1Þ%b; q ¼ bðPNorigÀ 1Þ=bc þ 1;

P Nnew ¼ ðb Â rÞ þ ðb À q þ 1Þ;

 where L is the tag length of an e-mail abstraction,

and P Norig is the original position number. Variable b is the

number of buckets. Variable r indicates which bucket should

be placed, and variable q is the number of shift counts from

the end of this bucket. Fig. 3 demonstrates the assignment of

the first six tags. The final e-mail abstraction is the

concatenation of all tags with new position numbers (the

vacant positions, e.g., positions 9 and 13 in Fig. 3, are

ignored). Additionally, if the tag length of an e-mail

abstraction is smaller than a predefined tag length threshold

(set as 16 in the experi- ments) of the short e-mail, the tags

in AnchorSet will be appended in front of the e-mail

abstraction. The main objective of appending <anchor> tags

is to reduce the probability that a ham is successfully

matched with reported spams when the tag length of an e-

mail abstraction is short.

An example e-mail abstraction produced by procedure SAG

is shown in the bottom of Fig. 3

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 5, July - 2012

ISSN: 2278-0181

5www.ijert.org

Fig. 3. An example procedure flow of SAG

III.B. Design of SpTrees
One major focus of this work is to design the innovative data

structure to facilitate the process of near-duplicate matching.

SpTable and SpTrees (sp stands for spam) are proposed to

store large amounts of the e-mail abstractions of reported

spams. As shown in Fig. 4, several SpTrees are the kernel of

the database, and the e-mail abstractions of collected spams

are maintained in the corresponding SpTrees. According to

Definition 3, two e-mail abstractions are possible to be near-

duplicate only when the numbers of their tags are identical.

Thus, if we distribute e-mail abstractions with different tag

lengths into diverse SpTrees, the quantity of spams required

to be matched will decrease. However, if each SpTree is only

mapped to one single tag length, it is too much of a burden

for a server to maintain such thousands of SpTrees. In view

of this concern, each SpTree is designed to take charge of e-

mail abstractions within a range of tag lengths. As can be

seen in Fig. 4, SpTable is created to record overall

information of SpTrees.

 The ith column of SpTable links to the root of

SpTree_i by a pointer, and e-mail abstractions with tag

lengths ranging from 2i to 2iþ1 À 1 belong to SpTree_i.

Regarding how an e-mail abstraction is stored in SpTree, Fig.

5 gives an example with the same e-mail abstraction derived

from Fig. 3. An e-mail abstraction is segmented into several

subsequences, and these subsequences are consecutively put

into the corresponding nodes from low levels to high levels.

As such, an e-mail abstraction is stored in one path from the

root node to a leaf node of SpTree, and hence the matching

between a testing e-mail and known spams is processed from

root to leaf. As shown in Fig. 5, the example e-mail

abstraction is stored in a path from the root node a to the leaf

node d. The primary goal of applying the tree data structure

for storage is to reduce the number of tags required to be

matched when processing from root to leaf. Since only

subsequences along the matching path from root to leaf

should be compared, the matching efficiency is substantially

increased. Note that if each type of HTML tag determines a

branch direction (i.e., the tree degree will be the number of

HTML tag types) and each level of SpTree contains merely

one HTML tag (i.e., the tree height will be the tag length of

the longest e-mail abstraction), the number of tag

comparisons will be minimum.

Fig. 4. The data structures of SpTable and SpTrees.

Fig. 5. The illustration of SpTree_3 with an example e-mail

abstraction.

However, it is infeasible because the degrees and the

heights of SpTrees will be too large, and SpTrees will be

extremely unbalanced To achieve efficient matching with

balanced tree struc- ture, SpTrees are designed to be binary

trees. The branch direction of each SpTree is determined by

a binary hash function. If the first tag of a subsequence is a

start tag (e.g., <div>), this subsequence will be placed into

the left child node. A subsequence whose first tag is an end

tag (e.g., <=div>) will be placed into the right child node.

Since most HTML tags are in pairs and the proposed e-mail

abstraction is reordered in procedure SAG, subsequences are

expected to be uniformly distributed. Moreover, on level i of

each SpTree (with the root on level 0), each node stores

subsequences whose tag lengths are equal to 2i. For instance,

as shown in Fig. 3, the subsequence <spam:com> (whose

tag length is 20) is placed into level 0, the subsequence

<=p><a> (whose tag length is 21) is placed into level 1, and

so forth. Note that since SpTree_i takes charge of e-mail

abstractions with tag lengths ranging from 2i to 2iþ1 À 1,

based on the above-mentioned arrangement, the last

subsequence of each e-mail abstraction in an SpTree will be

stored in the leaf nodes on the same level. Also note that the

tag lengths of subsequences stored in leaf nodes of level j

range from 1 to 2j. As described in Section 3.1, we design

that the longest length of an e-mail abstraction is 1,023,

meaning that there are totally 10 SpTrees (from SpTree_0 to

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 5, July - 2012

ISSN: 2278-0181

6www.ijert.org

SpTree_9) in our database while the proposed arrangement is

applied. In addition, to further accelerate the process of

matching, we employ a hash function to map each

subsequence to an integer. The key idea is that only

subsequences which look like the testing subsequence

should be exactly matched. The hash function is defined

as follows:

hashðseqÞ ¼

fðseq½0ŠÞ Ã

2mÀ1 þ

fðseq½1ŠÞ Ã

2mÀ2

þ Á Á Á þ fðseq½m À 1ŠÞ Ã 20;

where m is the number of tags in this subsequence and

seq½nŠ denotes the tag type of the nth tag. The function f

converts each type of tag to a unique integer. Moreover, for

the subsequence which contains more than eight tags, we

just use the first eight tags to generate the hash value (i.e., m

8).

With the hash function, most subsequence matching is

transformed to the integer matching, and hence the complex-

ity of matching process can be substantially reduced. Overall,

the advantageous features of this innovative arrangement

are as follows: 1) The height of an SpTree is equal to blg Lc,

where L is the tag length of the longest e- mail abstraction in

this SpTree. 2) Owing to the fact that parent nodes store less

number of subsequences than children nodes, we design

that longer subsequences are put into higher levels (the tag

length of the subsequence on level i is 2i). Thus, the number

of tags matched from root to leaf is markedly decreased.

Moreover, with the hash function, the matching efficiency

is substantially increased. 3) The numbers of tags stored in

the nodes of an SpTree are expected to be similar, and hence

SpTrees are balanced binary trees. Assume that there are N

e-mail abstractions in SpTree_i and subsequences on the

same level are uniformly distributed. For each node on level

j, there are Nj subsequences (the number of nodes on level j

2is 2j) whose tag lengths are equal to 2j.

Then The number of tags stored in each node is Nj Â 2j ¼

N, which is not 2correlated with j. It is noted that the

number of tags ineach leaf node is less than N because not

all subse- quences in leaf nodes are with the longest

allowed tag length.

On the other hand, as shown in the bottom of Fig. 5,

certain additional information is required and kept in each

subsequence of a node. For subsequences in internal nodes,

spam id and timestamp are included. For subsequences in

external nodes, spam id, user id, timestamp, length EA (the

length of the e-mail abstraction), and SR (the reputation

score) are involved.

III.C Robustness Issue
The main difficulty of near-duplicate spam detection is to

withstand alicious attack by spammers. Prior approaches

generate e-mail abstractions based mainly on hash-based

content text. These methods primarily differ in what

granularity is used as the input of the hash function.

For example, the authors in [16], [21], [22] extract words or

terms to generate the e-mail abstraction. Besides, substrings

extracted by various techniques are widely employed in [7],

[8], [12], [17], [23], [25], [30], [31]. However, this type of e-

mail representation inherently has following disadvantages.

First, the insertion of a randomized and normal paragraph

can easily defeat this type of spam filters. Moreover, since

the structures and features of different languages are

diverse, word and substring extraction may not be applic-

able to e-mails in all languages. Concretely speaking, for

instance, trigrams of substrings used in [7], [8], [17] are not

suitable for nonalphabetic languages, such as Chinese.

In this paper, we devise a novel e-mail abstraction scheme

that considers e-mail layout structure to represent e-mails.

To assess the robustness of the proposed scheme, we model

possible spammer attacks and organize these attacks as

following three categories. Examples and the outputs of

preprocessing of procedure SAG.

III.C.1 Random Paragraph Insertion
This type of spammer attack is commonly used nowa- days. The

normal contents without any advertisement keywords are inserted

to confuse text based spam filtering techniques. It is noted that

our scheme transforms each paragraph into a newly created tag

<mytext=>, and consecutive empty tags will then be transformed

to <empty=>. As such, the representation of each random inserted

paragraph is identical, and thus our scheme is resistant to this type

of attack.

III.C.2 Random HTML Tag Insertion
If spammers know that the proposed scheme is based on

HTML tag sequences, random HTML tags will be inserted

rather than random paragraphs. On the one hand, arbitrary

tag insertion will cause syntax errors due to tag mismatch-

ing. This may lead to abnormal display of spam content that

spammers do not wish this to happen. On the other hand,

procedure SAG also adopts some heuristics (as depicted in

Section III.A) to deal with the random insertion of empty

tags and the tag mismatching of nonempty tags. Two

example outputs and the details of each step can be found in

Fig. 2. With the proposed method, most random inserted

tags will be removed, and thus the effectiveness of the attack

of random tag insertion is limited. We shall verify this

inference in Section V.4.

III.C.3 Sophisticated HTML Tag Insertion
Suppose that spammers are more sophisticated, they may

insert legal HTML tag patterns. The tag patterns that do

conform to syntax rules are inserted, they will not be

eliminated. However, although some crafty tricks may be

conceivable, it is not intuitive for spammers to generate a

large number of spams with completely distinct e-mail layout

structure.

Note that due to space limitation, we are not able to discuss

all possible situations. Nevertheless, representing e- mails

with layout structure is more robust to most existing attacks

than text-based approaches. Even though new attack has been

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 5, July - 2012

ISSN: 2278-0181

7www.ijert.org

designed, we can react against it by adjusting the

preprocessing step of procedure SAG. On the other hand,

our approach extracts only HTML tag sequences and

transforms each paragraph with no tag embedded to

<mytext=>, meaning that the proposed abstraction scheme

can be applied to e-mails in all languages without modifying

any components.

IV. Collaborative Spam Detection System
A complete collaborative spam detection system Cosdes
isintroduced in this section. The system model of Cosdes is given
in Section IV.1. We then elaborate the processing handlers of
Cosdes in Section IV.2. Finally, we describe the reputation
mechanism of Cosdes in Section IV.3.

IV.1 System Model of Cosdes
The system model of Cosdes is illustrated in Fig. 6, and the a

lg o r i th m ic fo r m is o ut l in e d i n F ig . 7. Ini ia l ly , th r e e

parameters, Tm (the maximum time span for reported spams

being retained in the system), Td (the time span for triggering

Deletion Handler), and Sth (the score threshold for deter-

mining spams) should be given for Cosdes. Before starting to

do the spam detection, Cosdes collects feedback spams for

time Tm in advance to construct an initial database. Three

major modules, Abstraction Generation Module, Database

Maintenance Module, and Spam Detection Module, are

Fig. 6. System model of Cosdes.

V. Performance
 To assess the feasibility of system Cosdes, we conduct

several experiments to explore its efficiency and detection

results. The real spam data sets used in the experiments are

from the e-mail servers of Computer Center in National

Taiwan University, which has over 30,000 students. Since the

ground tr u t h o f r e a l e - m a i l s tr e a ms i s un a v a i l a b l e, s

p a m s a r e extracted from the well-known existing system,

SpamAssas- sin.3 Concerning hams, we not only include

public data sets (around 4,000 e-mails) provided by

SpamAssassin,4 but also obtain from volunteers. There are

about 60,000 spams per day and a set of 7,000 or so hams in

the data set. Note that numerous related works have

evaluated the proposed methods with static databases.

However, to access the performance of spam detection

system with near-duplicate matching scheme, real e-mail

streams are more appropriate than static data sets. Therefore,

in this paper, we use university-scale e-mail streams as the

experimental data sets to better simulate the e-mail

environment. On the other hand, three representative

approaches [7], [24], [30] of near- duplicate spam detection

are employed for comparison. The authors of [8], [17] also

adopt the same e-mail representation approach as in [7] but

with different sharing mechanisms. For ease of presentation,

Damiani's work is abbreviated as Digest. Sarafijanovic's work

is abbreviated as MultiDigest, and Yoshida's work is

abbreviated as Density. It is worth mentioning that

Sarafijanovic's work [24] improves Damiani's one [7] by

representing each e-mail with multiple digests produced from

the strings of fixed length sampled at randomized positions

within e-mail. The processes of generating each digest in

Digest and MultiDigest are identical. Although

Sarafijanovic's work claims that using multiple digests can

enhance the robustness of near-duplicate spam detection

system, these two works have not been

Fig7: The execution time and the memory usage of generating

e-mail abstractions with the number of e-mails varied. (a)

Execution time of e- mail representation. (b) Memory usage of

e-mail representation.

 Besides, Yoshida's work considers maintaining a

direct-mapped cache to facilitate the process of matching. In

the experiments of his work [30], there are 10 million spams

in the database and 10 percent of hash values are copied in

the cache. However, to fairly compare the detection

performance, the cache mechanism of Yoshida's work is not

included in our experiments, meaning that all spams in the

database are used for detection. We implement Cosdes and

comparative techniques with C++ language, and the

programs are executed in Windows XP professional

platform with Pentium 4—3GHz CPU and 1GB RAM. The

programs of Digest and MultiDigest are implemented with

source codes shared by original authors of [7] and [24].

Initially, the efficiency and the space usage of generating e-

mail representation are investigated in Section V.1. We

compare and analyze the detection results of four approaches

in SectionV.2. The detailed efficiency analysis is presented in

Section V.3. Finally, Section V.4 simulates the spammer

attack of random HTML tag insertion.

V.1 E-mail Representation
 The processing time of the

generation of e-mail abstractions with the number of e-mails

varied is shown in Fig. 7a. As mentioned in Section II.B,

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 5, July - 2012

ISSN: 2278-0181

8www.ijert.org

most prior works on near-duplicate spam detection represent

e-mails based mainly on content text. Cosdes is the first

work to attempt to utilize HTML content, which depicts the

layout structure of an e-mail, for representation. Regarding

Digest, word trigrams are ex- tracted consecutively along

the whole e-mail content. As for Density, the authors acquire

the first N (in [30], N is set as 100) hash values of each

length L substring with a fixed-size window sliding through

an e-mail. As can be seen in Fig. 10a, Density takes the least

time since it computes only the first N hash values. As for

Digest, hash values of word trigrams in the whole e-mail are

required to be computed. Regarding MultiDigest, each e-

mail is represented by a set of digests, meaning that each e-

mail is separated into multiple strings with fixed length (in

[24], the length is set as 60 characters) sampled at

randomized positions. Although the length of each string is

much shorter, the overall complexity still increases since

each e-mail has multiple strings needed to be processed. Fig.

10a shows that the processing time of MultiDigest is about

four times longer than that of Digest, and thus MultiDigest

takes the longest time among four approaches. In procedure

SAG of Cosdes, HTML tags are extracted and each

paragraph of text is transformed to the newly created tag

<mytext=>. If only these operations are performed, Cosdes

will be the most efficient. However, sequence preprocessing

and tag reordering are also executed in Cosdes, and

therefore, the execution time slightly increases.

 Overall, the cost of

generating e-mail abstractions of four approaches is very low.

With regard to the space issue, Fig. 7 b shows the memory

usage of four approaches with the number of e-mails varied

in the database. Note that we estimate a hash value or an

integer number as one unit of memory usage, which

approximates to 2 bytes.

Digest represents each e-mail with a 32-byte code, which is

equal to 16 units. As mentioned above, MultiDigest utilizes

multiple 32-byte codes for the representation of each e-mail.

In the experi- mental data set, the average number of digests

in each e-mail is approximately 12, and thus the memory

usage of MultiDigest is larger than that of Digest by around

12 times. Regarding Density, N hash values, that is, 100 units,

are the representation of each e-mail. However, since some e-

mails are too short to be extracted N hash values, the

average memory usage of each e-mail in Density is smaller

that 100 units. On the other hand, a sequence of HTML tags

is the representation of each e-mail in Cosdes . We can

replace each type of tag with a unique integer, and thus each

tag can be viewed as 1 unit. It is calculated that the average

length of the HTML tag sequence produced by procedure

SAG of Cosdes is approximately 35. In addition, as stated in

Section III.B, additional information is required in SpTable

and SpTrees of Cosdes. We include this memory overhead

as well. It can be observed in Fig. 10b that the memory

usage of Digest is the least, and MultiDigest uses the largest

memory space among four approaches. As for Cosdes, the

memory usage is larger than that of Digest by two to four

times. Although a fairly succinct e-mail abstraction can

greatly reduce the overhead of near-duplicate matching, we

can find in the following section that the effectiveness of

Digest cannot be validated.

V.2 Accuracy Evaluation

In this section, we evaluate the detection performance of

Cosdes and three competitive approaches. The most

important requirement for a spam detection system is the

capability to resist malicious attack that evolves continu-

ously. To examine this capability, two recent streams of

spams (collected from National Taiwan University in

September 2007 and February 2009) are utilized as the

experimental data sets. Regarding the language of content

text, 80 percent of all e-mails are in Chinese, and 15 percent

of them are in English. The minority of e-mails are in

Japanese, French, and so forth. Since Chinese is a

nonalphabetic language and English is an alphabetic one, the

data set used in the experiments can verify the

effectiveness of spam detection system with different kinds

of languages to a certain extent. Before a system starts to do

the near-duplicate spam detection, a set of known spams is

inserted into the system. We consider situations with the

parameter Tm varied from one to five days. That is, as

shown in the left side of Fig. 8,

 Fig. 8. Performance of detection result

 the detection results are produced by inserting

spams within Tm days first, and thenthe following one-day

spams are tested. Note that eachspam is inserted into the

database after the process of matOn the other hand, the

entire set of hams is tested.

V.3 Efficiency Analysis

In the succeeding experiments, we initially examine

theefficiency of near-duplicate matching. Owing to the fact

that each incoming e-mail has to be matched with a huge

spam database, the efficiency of near-duplicate matching is

crucial to a collaborative spam detection system. On

evaluation of matching performance, we consider the

situation of matching with the number of e-mails varied

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 5, July - 2012

ISSN: 2278-0181

9www.ijert.org

while there are identical e-mails in the database. As shown in

Fig. 13a, the execution time of Digest is minimal since only

two 32-byte codes of each pair of e-mails have to be

compared. However, as shown in Fig. 12a, the detection

results of Digest are not satisfied even if their matching

processes are very fast.

 As for MultiDigest, it is defined in [24] that

the similarity measure between two e-mails is the maximum

number of equal bits over all pairs of digests. According to

this definition, processing all pairs of digests between two e-

mails requires n2 comparisons, where n is the average

number of digests in an e-mail. It is calculated that n is close

to 12 in our data set, meaning that the matching time of

MultiDigest is larger than that of Digest by over 100 times.

This indicates that the matching process of MultiDigest is the

least efficient among four approaches. Regarding Density,

the sequences of the first 100 hash values, which are longer

than Digest and Cosdes, are matched, and therefore Density

takes more time than Digest and Cosdes. It is noted that the

authors in [30] propose a cache mechanism to avoid

matching each e-mail with the huge database. The cache

mechanism enables Density to markedly enhance the

efficiency of matching. However, this will degrade the

detection performance while the spam database is not as

huge as in [30].

 To fairly compare the performance, we ignore the cache

mechanism of Density in this experiment. On the other hand,

Cosdes has to match a longer sequence than Digest, and in

essence Cosdes requires more time for matchingwe conduct

the efficiency investigation of Cosdes on inserting e-mail

abstractions into the database and deleting outdated spams

from the database. Owing to the fact that competitive

approaches, Digest and Density, did not isolate insertion

parts from the systems and did not take account of deletion,

we only study the performance of Insertion Handler and

Deletion Handler in Cosdes. the execution time of Insertion

Handler of Cosdes with the number of e-mails varied. The

execution time grows linearly and costs merely 3.5 seconds

for inserting 100,000 spams into the database. Moreover, as

can be seen in Fig. 10a, the process of generating 100,000

e-mail abstractions costs about 10 seconds. On the other

hand, the performance of Deletion Handler.

 We evaluate the execution time

of deleting spams in one day while the number of e-mails in

the database varied. The main purpose of this experiment is

to examine whether the efficiency of deletion will be

influenced by the amount of e- mails stored in SpTrees. It is

shown that the deletion process costs only 2 to 3 seconds in

each situation, and the execution time slightly increases

with the amount of e-mails. Therefore, we can observe that

both the processes of insertion and deletion in Cosdes are

efficient and incur very little overhead.

To further evaluate the proposed e-mail abstraction

scheme, we consider the sequence preprocessing step and

the reordering step of procedure SAG. The primary

objective of the sequence preprocessing is to prevent

malicious tag insertion attack, and thus the robustness of

Cosdes can be enhanced. Fig. 15a shows that generating e-

mail abstractions with the sequence preprocessing step leads

to little increment of execution time. Although the detection

results in Fig. 12b can be inferred that spammers still do not

intend to obfuscate HTML content, this protection process

enables Cosdes to perform more robustly in the future. On

the other hand, the main purpose of the reordering step is to

differentiate e-mails with similar tag sequences in the earlier

stage of matching in each situation. True positive rate (i.e.,

TP, a real spam is classified as a spam) and false positive rate

(i.e., FP, a real ham is misclassified as a spam) are listed.

As can be seen in Fig. 12a, Cosdes reports 96.47 percent

TP rate and 0.46 percent FP rate on average, which has the

most outstanding performance. The TP rate of Digest is

extremely high but the FP rate is unacceptable. In order to

accelerate the process of near-duplicate matching, only a 32-

byte code is used in Digest to represent each e-mail.

Moreover, as defined in [7], two e-mails are determined as

near-duplicate if more than 182 bits of their 32-byte (i.e.,

256 bits) codes have the same value. It that as the size of

spam database is large, the 32-byte code is not discriminative

to clearly distinguish each e-mail, and thus hams are easily

mismatched with known spams. As for MultiDigest,

although the authors claim in [24] that using multiple digests

to represent each e-mail can be more robust against increased

obfuscation effort by spammers, the FP rate of MultiDigest

is even worse than that of Digest as the size of spam

database is large. This is owing to the reason that

MultiDigest separates each e-mail into a set of short strings.

As long as one digest in the huge spam database is similar to

one of digests in the testing e-mail, this e-mail will be

classified as a spam. In [7] and [24], there are only 2,500

spams and 2,500 hams in the data set, which might not

suffice to reflect the real situation. In addition, the effective-

ness of Digest and MultiDigest has not been validated by

real e-mail streams. On the other hand, the effectiveness

of Density has been evaluated in [30] with 10 million spams

in the database. One problem of Density is that a huge

number of known spams are required to make the proposed

cache mechanism of Density work well. However, in our

experi- ments, even though we do not consider the cache

mechan- ism of Density and all reported spams are used for

near- duplicate spam detection, the effectiveness of Density

on more recent e-mail streams cannot be validated. Moreover,

several parameters should be given for Density and be

adjusted according to different environments. Since the

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 5, July - 2012

ISSN: 2278-0181

10www.ijert.org

authors in [30] do not provide the parameter tuning method,

in this experiment, we follow the same setting as in [30] and

obtain the results .Note that various tricks targeting at

nullifying the approaches of hash-based text representation

have been increasingly employed recently. Besides, most

spams in our data set are in Chinese, which is a

nonalphabetic language. However, Digest and Multi Digest

generate hash values with trigrams of substrings.

VI. CONCLUSION
In the field of collaborative spam filtering by near-duplicate

detection, a superior e-mail abstraction scheme is required to

more certainly catch the evolving nature of spams. Com-

pared to the existing methods in prior research, in this paper,

we explore a more sophisticated and robust e-mail abstrac-

tion scheme, which considers e-mail layout structure to

represent e-mails. The specific procedure SAG is proposed to

generate the e-mail abstraction using HTML content in e-

mail, and this newly-devised abstraction can more

effectively capture the near-duplicate phenomenon of

spams. Moreover, a complete spam detection system Cosdes

has been designed to efficiently process the near-duplicate

matching and to progressively update the known spam

database. Consequently, the most up-to-date information can

be invariably kept to block subsequent near-duplicate spams.

In the experimental results, we show that Cosdes

significantly outperforms competitive approaches, which

indicates the feasibility of Cosdes in real-world applications.

VII.REFERENCES

1. Anti-Spam (CEAS), 2007.

2. A.C. Cosoi, "A False Positive Safe Neural Network;

The Followers of the Anatrim Waves," Proc. MIT

Spam Conf., 2008.

3. E. Damiani, S.D.C. di Vimercati, S. Paraboschi, and

P. Samarati, "P2P-Based Collaborative Spam

Detection and Filtering," Proc. Fourth IEEE Int'l

Conf. Peer-to-Peer Computing, pp. 176-183, 2004.

4. T.R. Lynam and G.V. Cormack, "On-Line Spam

Filter Fusion," Proc. 29th Ann. Int'l ACM SIGIR Conf.

Research and Development in Information Retrieval

(SIGIR), pp. 123-130, 2006.

5. K.M. Schneider, "Brightmail URL Filtering," Proc.

MIT Spam Conf., 2004.

6. Z. Wang, W. Josephson, Q. Lv, and K.L.M.

Charikar, "Filtering

Image Spam with Near-Duplicate Detection," Proc.

Fourth Conf. Email and Anti-Spam (CEAS), 2007.

AUTHOR-1 BIOGRAPHI

SIVANNARAYANA NERELLA, M.Tech (IT),

Final year student,

NALANDA INSTITUTE OF ENGINEERING AND

TECHNOLOGY(NIET),SATTENAPALLI(M.D.),

GUNTUR(D.T.),

AUTHOR-2 BIOGRAPHI

K.RAJANI DEVI Assoc. Professor,

H.O.D., Department of IT, N.I.E.T.

Sattenapalli (M), Guntur (Dist.), A.P.

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 5, July - 2012

ISSN: 2278-0181

11www.ijert.org

