A Fixed Point Theorem on Semi-Metric Space using Occasionally Weakly Compatible Mappings

B. Vijayabasker Reddy
Department of Mathematics, Sreenidhi Institute of Science and Technology,Ghatkesar, Hyderabad, India-501 301

V. Srinivas
Department of Mathematics,University college of Science,Saifabad,Osmania UniversityHyderabad, India.

Abstract

The aim of this paper is to prove common fixed point theorem for four self mappings in semi -metric space using the concept of occasionally weakly compatible. This theorem generalizes the result of Bijendra Singh and M.S Chauhan[1].

Keywords- Semi- metric space ,coincidence point, weakly compatible, occasionally weakly compatible, Fixedpoint.

I. INTRODUCTION

The concept of semi-metric space is introduced by Menger, which is a generalization of metric space.Cicchese introduced the notion of a contractive mappings in semimetric space and proved the fixed point theorem.In 2006 Jungck and Rhoades introduced the concept of Occasionally weakly compatible mappings which generalizes weakly compatible mappings.

II PRELIMINARIES

Definition 1: (X, d) is said to be Semi- metric space if and only if it satisfies the following conditions:
$M_{1}: d(x, y)=0$ if and only of $x=y$.
$\mathrm{M}_{2}: \mathrm{d}(\mathrm{x}, \mathrm{y})=\mathrm{d}(\mathrm{y}, \mathrm{x})$ if and only if $\mathrm{x}=\mathrm{y}$
for any $\mathrm{x}, \mathrm{y} \in \mathrm{X}$.
Definition 2 : Let A and B be two self mappings of a semi metric space (X, d) then A and B are said to be weakly compatible mappings if they commute at their coincidence points.

Definition 3 : Let A and B be two self maps of a semi metric space (X, d) then A and B are said to be occasionally weakly compatible mappings if there is a coincidence point $\mathrm{x} \in \mathrm{X}$ of A and B at which A and B are commute.

Remark 1: Weakly compatible mappings are occasionally compatible mappings but converse is not true.

Example 1: Let (X, d) be semi-metric space with $\mathrm{X}=[1 / 2,5] \quad$ and $\quad \mathrm{d}(\mathrm{x} \quad, \mathrm{y})=(\mathrm{x}-\mathrm{y})^{2}$.
Define two self mappings A and B as folws

$$
\begin{aligned}
& \mathrm{A}(\mathrm{x})=\left\{\begin{array}{l}
x^{2} \quad \text { if } \frac{1}{2} \leq x<1 \\
2 x-1 \text { if } x \geq 1
\end{array}\right. \text { and } \\
& B(\mathrm{x})=\left\{\begin{array}{lc}
2 x & \text { if } \frac{1}{2} \leq x<1 \\
x^{2} & \text { if }
\end{array} \quad x \geq 18\right.
\end{aligned}
$$

Clearly, $X=1 / 2$ and $x=1$ are two coincidence points. If $x=1$ then $\mathrm{A}(1)=1=\mathrm{B}(1)$ which gives $\mathrm{AB}(1)=1=\mathrm{BA}(1)$.If $\mathrm{x}=1 / 2$ then $\mathrm{A}(1 / 2)=\mathrm{B}(1 / 2)=1 / 4$ but $\mathrm{AB}(1 / 2) \neq \mathrm{BA}(1 / 2)$. Therefore A and B are occasionally weakly compatible but not weakly compatible

Lemma 1: Let (X ,d) be a semi-metric space, A, B are occasionally weakly compatible mappings of X. If the self mappings A and B on X have a unique point of coincidence $\mathrm{w}=\mathrm{Ax}=\mathrm{Bx}$. Then w is unique common fixed point of A and B.

Proof: Since A and B are occasionally weakly compatible mappings, there exists a point $x \in X$ such that $A x=B x=w$ and $A B x=B A x$.Thus $A A x=A B x=B A x$ Which gives $A x$ is also point of coincidence of A and B. since the point of coincidence $\mathrm{w}=\mathrm{Ax}$ is unique then, $\mathrm{BAx}=\mathrm{AAx}=\mathrm{Ax}$, and $\mathrm{w}=\mathrm{Ax}$ is a common fixed point of A and B.If z is any common fixed point of and A and B then $z=A z=B z=w$ by the uniqueness of the point of coincidence.

III MAIN RESULT

Theorem 1: Let A,B,S,T,P and Q be self maps on a semi metric space (X, d) If
(i) $(\mathrm{AP}, \mathrm{S})$ and $(\mathrm{BQ}, \mathrm{T})$ are occasionally weakly compatible mappings.
(ii)

$$
\begin{array}{r}
{[d(A P x, B Q y)]^{2} \leq k_{1}\left[\begin{array}{l}
d(A P x, S x) d(B Q y, T y)+ \\
d(B Q y, S x) d(A P x, T y)
\end{array}\right]+} \\
k_{2}\left[\begin{array}{l}
d(A P x, S x) d(A P x, T y)+ \\
d(B Q y, T y) d(B Q y, S x)
\end{array}\right]
\end{array}
$$

Where $\mathrm{x}, \mathrm{y} \in \mathrm{X}$ and $\mathrm{k}_{1}+2 \mathrm{k}_{2} \leq 1, \mathrm{k}_{1}, \mathrm{k}_{2} \geq 0$
then $\mathrm{AP}, \mathrm{BQ}, \mathrm{S}$ and T have a Common fixed point. Further if $\mathrm{AP}=\mathrm{PA}, \mathrm{BQ}=\mathrm{QB}$ Then $\mathrm{A}, \mathrm{B}, \mathrm{P}, \mathrm{Q}, \mathrm{S}$ and T have a common fixed point ,

Proof: (AP,S) and (BQ,T) are occasionally weakly compatible, then there exists some $\mathrm{x}, \mathrm{y} \in \mathrm{X}$ such that
$A P x=S x$ and $B Q y=T y$. Using (ii) we claim $A P x=B Q y$.

$$
\begin{aligned}
{[d(A P x, B Q y)]^{2} \leq } & k_{1}\left[\begin{array}{l}
d(A P x, A P x) d(B Q y, B Q y)+ \\
d(B Q y, A P x) d(A P x, B Q y)
\end{array}\right] \\
& +k_{2}\left[\begin{array}{l}
d(A P x, A P x) d(A P x, B Q y)+ \\
d(B Q y, B Q y) d(B Q y, A P x)
\end{array}\right]
\end{aligned}
$$

$[d(A P x, B Q y)]^{2} \leq k_{1}[d(B Q y, A P x) d(A P x, B Q y)]$
$[d(A P x, B Q y)]^{2}\left(1-k_{1}\right) \leq 0$

This is contradiction. So $\mathrm{APx}=\mathrm{BQy}$.
Therefore $A P x=B Q y=S x=T y$.
if there is another point of coincident say,w such that $\mathrm{APz}=\mathrm{Sz}=\mathrm{w}$ then $\mathrm{APz}=\mathrm{Sz}=\mathrm{BQy}=\mathrm{Ty}$. Which gives $\mathrm{APz}=\mathrm{APx}$ implies $\mathrm{z}=\mathrm{x}$.

Hence $w=A P x=S x$ for $w \in X$ is the unique point of coincidence of AP and S.By lemma (1.1) w is a fixed point of AP and S Hence APw=Sw=w.Similarly there exists a common fixed point $u \in X$ such that $u=B Q u=T u$.

Suppose $u \neq w$
Put $\mathrm{x}=\mathrm{w}$ and $\mathrm{y}=\mathrm{u}$ in (ii)

$$
\begin{aligned}
& {[d(w, u)]^{2}=\left[\begin{array}{l}
d(A P w, B Q u)]^{2} \\
\leq
\end{array} k_{1}\left[\begin{array}{l}
d(A P w, S w) d(B Q u, T u)+ \\
d(B Q u, S w) d(A P w, T u)
\end{array}\right]+\right.} \\
& \quad k_{2}\left[\begin{array}{l}
d(A P w, S w) d(A P w, T u)+ \\
d(B Q u, T u) d(B Q u, S w)
\end{array}\right] \\
& {[d(w, u)]^{2} \leq k_{1}[d(u, w) d(w, u)]} \\
& {[d(w, u)]^{2}\left(1-k_{1}\right) \leq 0}
\end{aligned}
$$

This is contradiction. There fore $u=w$.Hence w is unique common fixed point of $\mathrm{AP}, \mathrm{BQ}, \mathrm{S}$ and T .
If $\quad A P=P A \quad$ and
$A w=A(A P w)=A(P a w)=A P(A w)$.

Put $\mathrm{x}=\mathrm{w}$ and $\mathrm{y}=\mathrm{Aw}$ in (ii)

$$
\begin{aligned}
& {[d(A P w, B Q(A w))]^{2}} \\
& \quad \leq k_{1}\left[\begin{array}{l}
d(A P w, S w) d(B Q(A w), T(A w))+ \\
d(B Q(A w), S w) d(A P w, T(A w))
\end{array}\right]+ \\
& k_{2}\left[\begin{array}{l}
d(A P w, S w) d(A P w, T(A w))+ \\
d(B Q(A w), T(A w)) d(B Q(A w), S w)
\end{array}\right]
\end{aligned}
$$

$$
\left[d(w, A w]^{2} \leq k_{1}[d(A w, w) d(w, A w)]\right.
$$

$$
\left[d(w, A w]^{2} \leq k_{1}\left[d(w, A w]^{2}\right.\right.
$$

$$
\left[d(w, A w]^{2}\left(1-k_{1}\right) \leq 0\right.
$$

Which gives $w=A w$

$$
\mathrm{Pw}=\mathrm{A}(\mathrm{Pw})=\mathrm{P}(\mathrm{Aw})=\mathrm{w}
$$

Similarly we have $B w=Q w=w$.
Hence A,B,S,T,P and Q have unique fixed point.
Example 2 :
Let (X, d) be the semi-metric Space with $X=[0,1 / 2]$ and $d=(x-y)^{2}$.
Define Self mappings A, B, T, S, P and Q as
$A(x)=\frac{2 x+1}{4}, B(x)=\frac{4 x+1}{6}, T(x)=\frac{4 x+3}{10}$,
$S(x)=\frac{6 x+1}{8}, P(x)=\frac{2+6 x}{10}$ and $Q(x)=\frac{2 x+3}{8}$.

Also the mappings satisfy all the conditions of theorem 1. Here the common fixed point is $1 / 2$

REFERENCES:

[1] Bijendra Singh and S.Chauhan," On common fixed poins of four mapping"s, Bull.Cal.Math.Soc.,88,301-308,1998
[2] k.jha,M .Imdad and U.rajopadhyaya,"Fixed point theorems for Occasionally Weakly compatible Mappings in semi metric space",Annals of pure and Applied Mathematics Vol 5,No.2,2014.
[3] K.Menger Untersuchungenuberallgemeine,Math Annalen 100,75163, 1928
[4] M. Aamri and D.EI.Moutawakil," Common fixed points under contractive conditions in symmetric Space", Applied Mathematics E-Notes,3156-162, 2003
[5] G.jungck and B.E Rhoades,"Fixed point theorems for occasionally weakly compatible mappings",Fixed Point Theory,7,280-296, 2006.
[6] B.D Pant and S Chauhan,"Common fixed point theorem for occasionally weakly compatible mappings in menger space",Srveys in Maths 1-7, Appl 2001.
[7] W.A.Wilson",OnSemi-metric space",Amer.J.Math,53,361-373,1931.
[8] M.A.A1-Thagafi and Naseer Shahzad,"A note on Occasionally weakly compatible Maps",Int.journal of Math.Analysis,Vol.3, ,no 2,55-58,2009.

