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 Abstract- The aim of this paper is to prove common fixed 

point  theorem  for four self  mappings in semi -metric space  

using the concept  of  occasionally  weakly  compatible. This 

theorem generalizes the result of  Bijendra Singh and M.S 

Chauhan[1]. 
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                     I.        INTRODUCTION 
 The concept of semi-metric space is introduced by 

Menger, which is a generalization of metric space.Cicchese 

introduced the notion of a contractive mappings in semi-

metric space and proved the fixed point theorem.In 2006 

Jungck  and Rhoades introduced the concept of 

Occasionally weakly compatible mappings which  

generalizes weakly compatible mappings. 

                      II     PRELIMINARIES 

Definition 1 : (X ,d)  is said to be Semi- metric space if and 

only if it satisfies the following conditions: 

M1: d(x ,y)=0 if and only of x=y. 

M2:d(x ,y)=d(y ,x)  if and only  if x=y 

           for any x,yX. 

Definition 2 : Let A and B be two self mappings of a semi 

metric space (X, d) then A and B are said to be weakly 

compatible mappings if they commute at their coincidence 

points. 

Definition 3 : Let A and B be two self maps of a semi 

metric space (X ,d) then A and B are said to be 

occasionally weakly compatible mappings if there is a 

coincidence point xX of A and B at which A and B are 

commute. 

Remark 1: Weakly compatible mappings are 

occasionally compatible mappings but converse is not 

true. 

Example 1: Let (X, d) be semi-metric  space  with 

X=[1/2,5] and d(x ,y)=(x-y)
2
. 
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 

2

2

Define two self mappings A and B as follows
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Clearly, X=1/2 and x=1 are two coincidence points. If  x=1 

then A(1)=1=B(1) which gives AB(1)=1=BA(1).If x=1/2 

then  A(1/2)=B(1/2)=1/4 but AB(1/2)BA(1/2).Therefore  

A and B are  occasionally weakly compatible but not 

weakly compatible 

Lemma 1: Let (X  ,d) be a semi-metric space, A,B are 

occasionally weakly compatible mappings of X. If the self 

mappings A and B on X have a unique point of coincidence 

w=Ax=Bx. Then w is unique common fixed point of A and 

B. 

Proof: Since  A and B are occasionally weakly compatible 

mappings, there exists a point xX such that Ax=Bx=w  

and ABx=BAx.Thus AAx=ABx=BAx Which gives Ax is 

also point of coincidence of A and B. since the point of 

coincidence  w=Ax is unique then, BAx=AAx=Ax ,and 

w=Ax  is a common fixed point of A and B.If z is any 

common fixed point of and A and B then z=Az=Bz=w  by 

the uniqueness of the point of coincidence. 
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                            III     MAIN RESULT 

Theorem 1: Let A,B,S,T,P and Q be self maps on a  semi 

metric space (X ,d) If 

(i) (AP,S)  and (BQ,T) are occasionally  weakly compatible 

mappings. 

(ii) 

 
2

1

2

( , ) ( , )
( , )

( , ) ( , )

( , ) ( , )

( , ) ( , )

d APx Sx d BQy Ty
d APx BQy k

d BQy Sx d APx Ty

d APx Sx d APx Ty
k

d BQy Ty d BQy Sx

 
  

 

 
 
 

 

Where x,yX  and  k1+2k21,k1,k20 

then AP,BQ,S and T have a Common fixed point. Further 

if  AP=PA,BQ=QB Then  A,B,P,Q,S and T  have a 

common fixed point , 

Proof: (AP,S) and (BQ,T) are occasionally weakly 

compatible, then there exists some x,yX such that 

APx=Sx and BQy=Ty. Using (ii) we claim APx=BQy. 

 

   
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( , ) (1 ) 0

d APx APx d BQy BQy
d APx BQy k

d BQy APx d APx BQy

d APx APx d APx BQy
k

d BQy BQy d BQy APx

d APx BQy k d BQy APx d APx BQy

d APx BQy k
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  

 

 
  

 
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This is contradiction. So APx=BQy. 

Therefore APx=BQy=Sx=Ty. 

 if there is  another point of coincident  say,w such that 

APz=Sz=w then APz=Sz=BQy=Ty. Which gives 

APz=APx implies z=x. 

Hence w=APx=Sx for wX is the unique point of 

coincidence of AP  and S.By lemma  (1.1) w is a fixed 

point of  AP and S Hence APw=Sw=w.Similarly there 

exists a  common fixed point uX such that u=BQu=Tu. 

Suppose uw 

Put x=w and y=u in (ii) 

   

   
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d w u d APw BQu

d APw Sw d BQu Tu
k

d BQu Sw d APw Tu

d APw Sw d APw Tu
k

d BQu Tu d BQu Sw

d w u k d u w d w u

d w u k


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This is contradiction. There fore  u=w.Hence  w is unique 

common fixed point of  AP,BQ,S and T. 

If AP=PA and  BQ=QB then 

Aw=A(APw)=A(Paw)=AP(Aw). 

Put x=w and y=Aw in (ii) 

 
2

1

2

( , ( ))

( , ) ( ( ), ( ))

( ( ), ) ( , ( ))

( , ) ( , ( ))
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d APw BQ Aw

d APw Sw d BQ Aw T Aw
k

d BQ Aw Sw d APw T Aw

d APw Sw d APw T Aw
k

d BQ Aw T Aw d BQ Aw Sw
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Which gives w Aw





 



   Pw=  A(Pw)=P(Aw)=w. 

Similarly we have Bw=Qw=w. 

Hence A,B,S,T,P and Q have unique fixed point. 

Example 2 :  

   

 
2

Let X,d  be the semi-metric Space with X 0,1/ 2

 and d x y .

Define Self mappings , , , , as 

2 1 4 1 4 3
( ) , ( ) , ( ) ,

4 6 10

6 1 2 6 2 3
( ) , ( ) ( ) .

8 10 8

A B T S P and Q

x x x
A x B x T x

x x x
S x P x and Q x



 

  
  

  
  

. 
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Also the mappings satisfy all the conditions of  theorem 1. 

Here the common fixed point is 1/2 
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