
 A Focus On Testing Issues In A Distributed Database System

 Mungamuru Nirmala Dr. R. Mahammad Shafi
 Research Scholar Professor & Head

 Department of Comp., Sci., & Engineering Department of Master of Computer Applications

 Senate Hall, University of Allahabad, Sree Vidyanikethan Engineering College

 Allahabad, U.P, INDIA. Tirupati, Chittoor (Dist), A.P, INDIA

Abstract

Our previous research paper about Testing based

software development in association with Extreme

Programming (XP) led us to a conclusion that XP

supports many good engineering practices but there is

still place for refinements. A Distributed Database

(DDB) is formed by a collection of multiple databases

logically inter-related in a computer network. Any

testing process, when used in DDB correlates a series

of stages for the construction of a DDB project from the

scratch and is employed in homogeneous systems. A

sincere attempt is made in this paper to uncover the

difficulties that often challenge the programmers in

building DDB systems. Those difficulties are identified

as openness, concurrency, scalability, fault tolerance,

latency, global clock, security, and heterogeneity. In

this paper, each issue is presented and is accompanied

by the solutions.

Keywords: Distributed Database System, Openness,

Latency, Global clock, Security, Heterogeneity.

1. Introduction

A distributed system is a collection of

independent computers that are used jointly to perform

a single task or to provide a single service. A

Distributed Database Management System (DDBMS) is

used as a system that enables the management of the

individual database management system (DBMS). It

distributes the data through a transparent way to the

user. Figure-1 shows a common example of a DDB [7].

The simplest and most well known example of a

distributed system is the collection of Web servers or

more precisely, servers implementing the HTTP

protocol—that jointly provide the distributed database

of hypertext and multimedia documents commonly

known as the World-Wide Web.

 Fig-1: A Distributed Database on a
 Geographic dispersed Network

The transparences provided by a DDBMS can

be understood as the high level semantic separation of

the details inherent to the physical implementation of a

DDB. The focus is to provide data independency in a

distributed environment. This way, the user sees only

one logically integrated image of the DDB as if it was

not distributed. Figure-2 shows the logical view of the

DDB that a user has, which was presented in figure-1.

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 8, October - 2012
ISSN: 2278-0181

1www.ijert.org

IJ
E
R
T

Sender

Receiver

 Fig-2: Logical view of a Distributed
 Database System

2. Openness

Openness is not only one of the important

attributes that distinguishes DDB systems from other

systems, but also the main objective that most

developers would like to achieve. It is important to note

that DDB systems tend to be extended and improved all

the time. This can become a problem if the original

system is not designed for this purpose and new

components do not integrate with the existing

components.

For example, when a new component is

implemented, the system either fails to function or has

to be reconstructed entirely to merge with the new

component. Emmerich proposed that this problem is

caused because of the differences in data representation

of interface types on different processors [2]. To

overcome this problem, Tanenbaum and Steen says that

standard rules which describe the syntax and semantics

of the services provided through interfaces have to be

published [5]. These standard rules are formalized in an

IDL, which includes the details of a particular function,

that is, the syntax of services, and the features which

these services provide, in other words, the semantics of

interfaces. The aim of having detailed interfaces of

components is to make sure that new components

follow the standard rules of the original system [5].

Openness also includes the flexibility of a

system. DDB system should be flexible enough to be

extended in a straight forward manner. In addition, its

architecture should also be capable of accommodating

additional features easily as well as removing the

redundant features. Standard and well-defined

interfaces are essential in order to attain the flexibility.

3. Latency

In DDB systems, the time that takes to set up

the communication is known as latency [3]. Apart from

latency delay, there is transmission delay which is

calculated by the length of the message and the data

transfer rate, which is the time it takes to transfer the

data of the message. In short, message transmission

time is the total of latency delay and the transmission

delay. Figure-3 shows the delay in sending a message.

Fig-3: Message Transmission Time

The following are the various issues related to

latency.

1. Latency indicates the physical limitations of

communication between sender and the receiver.

They can be propagation delay, insufficient

bandwidth, network timeout, machine crashed, or

connection refused.

2. Taylor, Redmiles, and Hoek point out that latency

introduces uncertainty since the system fails to

update the change to the clients [6].

The issue is identified when latency becomes

high; this means a request has to wait for a long time

before being executed. DDB system developers wish to

minimize latency. According to Taylor et al. this can be

achieved by using asynchronous notifications of

resource changes and routing directly to relevant

agencies [6].

4. Global Clock

Unlike centralized database systems which

have a central server to control the system time, DDB

systems do not have a global time. In a DDB system,

although clocks are synchronized, each individual clock

does not have the exact time because of being run at

different rate. This may cause some difficulties in the

context of process cooperation. For example, a request

Transmission
Delay

Latency

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 8, October - 2012
ISSN: 2278-0181

2www.ijert.org

IJ
E
R
T

that is sent after another request may be assigned an

earlier time may lead to an incorrect and undesirable

effect.

The time in DDB systems is only known

within a given precision and a clock may be

synchronized with a more trusted clock but it is

impossible to run an absolute value for clocks due to

transmission and execution [1]. This difficulty is

addressed by using the Universal Time Coordinated

(UTC) servers or the Internet Network Time Protocol

(NTP). According to the NTP’s documentation, NTP is

a fault tolerant protocol which uses the UTC that allows

the developers to synchronize computer clocks to

national standard time via internet. NTP automatically

selects the best of several available time sources to

synchronize.

5. Security

Like any other systems, DDB systems require

high level of security in order to prevent the occurrence

of numerous threats [4]. The security threats that can

affect the system can be categorized into four types as

listed in the table-1.

Table-1: Security Threats

As can be seen from these threats, security

plays an important role in building and maintaining

DDB systems. Tanenbaum and Steen identified that

security in DDB system can be divided in two main

parts viz., the secure communication channel and the

authenticated access [5]. These are achieved by a

number of security methods such as encryption,

authentication, authorization, and auditing.

1. Firstly, encryption is the most common method that

is used in computing security. Data is encrypted and

is not easily understood by unauthorized users.

2. Secondly, authentication is a method to verify the

identity of a user. Normally, each user is assigned by

a username or a password, or both. There are also

other ways to identify a user. Only an authenticated

user is able to access the system.

3. Thirdly, authorization ensures that an authenticated

user can only perform certain tasks depending on

the permission that is given to a particular user. For

example, an administrator of a forum can delete a

post, but not a standard member. Finally, the

auditing method is used to map out the tasks that

each user performs while using the system. This

information is stored in audit logs which can help

to identify intruders.

6. Heterogeneity

When a distributed service is designed for one

type of computer and one type of network, its

portability is restricted to that computer and network.

This becomes one of the major difficulties and

eliminates the efficient and effective utilization of

resources (Turnbull, 1987). Thus, maintaining

heterogeneity in DDB systems is necessary.

However, each computer in the network may

have different memory sizes, network protocols, and

I/O bandwidth. These are categorized into three main

areas viz., computer hardware heterogeneity, network

heterogeneity, and software heterogeneity as depicted

in Table-2.

Table-2: Heterogeneity in DDB System

Interception

Threat appears when a service or

data is accessed by an

unauthorized party.

Interruption

Threat relates to a service or data

that is made unavailable and

inaccessible to other parties.

Modification

Threat pops up when an attempt

is made to illegally modify the

data so that it appears to be

different from the original data.

Fabrication

Includes generating additional

data or activity that would

normally not exist.

Hardware

Heterogeneity

Nesterenko and Jin (2002)

described the hardware

heterogeneity as the difference in

computer architectures of the

components in DDB system such

as instruction sets and data

representations.

Network

Heterogeneity

Network heterogeneity is the

diversity of transmission media,

signaling, protocols, and network

interfaces.

Software

Heterogeneity

Software heterogeneity relates to

the difference in operating

systems and application

programs. These factors affect the

DDB systems in terms of

scalability, resource sharing, and

openness. Nevertheless, support

for heterogeneity remains a

mostly unsolved problem

(Nesterenko & Jin, 2002).

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 8, October - 2012
ISSN: 2278-0181

3www.ijert.org

IJ
E
R
T

7. Conclusion

A distributed system is a collection of

independent computers that appear to its users as a

single coherent system. For establishing any testing

process with a DDB, it is necessary to concentrate on

Openness, Latency, Global Clock, Security and

Heterogeneity of a Distributed Database.

Openness deals with improvement and

extensions of a DDB system over time. Latency deals

with latency delay and transmission delay which is

calculated by the length of the message and the data

transfer rate to transfer the data of the message. DDB

systems require a high level of security in order to

prevent a number of threats like interception,

interruption, modification and fabrication. The

Heterogeneity of a DDB system focus on probability of

using a DDB system varies with different network

protocols, memory sizes and bandwidths.

References:

[1]. Burback, R. L. R. (1998). No Global Clock.

[2]. Emmerich, W. (1997). Distributed System Principles.

UK: University College London.

[3]. Hillston. J. (2002). Distributed Systems UK: The

University of Edinburgh.

[4]. Pfleeger. S. (1997). Software Engineering: Theory and

Practice. America: Prentice Hall.

[5]. Tanenbaum, A. S., & Steen, M. V. (2002). Distributed

Systems – Principles and Paradigms. America: Prentice-

Hall.

[6]. Taylor, R. N., Redmiles, D. F., & Hoek, A. V. D. (2006).

Decentralized Architectures

[7]. R. Mahammad Shafi, Dr. B. Kavitha (2011) – A

Framework for Designing and Testing a Distributed

Database System, Proceedings of International

Conference on Advances in Mathematical and

Computational Methods.

[8]. G. Couloris, J. Dollimore, and T. Kinberg, Distributed

Systems – Concepts and Design, 4th Edition, Addison-

Wesley, Pearson Education, UK, 2001

[9]. Jim Waldo, Geoff Wyant, Ann Wollrath, and Sam

Kendall, A note on distributed computing. Technical

Report SMLI TR-94-29, Sun Microsystems

Laboratories, Inc., 1994.

AUTHOR PROFILE

Dr. R. Mahammad Shafi received the

Doctoral Degree in Computer Science and

Engineering from University of

Allahabad, Allahabad in 2010. Master’s

Degree in Computer Applications from

University of Madras, Chennai in 1998

and M.Tech Degree in Software

Engineering from Vinayaka Mission Research

Foundation, Deemed University, Salem in the year

2005. Currently he is working as a Professor and Head,

Department of MCA, Sree Vidyanikethan Engineering

College, A. Rangampet, Near Tirupati, A.P., India. His

areas of research interest include Software Engineering,

Software Testing Methodologies and Distributed

Databases.

Mrs. Nirmala Mungamuru received

her M.Tech- Information Technology in

2004. Currently she is working as a

Lecturer, Department of Computer

Science, Eritrea Institute of Technology,

Asmara, Eritrea, North East Africa. She

has blended her wide experience of 13 years in teaching

and research in the field of Computer Science and

Information Technology. Her areas of research interest

include Distributed Databases, Software Engineering

and Software Testing Methodologies. She is a member

of IAENG, CSI, IETE, ISTE and many journal

membership bodies.

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 8, October - 2012
ISSN: 2278-0181

4www.ijert.org

IJ
E
R
T

