
A Framework for Dual Protocol Adaptive Video

Streaming using Cloud

Chandrashekhara KT
Assistant Professor; BMSIT, ISE

Bangalore, India

Prashanth P Bharadwaj
Student; BMSIT, ISE

Bangalore, India

Srivatsa M Hegde
Student; BMSIT, ISE

Bangalore, India

Abstract—Mobile video viewing has been increasing day by

day and is becoming very popular. However due to the lack of

proper technology in this area of mobile video streaming, the

user experiences frequent buffering and interruptions during

playback. This paper proposes a scheme to overcome these

problems using a video streaming framework that supports

streaming using both HTTP and RTSP protocols and leveraging

cloud computing simultaneously. This dual video delivery

method enables our framework to support a wide variety of

devices on the client side and heterogeneous hardware on the

sever side as well. Further the framework provides adaptivity to

the video to make the best use of the bandwidth. This is especially

significant in case of a mobile link.

Keywords—video streaming; HTTP; RTSP; adaptive video

streaming; cloud

I. INTRODUCTION

With each passing day, the number of people using their
mobile device to view videos has been constantly increasing.
Nowadays everyone uses videos as a means of communicating
topics of interest. With this increase in mobile video viewing,
the wireless mobile link capacity is unable to support the
increasing number of users. This causes unsatisfied video
viewing experience with a lot of buffering and interruptions.
Such an experience, especially when it comes to video viewing
is extremely frustrating and entirely defeats the concept of
mobile video viewing.

 The main concept involved in ensuring an interruption free
video viewing experience to the mobile user is adaptivity of the
video stream. The video stream should be capable of adapting
to the changing network conditions and adjust itself in such a
way that the video is delivered to the user without any sort of
buffering or interruption. Adaptivity can again be of two types:
1. On the server side 2. On the client side.

 There have been many techniques proposed for adaptivity,
both on the server side as well as the client side. However mere
incorporation of adaptivity into a streaming service solves only
a small part of the mobile video delivery problem. This is due
to the fact that the scenario being considered involves a mobile
device and particularly a fluctuating mobile link. Mobile links
can never be expected to assure a particular value of bandwidth
as the link capacity constantly keeps varying due to the
movement of the mobile device and the user and also due to
various signal related physical phenomenon like multi-path
propagation which causes destructive interference and thus

reduces the signal strength and the bandwidth if the mobile link
subsequently.

 Hence, we propose a streaming framework optimized for
the mobile device model, which specifically takes note of the
fact that mobile links tend to have extremely varying
bandwidth and combines this approach with adaptivity to
provide the best possible video viewing experience to mobile
users. We make use of the HTTP and RTSP protocols to
provide dual protocol video streaming to enable the support of
a wide variety of mobile devices taking into account their
processing powers and battery withstanding capabilities. The
dual protocol approach enables this, also keeping complexity to
a minimum in the process. The framework has also been
developed keeping in mind it‟s extensibility to include new
features, if any required in the near future. Also the framework
is able to interact with third party software such as Wowza and
Abobe Flash Streaming Server with minimal programming
effort.

 We have designed the HTTP part of the framework to use
Apple‟s HLS (HTTP Live Streaming) and the RTSP part of the
framework to use Adobe‟s RTMP streaming. Hence, in the
process we have not bounded the framework to any one
particular technology nor have we tied the framework to any
propriety technologies as both the technologies employed have
open source implementations. Also as part of the future work
we have successfully implemented and tested the extension of
our framework to incorporate live video streaming from one
mobile device to another.

 Another major component of the framework involves the
use of cloud computing as the advantages of cloud computing
are well known

[2]
. To elucidate a few may involve the

discussion of topics like scalability, elasticity and a pay as you
go model. Hence cloud computing has been leveraged to
support a large number of mobile devices and offer immense
scalability to the framework. The framework has been tested
with Amazon Elastic Cloud Compute service.

 The rest of the paper is organized as follows. We introduce
related work in section II, section III covers the dual protocol
video streaming framework, section IV elucidates the extension
of the framework that has been implemented and lastly section
V talks about the performance analysis and conclusion along
with the scope for future enhancement.

1854

Vol. 3 Issue 5, May - 2014

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS051719

International Journal of Engineering Research & Technology (IJERT)

II. RELATED WORK

A. Adaptive Bitrate Streaming

Adaptive Bitrate Streaming abbreviated as ABR is an
emerging area of research in the field of video streaming.
Adaptive video streaming, as the name indicates refers to the
streaming of video in a manner in which the video „adjusts‟
itself to the varying bandwidth conditions. By „adjusting‟ we
mean that the video stream is reduced in size to accommodate
to the bandwidth of the link at that particular instant. The
reduction in size may be performed by reducing the quality of
the stream, reducing the frame rate of the stream etc. In
essence, we attempt to reduce the bit rate of the video stream in
adaptive streaming.

Many technologies have been developed that implement
adaptive video streaming with varying degrees

[1],[3]-[5]
. Some of

the noteworthy researches carried out in this area include
Microsoft‟s Smooth Streaming requiring their Silverlight
plugin, Apple‟s HTTP Live Streaming, Adobe‟s RTMP flash
streaming, Quavlive Smooth Streaming et al. Each one of these
technologies has its own advantages and disadvantages, also
requiring different hardware in case of each technology. There
are also open source implementations that have been developed
for some of the above mentioned technologies. The Apple HLS
and Adobe RTMP streaming are discussed in separate sections
given below.

The video formats that are primarily used for adaptive
video streaming include H.264 AVC, H.264 SVC, FLV etc.
H.264 AVC and H.264 SVC have also been discussed
separately further. In most cases these formats are converted
into raw formats of RGB and YUV for the purpose of applying
adaptivity. Also adaptive streaming also requires additional
processing power and storage space also on the server side.
Hence it is important to strike a balance between the need of
resources and the obtained advantage of the technology as over
consumption of resources in case of any technology
irrespective of how advantageous it may be will be null and
void without any significant use.

Adaptation can take place at two places: 1. On the client
side 2. On the server side. Client side adaptation techniques
basically work by monitoring the client side bandwidth and
then sending a request to the streaming server to stream the
most appropriate video that has a bit rate that matches the client
side bandwidth. Server side adaptation techniques basically
work by selecting a particular video to stream, splitting the
video into a number of sub streams of different quality and
then streaming the most appropriate sub stream that matches
the client bandwidth. Both the method have its own share of
good and bad and hence it requires great prudence to select the
most appropriate method depending on the application and
scenario where it has to be applied.

Client side adaptation is usually coupled with reduced
complexity on the server side thus allowing us to use even
commodity hardware to stream videos. However it comes with
the catch that the device to which the video is streamed should
have a high processing capability and hence expects a certain
degree of work to be performed by the mobile device also.
Although this is not much of an issue with smartphones and
current generation of mobile devices, yet there is the problem
of battery drain to be considered.

Server side adaptation solves the problem of high

processing power expectation from the mobile devices but it

has the disadvantage of limited scalability. This is due to the

 fact that as the number of mobile users streaming form the

server increase, the processing required for ensuring adaptive

streaming also increases and this may overburden the server

leading to freeze of server, suspending of the operations and

hence interruptions in the video streaming service. Although

this problem can be solved by upgrading server hardware, this

approach is not economically viable. Hence server side

adaptation should also be implemented after careful

consideration and with a future vision in perspective.

B. Apple HTTP Live Streaming

 HTTP Live Streaming can be abbreviated as HLS. It

is a technology developed by Apple Inc in an attempt to solve

the buffering problem in streaming video to mobile devices.

HLS works by creating multiple streaming files of the video to

be streamed with different bitrates and quality. Also the entire

video is segmented into a number of small chunks, typically of

ten second duration. In the beginning, a stream of a particular

moderate quality is streamed to the mobile device. The client

then uses its own heuristics to calculate the bandwidth on its

side and requests the appropriate stream fir that bandwidth for

the next time interval. Each stream has a manifest file in

.m3u8 format which indicates the bit rate of the stream and the

maximum and minimum bandwidth which can be used to

comfortably accommodate the stream. Once the client has

determined the available bandwidth on its side, it parses the

.m3u8 file and determines the most appropriate video stream

and requests the streaming server for it. In this way adaptation

of the video takes place in HLS streaming. Hence, the video

that needs to be played always has a URL pointing to the

.m3u8 manifest file for that particular video. The biggest

advantage of HLS streaming is that it allows the use of an

ordinary HTTP server to serve the streaming video without the

need of special media servers which have the problem of not

being able to stream through firewalls.

C. Adobe RTMP Streaming

RTMP stands for Real Time Messaging Protocol. It is a

propriety protocol developed by Adobe in order to support live

streaming using the flash video format. It is based on the Real

Time Streaming Protocol (RTSP). As in case of RTSP, RTMP

requires a dedicated media server to deliver the streaming

video to the clients. Adobe uses the Adobe Flash Media Server

on the server side to deliver RTMP streamed video. The URL

for streaming the video contains the RTMP protocol specifier

in the beginning. H.264 videos can also be streamed using the

RTMP protocol along with flash videos. RTMP supports

adaptive bit rate streaming by taking a video, decoding it into

raw format, splitting the raw video into a number of sub

streams with one base sub stream and the rest enhancement

layer sub streams, and selecting the appropriate number of

enhancement layer subs streams to be sent along with the base

stream, according to the bandwidth of the link. After the total

number of sub streams have been selected, the sub streams are

1855

Vol. 3 Issue 5, May - 2014

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS051719

International Journal of Engineering Research & Technology (IJERT)

again encoded and the resulting video stream is sent via NAL

(Network Abstraction Layer) Packets, using an RSTP server.

The client can make use of a suitable video player that

supports RTMP streaming to play the videos.

D. H.264 Advanced Video Coding

The H.264 Advanced Video Coding (AVC) is a video

compression standard, also known as H.264/MPEG-4 Part 10.

It is the most popular video compression standard used today

for the recording, compression and distributing of video

content. It was developed by the ITU-T Video Coding Experts

Group (VCEG) together with the ISO/IEC JTC1 Moving

Picture Experts Group (MPEG). It is a block-oriented motion-

compensation-based video compression standard. This

standard is used to encode the video for Blu-Ray discs. H.264

is a lossy compression technique, however the compression

algorithms are extremely efficient and hence the loss becomes

imperceptible. The standard also mentions a number of

profiles, which is the different ways of encoding the video and

in different resolutions and qualities.

E. H.264 Scalable Video Coding

The H.264 Scalable Video Coding (SVC) is an extension of

the H.264 AVC standard, the Annex G extension of it. SVC

was developed to standardize a video stream that contains a

number of bit streams. The sub stream can represent a lower

spatial resolution (smaller screen), lower temporal resolution

(lower frame rate), or lower quality video stream. H.264 AVC

was developed jointly by ITU-T and ISO/IEC JTC 1. Unlike

the H.264 AVC which supports only a single video stream,

SVC can support multiple bit streams and hence it can be used

for adaptive bit rate streaming. Among the bit streams, one

particular stream becomes the base quality stream, a certain

minimum quality and the rest of the bit streams are additional

qualities which may be added to the base stream to further

enhance the quality, provided the bandwidth capacity allows

for it.

III. DUAL PROTOCOL VIDEO STREAMING

FRAMEWORK

We have programmed the framework in Java. Any object

oriented language of choice can be used for programming the

same. A brief description of the different modules

implemented in the framework is given below:

A. Basic HTTP Server

This module performs the functions that a server is

expected to do. When a client requests for a service (here a

request for a video to be played that is specified by the URL)

the server has to handle this request. Hence this Basic HTTP

Server module has request handlers that can be specified by

the programmers depending on the request type and the

context in which the server is being used. It also includes

functions to start, stop and run the server.

B. RTSP Server

The function of the RTSP server is similar to the HTTP

server. This module implements a minimal RTSP server that

handles all the video requests and uses the RTMP protocol for

streaming. Hence these two modules are core to the supporting

of the dual protocols for video streaming. Similar to the HTTP

server module, this module also has the start, stop and run

functions.

C. MP4 Config

This module helps in getting the SPS (Sequence Parameter

Set) and PPS (Picture Parameter Set) parameters from the

video to be played. The two entities in the H.264 bit stream:

the Sequence Parameter Set (SPS) and the Picture Parameter

Set (PPS). Both entities contain information that a H.264

decoder needs to decode the video data, for example the

resolution and frame rate of the video. The H.264 bit stream

contains a sequence of Network Abstraction Layer (NAL)

units. The SPS and PPS are both types of NAL units. The SPS

NAL unit contains parameters that apply to a series of

consecutive coded video pictures, referred to as a “coded

video sequence” in the H.264 standard. The PPS NAL unit

contains parameters that apply to the decoding of one or more

individual pictures inside a coded video sequence.

D. MP4 Parser

As the name suggests this module parses the contents of an

MP4 file. The MP4 file has a tree structure where each node

has a name and a size. It also has functions to find SPS and

PPS parameters that are them sent to MP4Config. It also has

the stsdBox which contains video compression related

information regarding the decoding format used. Also it

contains multiple tracks for each media type it contains.

E. H.264 Stream

This module is essentially related to the video streaming

portion. The H.264 is a standard for video encoding and

decoding and provides compression at a better quality than

previous technologies. The H.264 Stream is derived from

Video Stream module which in turn is derived from Media

Stream module. Its function is to start stop or prepare the

stream of data (video) that is being transmitted to client. But

before transmission encoding or decoding has to be done

which is done by the H.264 packetizer

F. AAC Stream

This is the audio version of H.264 Stream, in the sense it

helps in streaming audio supporting compression and

decompression by calling the AAC ADTS Packetizer module.

AAC Stream essentially has functions that help to start, stop

and prepare the stream (audio) before transmission.

G. Session

This module is used to create a session between the client

and the server, before streaming starts between them. Stream

1856

Vol. 3 Issue 5, May - 2014

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS051719

International Journal of Engineering Research & Technology (IJERT)

is referred to as track here. Two types of tracks namely audio

and video are to be accommodated. A session essentially is a

socket creation to which the client attaches himself and

requests for service. The server on the other hand carries on

with the job of listening on the port, checking

 periodically if any client is requesting service and if yes it

services the client.

H. H.264 Packetizer

Here the packetization of stream data is done. data in the

form of NAL units are received from the H264Stream and

these are then packetized into units which have data not more

than 1400 bytes. Sometimes the NAL units could be larger

than expected, in such cases it is split into appropriate number

of units and sent.

I. AAC ADTS Packetizer

This is the packetization module in case of audio. The

principles remain the same as far as packetizing audio and

video are concerned. The change however is seen in the packet

size which is 100 bytes. Again any packet that is larger than

average size is split into appropriate sized packets.

Hence the above mentioned modules form the proposed

framework and based on the above elucidation of each of the

modules it is easy to see how the framework can be employed

to stream videos. The main advantage of the proposed

framework is the fact that, it can be used to support a wide

variety of devices and is not restricted to devices

manufactured by a particular set of manufacturers. This is due

to the fact that it support two protocols for video streaming

and hence can cover a whole gamut of devices. The flow of

control among the modules is shown in Fig 1.

Fig 1. Flow of control between modules

On the server side too, the framework can provide much

needed flexibility as a normal HTTP server can be used to

store and serve the videos which is economically very

beneficial and also helps in tackling security issues such as the

streaming of videos through firewalls. Also the framework can

be used with a dedicated media server which may be required

in certain situations where the number of users using the

streaming service is large and hence to ensure the supporting

of a large number of users a normal HTTP server would prove

to be inefficient. The overall architecture of the framework is

shown in Fig 2. Fig 3 gives the sequence diagram of a user

interacting with the video streaming framework to play a

video.

IV. EXTENSION OF FRAMEWORK

 As part of extending the framework to support useful
functionality, we have successfully implemented live streaming
from a mobile device to the cloud and this stream is made
accessible to any device capable of playing RTMP videos. This
extension takes the stream from the camera of the mobile
device and stores the video on the cloud. Then application of
adaptivity to it takes place in the same manner a VOD (Video
On Demand) video is adapted and streamed. Thus it enables
mobile devices to easily use their camera to perform a live
video broadcast with minimal resources needed.

 The programming for the prototype was done using the
Adobe Creative Cloud Flash SDK. The mobile device platform
that was targeted was Android due to the huge majority of its
number of users. The usage of the extension is as follows.
Firstly the mobile device user installs the application (as an apk
file) onto his mobile device. Since the Adobe Creative Cloud
Flash SDK was used to build the application, it is necessary to
install Adobe AIR (Adobe Integrated Runtime) in order to use
the application. After the following steps, the user opens the
application.

 The user interface of the application is such that a text box
is provided for the user to enter the URL of the cloud server to
which he wishes to store the video. After connecting to the
server, the user then specifies a name he wishes to give to that
particular stream and then starts recording from his devices‟
camera by pressing the record button. This stream can be
accessed from any supporting device with suitable software by
specifying the URL of the cloud server followed by the name
of the stream.

 Hence, this prototype was mainly developed to test the ease
with which the framework could be extended to support
additional functionality and we have implemented the above
functionality with minimum programming effort and at the
same time maintaining the clean and simple slate keeping in
mind which the framework was designed. Thus, the framework
has a great scope for further extension and enhancement and
can be considered as a playground for researchers and
engineers alike. Also this prototype demonstrates the
innumerable number of ways in which the framework can
leverage cloud computing and make its best use to improve all
types of video streaming, be it live or on demand.

1857

Vol. 3 Issue 5, May - 2014

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS051719

International Journal of Engineering Research & Technology (IJERT)

Fig 2. Architecture of the dual protocol video streaming framework

Fig 3. Sequence diagram of a user interacting with the framework

1858

Vol. 3 Issue 5, May - 2014

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS051719

International Journal of Engineering Research & Technology (IJERT)

V. PERFORMANCE ANALYSIS AND CONCLUSION

As part of assessing the performance of the prototype, we

tested the framework using Amazon EC2 cloud service

(Elastic Cloud Compute) and used the framework to stream

videos on all types of mobile devices supporting video

playback. We used videos ranging from Standard Definition

(SD) to High Definition (HD) for streaming. Practical tests

showed that using 3G network, all the videos played on the

mobile device smoothly, without interruptions and buffering,

both using HLS streaming as well as RTMP streaming. Hence

the performance was definitely improved compared to normal

streaming which clearly buffers when streaming HD videos.

As part of future improvement in areas related to the

framework it was determined that the seek performance when

it comes to the videos is poor and has some latency. Also the

framework can be furthered to support streaming of content

using 2G networks. Also the framework can be made more

compatible with a wide range of cloud service providers.

Researchers can also explore the various possibilities in which

the framework can be extended to include more useful

functionality.

REFERENCES

[1] Xiafoei Wang, Min Chen, Ted Taekyoung Kwon, Laurence T Yang and

Victor C M Leung, “AMES-Cloud: A Framework of Adaptive Mobile
Video Streaming and Efficient Social Video Sharing in Clouds,IEEE
Transactions On Multimedia, Vol. 15, No. 4, June 2013.

[2] Mahadev Satyanarayanan, Bahl, P, Caceres R and Davies N., “The
Case for VM-Based Cloudlets in Mobile Computing,” Pervasive
Computing, IEEE , Volume:8 , Issue: 4, Oct-Dec 2009.

[3] Weiwen Zhang , Nanyang Technol, Yonggang Wen , Zhenzhong Chen
and Khisti, A., “QoE-Driven Cache Management for HTTP Adaptive
Bit Rate Streaming Over Wireless Networks,” in Multimedia, IEEE
Transactions, Volume:15 , Issue: 6, Oct 2013.

[4] Gopalakrishnan, V, Jana, R., Seungjoon Lee , Misra V, Ramakrishnan
K.K. and Rubenstein D, “Joint-Family: Enabling adaptive bitrate
streaming in peer-to-peer video-on-demand,” IEEE Transactions, Oct
2013.

[5] Xiaoling Qiu, Davis, Haiping Liu , Deshi Li , Song Zhang , Ghosal, D
and Mukherjee B., “Optimizing HTTP-based Adaptive Video Streaming
for wireless access networks,” IEEE 2010 Conference, 26-28 Ict 2013.

1859

Vol. 3 Issue 5, May - 2014

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS051719

International Journal of Engineering Research & Technology (IJERT)

