
A Genetic Algorithm for Resource Provisioning of

Virtual Service Based on Homogeneous Shared

Hosting Platforms

Pham Nguyen Minh Nhut
1
 ,

1
 Department of E-commerce,

Vietnam Korea Friendship Information Technology

College,

Danang, Vietnam.

Le Van Son
2

2
 Departement of Information,

Danang University of Education,

Danang University,

Danang, Vietnam.

Abstract- Optimal resource provisioning for virtual

services in the Cloud computing is one of the most concerns

nowadays. Multi-dimensional resource provisioning on a

homogeneous shared hosting platform for virtual services is

known as a NP-hard problem. Therefore, it is necessary to

apply the metaheuristic algorithms for estimating the

outcome of the problem. In this paper, we have effectively

applied a genetic algorithm to solve the problem. We defined

a fitness function with the goal of minimizing the number of

physical machines, and compared our algorithm to standard

algorithms of vector packing problem via emulation-based

program in various scenarios. The experimental results show

that: In the cases of large number of services, execution times

of GA are shorter than the execution times of standard

algorithms of vector packing problem.

Keywords- Resource provisioning; Cloud computing;

Genetic Algorithm (GA); Vector Packing; Virtual machine.

I. INTRODUCTION

Virtual technology allows partitioning the resource of

Y (Y 1) physical machines into S (S 1) virtual

machines to execute the applications on demands. A

system which consists of multiple physical machines with

the same configuration connecting together for sharing

resources is called a homogeneous shared hosting platform

[3, 7, 9]. One of the challenges of this system facing is to

minimize resources of the platform for virtual services

while still ensuring the quality of service (QoS).

Resource management for shared hosting platforms has

been investigated in many other studies [3, 4, 7, 9]. In

particular, Urgaonkar et al. [3] propose a profiling

technique for statistic of resource usage and minimum

resource needs. Aron [4] and Casanova et al. [7]

formulate the resource provisioning problem as a

constrained optimization problem in which machines are

considered as a monolithic resource. Stillwell et al. [9]

further consider resource provisioning in a multi-

dimention resource, however they focus only on efficiency

of resource provisioning. They formulate the problem of

resource allocation as a mixed integer linear program

(MILP), where the objective is to maximize performance

and fairness through a metric known as “minimum yield”.

In this paper, we consider many aspects of resources

and apply a linear objective function to minimize the

number of physical machines. The resource provisioning

problem is generally considered in both cases: static and

dynamic, but we focus on solving the the problem for only

static case (i.e., fixed resource needs). Moreover, the

resource provisioning is known as a NP-hard problem,

therefore this paper employs metaheuristic algorithms to

solve it [2,8]. The key contributions of the paper are as

follows:

1) Modeling a resource provisioning as a linear

programming problem and computing the complexity of

the problem.

2) Solving the propblem by applying GA and defining

the fitness function in order to minimize the number of

physical machines.

3) Evaluating and comparing experimental results with

other results obtained by applying standard algorithms of

vector packing problem [5, 6].

 The rest of the paper is organized as follows: Section

II presents a mathematical model of the problem as a

linear programming problem and establishs the complexity

of the problem. Section III solves the problem by applying

the standard algorithms of vector packing problem. Our

solution presents in Section IV by employing GA. Section

V follows by experimental results and comparisons in

various scenarios. Finally, Section VI concludes the paper

and opens some future work.

II. RESOURCE PROVISIONING FOR VIRTUAL

SERVICES

A. Resource and resource needs

Let’s consider a homogeneous shared hosting platform

in which a cluster of servers having the same configuration

and being interconnected by a high-speed network devices

is deployed for sharing resource to virtual services [nên

tách thành 2 câu]. Each service [in the platform] operates

as a virtual machine and the system ensures that service

requests are dispatched to appropriate servers.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

IJ
E
R
T

IJ
E
R
T

www.ijert.orgIJERTV3IS120384

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 3 Issue 12, December-2014

644

 When users request virtual clusters (VC), the system

responds by sets of virtual machine (VM). These VM

instances run on physical machines (PMs) under the

control of a hypersivor [1] and consume resources at

different portions. The hypersivor can enforce specific

resource consumption portions for different VMs running

on the physical machine. A Resource Provider (RP) is

responsible for making decisions whether to reject or

admit a request, and allocates resource to each VM

instance. Our goal is to design GA algorithm operated as a

part of the RA to determine the minimum number of PMs

based on resouce needs for virtual services.

To supply resource needs for virtual services, each PM

provides several resources, i.e., CPU, RAM space, I/O

bandwidth, disk space. In fact, each virtual sevice has two

kinds of resource need: rigid and fluid [9]. A rigid need

represents a specific fraction of required resource. The

service cannot benefit from a larger fraction and cannot

operate with a smaller fraction than a rigid need. A fluid

need specifies the maximum fraction of a resource that the

service could use if alone on the server. The service cannot

benefit from a larger fraction, but can operate with a

smaller fraction than a fluid need if the cost is reduced.

The ratio between the allocated resource and the fluid

resource need is known as the yield of the fluid resource

need, and we call their value simply the service yield.

Within a service, the utilizations of all resources

corresponding to fluid needs are linearly correlated [9].

Therefore, the service yield of each service is able to

present by a value between 0 and 1. In particular, if the

service yield is 0, the service will not be allocated any

resource (due to the procedure of resource allocation). If

the service yield is equal to 1, the service will be allocated

resource as requied. However, it should be considered the

lower bound on the yield of a service, which determines by

QoS requirement(s). This constraint is defined by a

service's fluid need multiplied by the service's QoS

requirement(s), which is so-called a constrained fluid need.

It is assumed that rigid resource needs are completely

independent from fluid resource needs.

B. Objective and constraints

Assume that each service is represented by a single

VM instance which has a fixed resource (static case).

Multi-dimention resource provisioning problem (MRSP) is

formulated as follows:

Let Si be services, i = 1, 2, …, n; Si > 0; Yj be physical

machines having the same configuration, j = 1, 2, …, m;

Yj > 0. Each physical machine provides Dk types of

resources, k = 1,…, d. For each service i, rik denotes its

resource need for resource type k, its value is between 0

and 1. We define a binary variable xij that is equal to 1 if

service i runs on PM j and 0 otherwise. We use ik is a

binary value that is equal 1 if rik is a rigid need, and 0 if rik

is a fluid need; ij is the yield of service i on a physical

machines j; yi is the number of PMs which is used for

providing resource to service i. The resource provisioning

problem represented by a linear programming problem

with constraints and objective functions is as follows:

)1(,,},1,0{ jiQx ijij

)2(,1 ix
j

ij

)3(,, jixy ijj

)4(,,1))1((jkxr ijik
i

ikikij

and, object function is)5(min j
jy

Constraint (1) defines the domain of the variables.

Constraint (2) determines the state at which there exists a

service i running on a physical machine j or not. Constraint

(3) specifies the state at which a physical machine j is

being used or not. Constraint (4) represents the state at

which the fraction of total resource needs for service i is

always less than or equal to the total resource of the

physical machine j. The Eq. (4) implies that if resource

need rik is fluid, then ik = 0 and the fraction of resource Dk

used on the physical machine j is ij rik. If resource need

rik is rigid, then ik = 1 and the fraction of resource Dk used

on the physical machine j is rik.

Finally, constraint (5) is the objective function which

denotes the number of physical machines used for

providing resources to the virtual service. The objective is

to minimize yj.

 C. Computational Complexity

 To determine the computational complexity of MRSP

problem, let’s consider MRSP-Dec, the decision problem

associated with MRSP can be stated as: Is it possible to

assign Si services, each of which has a resource needs rik

to Yj physical machine?

Theorem 1. The decision problem MRSP-Dec is NP-C.

Proof.

 (i) It can be clearly seen that the problem MRSP-Dec

is NP. Because the solution, if it exists, can be verified in

polynomial time.

 (ii) Consider the vector packing problem presented in

[5, 6] as NP-C: Given a set A consisting of elements of the

d-dimensional vector represented by a d-tuple: d

),...,,(21

i

d

ii aaa and set B consisting of elements of the d-

dimensional vector represented by d-tuple: (1,1, ..., 1), put

the elements of the set A into the set B such that

dja
Bi

i

j ,...,1,1
.

A MRSP problem is reduced to vector packing

problem as follows: Let the number of physical machine

be B (i.e., Y=B), the service be A (i.e., S=A), the number

of resource types be j (i.e., k=j) and the resource need of

service i of the resource k be
i

ja (i.e., rik=
i

ja). For each

service i, set ik = 0 (i.e., the fluid need is considered only,

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

IJ
E
R
T

IJ
E
R
T

www.ijert.orgIJERTV3IS120384

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 3 Issue 12, December-2014

645

for the rigid need, the proof will be similar). Clearly, the

vector packing problem provides a solution to the MRSP-

Dec problem. In contrast, a solution of the MRSP -Dec

problem will provide a solution to the vector packing

problem. From (i) and (ii), Theorem 1 has been proofed.

As proofed above, this problem is a combinatorial

optimization problem which is known as NP-hard. To

solve this kind of problem, several solutions have been

proposed such as: The heuristic approaches applied for

finding the best solution; The local searching employed to

look for a local optimal solution; The approximation

approaches by applying metahueristic algorithms. The next

section presents the standard heuristic algorithms of the

vector packing problem and a genetic algorithm for

solving this problem.

III. SOLUTIONS BASED ON STANDARD

ALGORITHMS OF VECTOR PACKING PROBLEM

 The basic idea of the algorithms of vector packing

problem applied to solve MRSP is that putting Dk-

dimension Si vectors into YJ (in this case the Si is virtual

service, YJ is the number of physical machines and Dk is

the types of resource). In this paper, we consider the

standard algorithms: First Fit, Best Fit proposed in [5].

Before putting elements of Si into Yj, elements Si are sorted

in a descending order based on the following criterias:

 Lexicographical: Given k 1, k
 = { (S1,S2,…,Sk),

i, 0 Si 1} and a, b k
. a b iff a = b or the

first nonzero component of b-a is positive

 Maximum Component: Given k 1, k
 = {

(S1,S2,…,Sk), i, 0 Si 1} and a, b k
. a b

iff the maximum component in b is not less than

the maximum component of a.

 Maximum Sum: Given k 1, k
 = { (S1,S2,…,Sk),

i, 0 Si 1} and a, b k
. a b iff the sum of

components of b is not less than the sum of

components of a.

 Based on standard algorithms of vector packing

problem, we construct algorithms to solve MRSP problem

as follows:

 Algorithm 1

 Input: A set of services Si (each service has resource

need rik corresponding to the type of needs ik) and the

set of physical machines Yj corresponding service yield ij.

 Output: A set of minimum physical machines yj

(respectively, xij = 1).

 The steps of the algorithm:

 Step 1: Based on the resource need rik, building

Dk-dimensional vector Si with rik elements.

 Step 2: Apply Criteria 1 to sort elements of vector

Si in a descending order.

 Step 3: Apply the First Fit, Best Fit algorithms to

place the elements of the vector Si into the

physical machine Yj, such that:

 jkxr ijik
i

ikikij ,,1))1((

 Step 4: If the resource needs have not completed

then go to step 3.

 Step 5: If the resource needs have been completed

then the output is a set of physical machines Yj

(this is the outcome of the objective function of

the MRSP problem).

 The combinatorial algorithms constructed from greedy

algorithms, i.e., First Fit, Best Fit based on the 3 Criteria,

therefore we have 6 algorithms including: BestFitDesSum,

BestFitDesMax, BestFitDesLex, FirstFitDesSum,

FirstFitDesMax và FirstFitDesLex. If Dk is considered as a

constant, those algorithms have the computational

complexity of O(S.logY+S.Y).

IV. SOLUTION BASED ON GENETIC ALGORITHM

A. Introduction to GA

GA [2, 8, 10, 11] is based on the law of biological

evolution of life populations. Individuals pass a process of

development and reproduction to the creation of new

individual for the next generation. In the process of

evolution, bad individuals (based on a given criteria, so-

called fitness) are eliminated. In contrast, qualified

individuals are retained. Some concepts related to genetic

algorithm are as follows:

 Individual representation: It is the representation of

individuals so that each individual is a solution of

the current problem.

 Fitness evaluation: It is the evaluation of the

adaptability of each individual for a problem. The

evaluation is based on the fitness function.

 Crossover operation: It is the process of creating

new individual based on current individual (called

father-mother individual). Two child individual are

generated by swapping from the father-mother

individual genes.

 Mutation: It is a process of creating new individual

from a given individual by changing some of its

genes.

 Selection and Replacement: It is the process of

selecting individuals from the current populations

to create the next generation. In this process, if the

individual has a greater than or equal criteria

adaptation, this individual will be retained.

Adaptability of individuals in a population is more

complete more.

 Terminate condition: A genetic algorithm is the

random process, the algorithm can not be sure to

stop after finite steps. Therefore, we typically have

to define the terminate conditions for the algorithm.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

IJ
E
R
T

IJ
E
R
T

www.ijert.orgIJERTV3IS120384

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 3 Issue 12, December-2014

646

B. GA for resource provisioning

As previously discussed, a genetic algorithm allows us

to optimize the NP-hard problems in certain time. This

section focuses on GA applied for solving the resource

provisioning problem for the virtual service as described in

Section II.

 Individual representation: Each individual is

represented by a one-dimensional integer array Si

with length of n (Si: virtual service; i = 1, ..., n), in

which the i-th element equal to j if service Si is

allocated to the physical machine Yj(Yj: physical

machine; j = 1, ..., m).

 Initial population generation: Generate P (P is a

designed parameter) initial random individuals. An

initial chromosome is obtained by randomly

assigning a service Si to a physical machine Yj.

 Fitness function: Let Fk(Yj) be the total percentage

of resource need Dk of the service Si that a physical

machine Yj requires to supply for service Si:

)6())1(()(

K

Yi

ijikikikijjk

j

xrYF

 where K (K> 1) is a exponental constant which expresses

concentration on the physical machines compared to the

less-filled physical machines. The larger the K is, the

quicker the algorithm converges. a few well-filled

physical machines are preferred to a collection about

equally filled physical machines. But, leading to

premature convergence ability of the algorithm.

Experimetally, the optimal value of K is 2, i.e., K = 2.

Therefore, the fitness function of the GA for the whole

resource need Dk is identified as

)7()(
1

1 1

d

k

m

j

jkVSMSA YF
m

f

 where m is the number of utilised physical

machines.

 Crossover Operation: We use a one-point crossover

operator by which two parent chromosomes are

fragmented into two segments. Then two new

chromosomes are generated by concatenating of

chromosome segments fragmented from their

parents. Crossover process is applied for all

possible pairs of individuals with the probability of

pc (pc is the designed parameter).

 Mutation Operation: The mutation operation

randomly swaps between two services of two

different physical machines. Mutation process is

applied for every individual with the probability of

pm (pm is a design parameter).

 Selection of individuals for the next generation:

This is a selection P individuals for the next

generation. A newly generated chromosome (after

the processes of initial, mutation, and crossover)

may not be ineligible, so-called ineligible

chromosome. But, They are still in use for new

population in the proposed algorithm. After

generating an ineligible chromosome, a greedy

algorithm is applied to make it becoming an

eligible chromosome. This algorithm goes through

the physical machines in an arbitrary order, for any

overloaded physical machines, the algoritm

attempts to move services to others which have

fewer loaded services. This approach has been

practically evaluated, by which it helps to reduce

the diversity of the chromosome population, and

trends to an eligible resource provisioning.

 Terminate condition: The algorithm will stop after

G generation (G is a designed parameter) or the

average value of the Fitness function of individuals

reaches an converge to the expected value.

In summary, the genetic algorithm for resource

provisioning consists of the following steps:

Algorithm 2

 Input: A set of services Si (each service has resource

need rik corresponding to the type of needs ik) and the

set of physical machines Yj corresponding service yield ij.

 Output: A set of minimum physical machines yj

(respectively, xij = 1).

 The steps of the algorithm:

1: begin

2: t 0;

3: Initializing the first population P(t);

4: Calculating the fitness function of each chromosome

in

 population P(t);

5: until (the terminate conditions is not satisfied)

6: t t+1;

7: Selection of P(t) based on roulette mechanism

and

 fitness value at P(t-1);

8: One-point crossover operation on P(t) to obtain

Q(t);

9: Mutation operation in the P(t) to obtain R(t);

10: Selection from P(t-1)Q(t)R(t) to obtain P(t);

11: end until;

12: end

C. The computational complexity of the algorithm

The GA algorithm parameters are set before running.

Let n be the number of services, m be the number of

physical machines, and d be the dimensions of resource.

The computational complexity of the algorithm is

identified as

- Generating the first population: P.O (n.m.d).

- Calculating the fitness function: O (n.m.d).

- Crossover operation: P.(P-

1).O(n.m.d)=P
2
.O(n.m.d)

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

IJ
E
R
T

IJ
E
R
T

www.ijert.orgIJERTV3IS120384

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 3 Issue 12, December-2014

647

- Mutation: P.O(n.m.d)

- Selection: O (P.logP)

 Therefore, the computational complexity of the

algorithm is

P.O(n.m.d)+G.(P.(O(n.m.d))+P
2
.(O(n.m.d+P.logP+O(n.m.

d))+P.O(n.m.d)+O(P.logP))=G.P
2
.O(n.m.d).

V. NUMNERICAL RESULTS AND EVALUATIONS

A. Simulation setup

To evaluate the proposed algorithm, a set of

experimental random instances are generated based on [9]

as follows: Given S services and Y physical machines with

D resource dimensions. For each service, the numbers of

rigid need are D/2 and the numbers of fluid need are D/2.

All resource needs are sampled from a normal probability

distribution with mean µ and standard deviation . Each

service has a QoS request with the probability of ρ.

 Assume that the value of the parameters are as follows:

Service yield ij = 0.5, numbers of service S = 32, 64, 128,

256, 512, resource dimensions D = 6 (the numbers of rigid

need = the numbers of fluid need =3), = 0.5, = 0.25,

0.5, 1.0, = 0.25, 0.5, 1.0 and all QoS requirements to be

0.5 (i.e., half of the service’s fluid needs must be met).

Experiments results obtained by using other values of

parameters are similar. This setup corresponds to

1×5×1×1×3×3= 45 scenarios. For each scenario, 100

random samples are generated resulting in a total of 4500

input individual instances used for evaluation.

Two metrics were employed for evaluation:

- The minimum number of physical machines that

corresponding to the 5 values of services S = 32;

64; 128; 256; 512.

- The average execution times of the algorithm in

seconds. The values of the two metrics are

averaged from 900 (i.e., 3 × 3 × 100) experimental

instances. The algorithms were coded in C++

language and ran on an Intel Core Duo 1.86 GHz

and 2 GB RAM.

We set the size of population P = 100, G = 2000

generations, the probability of mutation pm = 0.1, the

probability of crossover pc = 0.25 and constant K = 2.

These parameters are estimated empirically based on

experience.

C. Simulation results and evaluations

The minimum values of the physical machine

(objective function values) and the standard algorithm

execution times of vector packing problem are presented

in Table I and Table II. The results obtained by using the

GA are presented in Table III.

TABLE I. COMPARISON OF MINIMUM PHYSICAL

MACHINES

Algorithms
Number of services

S=32 S=64 S=128 S=256 S=512

FirstFitDesMax 24 47 90 174 344

FirstFitDesLex 24 47 90 174 344

FirstFitDesSum 24 47 90 174 344

BestFitDesMax 24 47 90 174 344

BestFitDesLex 24 47 89 170 324

BestFitDesSum 24 47 90 174 344

TABLE II. COMPARISON OF EXECUTION

TIMES (S)

Algorithms
Number of services

S=32 S=64 S=128 S=256 S=512

FirstFitDesMax 0.00009 0.00107 0.00303 0.01076 0.03193

FirstFitDesLex 0.00010 0.00114 0.00214 0.00827 0.02529

FirstFitDesSum 0.00016 0.00113 0.00268 0.00932 0.02791

BestFitDesMax 0.00121 0.00254 0.00833 0.03741 0.13107

BestFitDesLex 0.00123 0.00232 0.00783 0.03500 0.12253

BestFitDesSum 0.00128 0.00234 0.00800 0.03693 0.13380

TABLE III. EXECUTION TIMES AND MINIMUM

PHYSICAL MACHINES OF GA

Number of

services

S=32 S=64 S=128 S=256 S=512

Execution times

(s)
0.0010 0.00307 0.02076 0.04126 0.08930

Minimum physical

machines 24 47 90 174 344

From results shown in Table III and the results

obtained from 6 standard algorithms of vector packing

problem in Table I and Table II. It is clearly seen that with

the same set of data, the execution time of the GA is

longer than others. However, in the cases of large number

of services (512 services), execution times of GA are

shorter than BestFitDesMax, BestFitDesLex,

BestFitDesSum algorithms. The objective function values

of (number of physical machines) all algorithms are

similar (except for BestFixDesLex algorithm with a better

value). Moreover, the execution times of the GA are short

and therefore it can be applied in practice.

VI. CONCLUSION

The paper has dicussed static resource provisioning

based on a homogeneous shared hosting platform for

virtual services with the optimal constraints and QoS

requirements; each service is considered as a single virtual

machine. On the basis of the optimal problem, we have

proposed a GA to minimize the number of physical

machines. The execution times of the GA are short and

therefore it can be applied in practice. For the future work,

the proposed model will be extended for heterogeneous

platform.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

IJ
E
R
T

IJ
E
R
T

www.ijert.orgIJERTV3IS120384

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 3 Issue 12, December-2014

648

 REFERENCES

[1] L. V. Sơn, P. N. M. Nhut, “Some issuses of providing virtual

machines resources base on infrastructure of cloud computing”,
Journal of Science and Technology, Danang University, 5(11),

(2012), pp. 63-71. (chỉnh lại tất cả Ref. theo định dạng này !!)

[2] T.T.T Hang, L.T. Vinh, H.C. Thanh, N.T. Thuy, “Optimization for
multi-objective scheduling in grid computing system”, Journal of

Computer Science and Cybernetics, Vietnam Academy of Science

and Technology, 25 (1) (2009), pp. 79-87.

[3] B. Urgaonkar, P. Shenoy and T. Roscoe, “Resource Overbooking

and Application Profiling in Shared Hosting Platforms”, SIGOPS
Operating Systems Review, 36(SI), (2002) pp.239-254.

[4] M. Aron, P. Druschel and W. Zwaenepoel, “Cluster Reserves: A

Mechanism for Resource Management in Cluster-based Network
Servers”, In Proceedings of the 2000 ACM Sigmetrics International

Conference on Measurement and Modeling of Computer Systems,

New York, USA, (2000), pp.90-101.

[5] L. T. Kou, G. Markowsky, “Multidimensional Bin Packing

Algorithms”, IBM Journal of Research and Development, 21(5)
(1977) pp.443 - 448.

[6] K. Maruyama, S. K. Chang and D. T. Tang, “A general packing

algorithm for multidimensional resource requirements”,
International Journal of Computer and Information Sciences, 6(2)

(1977) 131-149.

[7] Henri Casanova, David Schanzenbach, Mark Stillwell, Frédéric

Vivien, “Resource provisioning using Virtual Clusters”, Research

Report No 2008-33, October 2008.

[8] Christian Blum, Andrea Roli, Metaheuristics in Combinatorial

Optimization: Overview and Conceptual Comparison, ACM

Computing Surveys, 35(3), (2003), pp. 268-308.

[9] Mark Stillwell, David Schanzenbach, Frédéric Vivien, Henri

Casanova, “Resource provisioning algorithms for virtualized
service hosting platforms”, Journal Parallel Distrib. Comput., 70

(2010) pp.962–974.

[10] Holland J., “Adaptation in natural and artificial systems”,
University of Michigan press, Ann Arbor, MI, MIT press,

Cambridge, MA, (1975,1992).

[11] Melanie Mitchel, “An introduction to genetic algorithms”, MIT

Press Cambridge, MA, USA, 1996.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

IJ
E
R
T

IJ
E
R
T

www.ijert.orgIJERTV3IS120384

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 3 Issue 12, December-2014

649

