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Abstract- Optimal resource provisioning for virtual 

services in the Cloud computing is one of the most concerns 

nowadays. Multi-dimensional resource provisioning on a 

homogeneous shared hosting platform for virtual services is 

known as a NP-hard problem. Therefore, it is necessary to 

apply the metaheuristic algorithms for estimating the 

outcome of the problem. In this paper, we have effectively 

applied a genetic algorithm to solve the problem. We defined 

a fitness function with the goal of minimizing the number of 

physical machines, and compared our algorithm to standard 

algorithms of vector packing problem via emulation-based 

program in various scenarios.  The experimental results show 

that: In the cases of large number of services, execution times 

of GA are shorter than the execution times of standard 

algorithms of vector packing problem. 

 

Keywords- Resource provisioning; Cloud computing; 

Genetic Algorithm (GA); Vector Packing; Virtual machine. 

I.  INTRODUCTION 

 

Virtual technology allows partitioning the resource of 

Y (Y  1) physical machines into S (S  1) virtual 

machines to execute the applications on demands. A 

system which consists of multiple physical machines with 

the same configuration connecting together for sharing 

resources is called a homogeneous shared hosting platform 

[3, 7, 9]. One of the challenges of this system facing is to 

minimize resources of the platform for virtual services 

while still ensuring the quality of service (QoS). 

Resource management for shared hosting platforms has 

been investigated in many other studies [3, 4, 7, 9].  In 

particular, Urgaonkar et al. [3] propose a profiling 

technique for statistic of resource usage and minimum 

resource needs. Aron [4] and Casanova  et al. [7] 

formulate the resource provisioning problem as a 

constrained optimization problem in which machines are 

considered as a monolithic resource. Stillwell et al. [9] 

further consider  resource provisioning in a multi-

dimention resource, however they focus only on efficiency 

of resource provisioning. They formulate the problem of 

resource allocation as a mixed integer linear program 

(MILP), where the objective is to maximize performance 

and fairness through a metric known as “minimum yield”. 

In this paper, we consider many aspects of resources 

and apply a linear objective function to minimize the 

number of physical machines. The resource provisioning 

problem is generally considered in both cases: static and 

dynamic, but we focus on solving the the problem for only 

static case (i.e., fixed resource needs). Moreover, the 

resource provisioning is known as a NP-hard problem, 

therefore this paper employs metaheuristic algorithms to 

solve it [2,8]. The key contributions of the paper are as 

follows: 

1) Modeling a resource provisioning as a linear 

programming problem and computing the complexity of 

the problem. 

2) Solving the propblem by applying GA and defining 

the fitness function in order to minimize the number of 

physical machines. 

3) Evaluating and comparing experimental results with 

other results obtained by applying standard algorithms of 

vector packing problem [5, 6]. 

 The rest of the paper is organized as follows: Section 

II presents a mathematical model of the problem as a 

linear programming problem and establishs the complexity 

of the problem. Section III solves the problem by applying 

the standard algorithms of vector packing problem. Our 

solution presents in Section IV by employing GA.  Section 

V follows by experimental results and comparisons in 

various scenarios. Finally, Section VI concludes the paper 

and opens some future work. 

II. RESOURCE PROVISIONING FOR VIRTUAL 

SERVICES 

 

A. Resource and resource needs 

Let’s consider a homogeneous shared hosting platform 

in which a cluster of servers having the same configuration 

and being interconnected by a high-speed network devices 

is deployed for sharing resource to virtual services [nên 

tách thành 2 câu]. Each service [in the platform] operates 

as a virtual machine and the system ensures that service 

requests are dispatched to appropriate servers. 
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 When users request virtual clusters (VC), the system 

responds by sets of virtual machine (VM). These VM 

instances run on physical machines (PMs) under the 

control of a hypersivor [1] and consume resources at 

different portions. The hypersivor can enforce specific 

resource consumption portions for different VMs running 

on the physical machine. A Resource Provider (RP) is 

responsible for making decisions whether to reject or 

admit a request, and allocates resource to each VM 

instance. Our goal is to design GA algorithm operated as a 

part of the RA to determine the minimum number of  PMs 

based on resouce needs for virtual services. 

To supply resource needs for virtual services, each PM 

provides several resources, i.e., CPU, RAM space, I/O 

bandwidth, disk space. In fact, each virtual sevice has two 

kinds of resource need: rigid and fluid [9]. A rigid need 

represents a specific fraction of required resource. The 

service cannot benefit from a larger fraction  and cannot 

operate with a smaller fraction than a rigid need. A fluid 

need specifies the maximum fraction of a resource that the 

service could use if alone on the server. The service cannot 

benefit from a larger fraction, but can operate with a 

smaller fraction than a fluid need if the cost is reduced. 

The ratio between the allocated resource and the fluid 

resource need is known as the yield of the fluid resource 

need,  and we call their value simply the service yield. 

Within a service, the utilizations of all resources 

corresponding to fluid needs are linearly correlated [9]. 

Therefore, the service yield of each service is able to 

present by a value between 0 and 1. In particular, if the 

service yield is 0, the service will not be allocated any 

resource (due to the procedure of resource allocation). If 

the service yield is equal to 1, the service will be allocated 

resource as requied. However, it should be considered the 

lower bound on the yield of a service, which determines by 

QoS requirement(s). This constraint is defined by a 

service's fluid need multiplied by the service's QoS 

requirement(s), which is so-called a constrained fluid need. 

It is assumed that rigid resource needs are completely 

independent from fluid resource needs. 

B. Objective and constraints 

Assume that each service is represented by a single 

VM instance which has a fixed resource (static case). 

Multi-dimention resource provisioning problem (MRSP) is 

formulated as follows: 

Let Si be services, i = 1, 2, …, n; Si > 0; Yj be physical 

machines having the same configuration, j = 1, 2, …, m;         

Yj > 0. Each physical machine provides Dk types of 

resources,  k = 1,…, d. For each service i, rik denotes its 

resource need for resource type k, its value is between 0 

and 1. We define a binary variable xij that is equal to 1 if 

service i runs on PM j and 0 otherwise. We use ik is a 

binary value that is equal  1 if rik is a rigid need, and 0 if rik 

is a fluid need; ij is the yield of service i on a physical 

machines j; yi is the number of PMs which is used for 

providing resource to service i. The resource provisioning 

problem represented by a linear programming problem 

with constraints and objective functions is as follows: 

                )1(,,},1,0{ jiQx ijij    

                )2(,1 ix
j

ij   

                    )3(,, jixy ijj   

)4(,,1))1(( jkxr ijik
i

ikikij    

and, object function is          )5(min  j
jy  

Constraint (1) defines the domain of the variables. 

Constraint (2) determines the state at which there exists a 

service i running on a physical machine j or not. Constraint 

(3) specifies the state at which a physical machine j is 

being used or not. Constraint (4) represents the state at 

which the fraction of total resource needs for service i is 

always less than or equal to the total resource of the 

physical machine j. The Eq. (4) implies that if resource 

need rik is fluid, then ik = 0 and the fraction of resource Dk 

used on the physical machine j is ij  rik. If resource need 

rik is rigid, then ik = 1 and the fraction of resource Dk used 

on the physical machine j is rik.  

Finally, constraint (5) is the objective function which 

denotes the number of physical machines used for 

providing resources to the virtual service. The objective is 

to minimize yj. 

 C. Computational Complexity 

      To determine the computational complexity of MRSP 

problem, let’s consider MRSP-Dec, the decision problem 

associated with MRSP can be stated as: Is it possible to 

assign Si services, each of which has a resource needs rik 

to Yj physical machine?  

Theorem 1. The decision problem MRSP-Dec is NP-C. 

Proof. 

 (i) It can be clearly seen that the problem MRSP-Dec 

is NP. Because the solution, if it exists, can be verified in 

polynomial time. 

       (ii) Consider the vector packing problem presented in 

[5, 6] as NP-C: Given a set A consisting of elements of the 

d-dimensional vector represented by a d-tuple:  d 

),...,,( 21

i

d

ii aaa and set B consisting of elements of the d-

dimensional vector represented by d-tuple: (1,1, ..., 1), put 

the elements of the set A into the set B such that 

dja
Bi

i

j ,...,1,1 
. 

A MRSP problem is reduced to vector packing 

problem as follows: Let the number of physical machine 

be B (i.e., Y=B), the service be A (i.e., S=A), the number 

of resource types be j (i.e., k=j) and the resource need of 

service i of the resource k be 
i

ja  (i.e., rik=
i

ja ). For each 

service i, set ik = 0 (i.e., the fluid need is considered only, 
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for the rigid need, the proof will be similar). Clearly, the 

vector packing problem provides a solution to the MRSP-

Dec problem. In contrast, a solution of the MRSP -Dec 

problem will provide a solution to the vector packing 

problem. From (i) and (ii), Theorem 1 has been proofed. 

As proofed above, this problem is a combinatorial 

optimization problem which is known as NP-hard. To 

solve this kind of problem, several solutions have been 

proposed such as: The heuristic approaches applied for 

finding the best solution; The local searching employed to 

look for a local optimal solution; The approximation 

approaches by applying metahueristic algorithms. The next 

section presents the standard heuristic algorithms of the 

vector packing problem and a genetic algorithm for 

solving this problem. 

III. SOLUTIONS BASED ON STANDARD 

ALGORITHMS  OF VECTOR PACKING PROBLEM 

     The basic idea of the algorithms of vector packing 

problem applied to solve MRSP is that putting Dk-

dimension Si vectors into YJ (in this case the Si is virtual 

service, YJ is the number of physical machines and Dk is 

the types of resource). In this paper, we consider the 

standard algorithms: First Fit, Best Fit proposed in [5]. 

Before putting elements of Si into Yj, elements Si are sorted 

in a descending order based on the following criterias: 

 Lexicographical: Given  k  1, k
 = { (S1,S2,…,Sk), 

i, 0  Si  1} and a, b  k
. a  b iff a = b or the 

first nonzero component of b-a is positive 

 Maximum Component: Given  k  1, k
 = { 

(S1,S2,…,Sk), i, 0  Si  1} and a, b  k
. a  b 

iff the maximum component in b is not less than 

the maximum component of a. 

  Maximum Sum: Given  k  1, k
 = { (S1,S2,…,Sk), 

i, 0  Si  1} and a, b  k
. a  b iff the sum of 

components of b is not less than the sum of 

components of a. 

       Based on standard algorithms of vector packing 

problem, we construct algorithms to solve MRSP problem 

as follows: 

       Algorithm 1 

       Input: A set of services Si (each service has resource 

need rik corresponding to the type of needs  ik) and the 

set of physical machines Yj corresponding service yield ij. 

       Output: A set of minimum physical machines yj 

(respectively, xij = 1). 

       The steps of the algorithm: 

 Step 1: Based on the resource need rik, building 

Dk-dimensional vector Si with rik elements. 

 Step 2: Apply Criteria 1 to sort elements of vector 

Si in a descending order. 

 Step 3: Apply the First Fit, Best Fit algorithms to 

place the elements of the vector Si into the 

physical machine Yj, such that: 

             jkxr ijik
i

ikikij ,,1))1((    

 

 Step 4: If the resource needs have not completed 

then go to step 3. 

 Step 5: If the resource needs have been completed 

then the output is a set of physical machines Yj 

(this is the outcome of the objective function of 

the MRSP problem). 

       The combinatorial algorithms constructed from greedy 

algorithms, i.e., First Fit, Best Fit based on the 3 Criteria, 

therefore we have 6 algorithms including: BestFitDesSum, 

BestFitDesMax, BestFitDesLex, FirstFitDesSum, 

FirstFitDesMax và FirstFitDesLex. If Dk is considered as a 

constant, those algorithms have the computational 

complexity of O(S.logY+S.Y). 

IV. SOLUTION BASED ON GENETIC ALGORITHM 

A. Introduction to GA 

GA [2, 8, 10, 11] is based on the law of biological 

evolution of life populations. Individuals pass a process of 

development and reproduction to the creation of new 

individual for the next generation. In the process of 

evolution, bad individuals (based on a given criteria, so-

called fitness) are eliminated. In contrast, qualified 

individuals are retained. Some concepts related to genetic 

algorithm are as follows: 

 Individual representation: It is the representation of 

individuals so that each individual is a solution of 

the current problem. 

 Fitness evaluation: It is the evaluation of the 

adaptability of each individual for a problem. The 

evaluation is based on the fitness function. 

 Crossover operation: It is the process of creating 

new individual based on current individual (called 

father-mother individual). Two child individual are 

generated by swapping from the father-mother 

individual genes. 

 Mutation: It is a process of creating new individual 

from a given individual by changing some of its 

genes. 

 Selection and Replacement: It is the process of 

selecting individuals from the current populations 

to create the next generation. In this process, if the 

individual has a greater than or equal criteria 

adaptation, this individual will be retained. 

Adaptability of individuals in a population is more 

complete more. 

 Terminate condition: A genetic algorithm is the 

random process, the algorithm can not be sure to 

stop after finite steps. Therefore, we typically have 

to define the terminate conditions for the algorithm. 
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B. GA for resource provisioning 

As previously discussed, a genetic algorithm allows us 

to optimize the NP-hard problems in certain time. This 

section focuses on GA applied for solving the resource 

provisioning problem for the virtual service as described in 

Section II. 

 Individual representation: Each individual is 

represented by a one-dimensional integer array Si 

with length of n (Si: virtual service; i = 1, ..., n), in 

which the i-th element equal to j if service Si is 

allocated to the physical machine Yj(Yj: physical 

machine; j = 1, ..., m). 

 Initial population generation: Generate P (P is a 

designed parameter) initial random individuals. An 

initial chromosome is obtained by randomly 

assigning a service Si to a physical machine Yj. 

 Fitness function: Let Fk(Yj) be the total percentage 

of resource need Dk of the service Si that a physical 

machine Yj requires to supply for service Si: 

)6())1(()(

K

Yi

ijikikikijjk

j

xrYF













 



  

 where K (K> 1) is a exponental constant which expresses 

concentration on the physical machines compared to the 

less-filled physical machines. The larger the K is, the 

quicker the algorithm converges. a few well-filled  

physical machines are preferred to a collection about 

equally filled physical machines. But, leading to 

premature convergence ability of the algorithm. 

Experimetally, the optimal value of K is 2, i.e., K = 2. 

Therefore, the fitness function of the GA for the whole 

resource need Dk is identified as 

               )7()(
1

1 1

 
 
















d

k

m

j

jkVSMSA YF
m

f  

 where m is the number of utilised physical 

machines.                                             

 Crossover Operation: We use a one-point crossover 

operator by which two parent chromosomes are 

fragmented into two segments. Then two new 

chromosomes are generated by concatenating of 

chromosome segments fragmented from their 

parents. Crossover process is applied for all 

possible pairs of individuals with the probability of 

pc (pc is the designed parameter). 

 Mutation Operation: The mutation operation 

randomly swaps between two services of two 

different physical machines. Mutation process is 

applied for every individual with the probability of 

pm (pm is a design parameter). 

 Selection of individuals for the next generation: 

This is a selection P individuals for the next 

generation. A newly generated chromosome (after 

the processes of initial, mutation, and crossover) 

may not be ineligible, so-called ineligible 

chromosome. But, They are still in use for new 

population in the proposed algorithm. After 

generating an ineligible chromosome, a greedy 

algorithm is applied to make it becoming an 

eligible chromosome. This algorithm goes through 

the physical machines in an arbitrary order, for any 

overloaded physical machines, the algoritm 

attempts to move services to others which have 

fewer loaded services. This approach has been 

practically evaluated, by which it helps to reduce 

the diversity of the chromosome population, and 

trends to an eligible resource provisioning. 

 Terminate condition: The algorithm will stop after 

G generation (G is a designed parameter) or the 

average value of the Fitness function of individuals 

reaches an converge to the expected value. 

In summary, the genetic algorithm for resource 

provisioning consists of the following steps: 

Algorithm 2 

       Input: A set of services Si (each service has resource 

need rik corresponding to the type of needs  ik) and the 

set of physical machines Yj corresponding service yield ij. 

       Output: A set of minimum physical machines yj 

(respectively, xij = 1). 

       The steps of the algorithm: 

1:   begin 

2:      t  0; 

3:      Initializing the first population P(t); 

4:      Calculating the fitness function of each chromosome 

in 

          population P(t); 

5:     until (the terminate conditions is not satisfied)  

6:          t  t+1; 

7:          Selection of P(t) based on roulette mechanism  

and   

             fitness value at P(t-1); 

8:          One-point crossover operation on P(t) to obtain 

Q(t); 

9:          Mutation operation in the P(t) to obtain R(t); 

10:        Selection from P(t-1)Q(t)R(t) to obtain P(t); 

11:     end until; 

12:  end 

 

C. The computational complexity of the algorithm 

The GA algorithm parameters are set before running. 

Let n be the number of services, m be the number of 

physical machines, and d be the dimensions of resource. 

The computational complexity of the algorithm is 

identified as 

-     Generating the first population: P.O (n.m.d). 

-     Calculating the fitness function: O (n.m.d). 

-     Crossover operation: P.(P-

1).O(n.m.d)=P
2
.O(n.m.d) 
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-     Mutation: P.O(n.m.d) 

-     Selection: O (P.logP)  

     Therefore, the computational complexity of the 

algorithm is 

P.O(n.m.d)+G.(P.(O(n.m.d))+P
2
.(O(n.m.d+P.logP+O(n.m.

d))+P.O(n.m.d)+O(P.logP))=G.P
2
.O(n.m.d). 

V. NUMNERICAL RESULTS AND EVALUATIONS 

A. Simulation setup 

To evaluate the proposed algorithm, a set of 

experimental random instances are generated based on [9] 

as follows: Given S services and Y physical machines with 

D resource dimensions. For each service, the numbers of 

rigid need are D/2 and the numbers of fluid need are D/2. 

All resource needs are sampled from a normal probability 

distribution with mean µ and standard deviation . Each 

service has a QoS request with the probability of ρ. 

     Assume that the value of the parameters are as follows: 

Service yield ij = 0.5, numbers of service S = 32, 64, 128, 

256, 512, resource dimensions D = 6 (the numbers of rigid 

need = the numbers of fluid need =3),  = 0.5,  = 0.25, 

0.5, 1.0,  = 0.25, 0.5, 1.0 and all QoS requirements to be 

0.5 (i.e., half of the service’s fluid needs must be met). 

Experiments results obtained by using other values of 

parameters are similar. This setup corresponds to 

1×5×1×1×3×3= 45 scenarios. For each scenario, 100 

random samples are generated resulting in a total of 4500 

input individual instances used for evaluation. 

Two metrics were employed for evaluation:  

- The minimum number of physical machines that 

corresponding to the 5 values of services S = 32; 

64; 128; 256; 512.  

- The average execution times of the algorithm in 

seconds. The values of the two metrics are 

averaged from 900 (i.e., 3 × 3 × 100) experimental 

instances. The algorithms were coded in C++ 

language and ran on an Intel Core Duo 1.86 GHz 

and 2 GB RAM. 

We set the size of population P = 100, G = 2000 

generations, the probability of mutation pm = 0.1, the 

probability of crossover pc = 0.25 and constant K = 2. 

These parameters are estimated empirically based on 

experience.  

C. Simulation results and evaluations 

The minimum values of the physical machine 

(objective function values) and the standard algorithm 

execution times of vector packing problem are presented 

in Table I and Table II. The results obtained by using the 

GA are presented in Table III. 

 

 

 

 

 

TABLE I.  COMPARISON OF MINIMUM PHYSICAL 

MACHINES 

Algorithms 
Number of services 

S=32 S=64 S=128 S=256 S=512 

FirstFitDesMax 24 47 90 174 344 

FirstFitDesLex 24 47 90 174 344 

FirstFitDesSum 24 47 90 174 344 

BestFitDesMax 24 47 90 174 344 

BestFitDesLex 24 47 89 170 324 

BestFitDesSum 24 47 90 174 344 

 

TABLE II.  COMPARISON OF EXECUTION 

TIMES (S) 

Algorithms 
Number of services 

S=32 S=64 S=128 S=256 S=512 

FirstFitDesMax 0.00009 0.00107 0.00303 0.01076 0.03193 

FirstFitDesLex 0.00010 0.00114 0.00214 0.00827 0.02529 

FirstFitDesSum 0.00016 0.00113 0.00268 0.00932 0.02791 

BestFitDesMax 0.00121 0.00254 0.00833 0.03741 0.13107 

BestFitDesLex 0.00123 0.00232 0.00783 0.03500 0.12253 

BestFitDesSum 0.00128 0.00234 0.00800 0.03693 0.13380 

 

 

TABLE III.   EXECUTION TIMES AND MINIMUM 

PHYSICAL MACHINES OF GA 

Number of 

services 

S=32 S=64 S=128 S=256 S=512 

Execution times 

(s) 
0.0010 0.00307 0.02076 0.04126 0.08930 

Minimum physical 

machines 24 47 90 174 344 

 

From results shown in Table III and the results 

obtained from 6 standard algorithms of vector packing 

problem in Table I and Table II. It is clearly seen that with 

the same set of data, the execution time of the GA is 

longer than others. However, in the cases of large number 

of services (512 services), execution times of GA are 

shorter than BestFitDesMax, BestFitDesLex, 

BestFitDesSum algorithms. The objective function values 

of (number of physical machines) all algorithms are 

similar (except for BestFixDesLex algorithm with a better 

value). Moreover, the execution times of the GA are short 

and therefore it can be applied in practice. 

VI. CONCLUSION 

The paper has dicussed static resource provisioning 

based on a homogeneous shared hosting platform for 

virtual services with the optimal constraints and QoS 

requirements; each service is considered as a single virtual 

machine. On the basis of the optimal problem, we have 

proposed a GA to minimize the number of physical 

machines. The execution times of the GA are short and 

therefore it can be applied in practice.  For the future work, 

the proposed model will be extended for heterogeneous 

platform. 
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