
A GUI Frame work for Homomorphic

Encryption Operations

Karlapalem Sujitha, Reddyvari Venkateswara Reddy, Vemuri Chinmai Sai Abhishek,

L.L.N.V.S.R.K. Sai Surya, Shruthi Jha
Assistant Professor, Department of CSE (Cybersecurity), CMR College of Engineering & Technology,

Hyderabad, Telangana State, India.

Associate Professor, Department of CSE (Cybersecurity), CMR College of Engineering & Technology,

Hyderabad, Telangana State, India.

B. Tech Students, Department of CSE (Cybersecurity), CMR College of Engineering & Technology,

Hyderabad, Telangana State, India.

Abstract—This GUI framework builds upon

homomorphic encryption operations underlying it to

provide convenience for its users. The users are able to

perform secure computations that are private and

confidential without effort. A structure is developed with

four homomorphic encryption algorithms, including

Paillier, BGV, CKKS, and BFV, for specific data types

and operations. Paillier provides partial homomorphic

decryption on integer numbers, which can be performed,

whereas BGV and BFV allow for complete homomorphic

encryption in integers along with additional operations

for instance multiplication and exponentiation. CKKS

makes it possible to perform more complicated

operations than integer calculations, such as floating-

point instructions, which is essential for safety regarding

decimal value computations. Customtkinter (Python)

was used for the GUI development, which presents easy

controls and display elements for the users to input two

numbers and select encryption algorithms and

operations via drop-down menus. The introduction of

the Pyfhel and phe modules brings about the

homomorphic encryption functionalities that guarantee

data security during the computation process. Pillow is

the image handling library for this GUI interface, which

facilitates the usage visual aesthetics and a good user

experience. As well, it checks transparency and

accountability by writing the algorithm specifics, input

numbers, operations, decrypted results, and

cryptographic keys in the output folder.

Keywords—Homomorphic encryption, Operations on

encrypted information, Framework, Strategies,

Algorithms, Applications, Additive homomorphism,

Multiplicative homomorphism, Performance overhead,

Cipher text growth, Real-life applications, Privacy-

preserving computation.

1 INTRODUCTION

In the perspective of data security, which is filled with

dangers and vulnerabilities, homomorphic encryption

offers an opportunity to learn how to overcome such

risks. As our digital footprint grows at an astonishing

rate, it is now more significant than ever to keep the

safety of personal data a priority. Homomorphic

encryption offers the possibility of secure encryption

calculations on encrypted data without decryption,

something that was regarded as impossible before.

This cryptographic masterpiece is based on four

different algorithms: Paillier, BGV, CKKS, and BFV.

Investigate every algorithm’s options for functions for

different datasets and operations. It is evident that this

model has the capability to adapt and is flexible. While

Paillier, BFV, and BGV perform computations with

integer numbers, CKKS is used for floating-point

values.

1.1 A Conceptual Overview

Before taking a deep dive into the technical

components of particular algorithms, the simple

principles behind homomorphic encryption must first

be understood. At its heart is the actuality that

homomorphic encryption allows computation on

ciphertext so as to produce an encrypted result, which

is decrypted only by the authorized recipient. This

progressive technique stands in mathematically sharp

contrast with ordinary encryption methods where

authentication is an input for computing, which exists

with security hazards. Homomorphic encryption is an

approach to hiding user privacy during both data

computation and evaluation. The robbery of facts and

homomorphic encryption are able to run the

operations without destroying the integrity of the data;

thus, they become the first method to solve the

challenge of both privacy and performance, an

accomplishment that was earlier thought to be

unattainable. It is this general principle that we should

keep in mind as we embark on this fascinating journey

into the intricacies of homomorphic encryption,

which, in a way, guides our minds right ahead as it

illuminates the way forward for us.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV13IS030033
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

Volume 13, Issue 03 March 2024

www.ijert.org
www.ijert.org

2 LITERATURE REVIEW

"Homomorphic Encryption: A Comprehensive

Review" This evaluation outlines homomorphic

encryption’s important components, introduces

consultant homomorphic encryption schemes, and

indicates how homomorphic encryption enables

computation on encrypted statistics. It touches on the

homomorphic encryption technique evolution stage,

along with the partially homomorphic, somewhat

homomorphic, and fully encrypted schemes. The

evaluation assesses the sturdy facets along with

shortcomings in every scheme. It also stresses

packages in stable computation, privacy-maintaining

information analysis, and cloud computing. As nicely

as this, the paper touches on the demanding situations

and prospects inside the homomorphic encryption

realm and provides examples of ways to relieve the

burden on performance while tightening safety and

adapting to scalability.

 “Homomorphic Encryption for Privacy-Preserving

Cloud Computing: A Survey" This review gives an

introduction to the homomorphic encryption methods

for privacy-preserving cloud computing, where

sensitive data is kept from being sent to the cloud

computers. It studies various homomorphic

encryption schemes in different cloud computing

scenarios in accordance with security, performance,

and usability. The survey focuses on the available

frameworks and protocols for privacy-preserving

cloud computing using homomorphic encryption,

specifying their strengths and limitations.

"Homomorphic Encryption for Privacy-Preserving

Machine Learning in Healthcare: A Review" This

review deals with the chosen homomorphic

encryption for the goal of preserving privacy in

machine learning in healthcare applications since

personal medical data is researched and analyzed

without breaching patient privacy. It does a survey on

the current homomorphic encryption procedures and

their aptitude for healthcare data analysis tasks, e.g.,

disease prediction, treatment recommendation, and

medical picture analysis. The study examines the

efficacy and scalability of homomorphic encryption-

based machine learning techniques in healthcare

settings via examination of factors like computational

functionality, data interoperability, and compliance

with regulations.

3 METHODOLOGY

We have finished the mission. We entirely

examined the available homomorphic encryption

methods in Python, and we accordingly chose phe

and Pyfhel as the basic components. These choices

were justified by their high functionality,

complexity, trustworthiness, and conformity with

the system goals. Modules used are:

• phe won the spot in this category by virtue of

its Pallier encryption, which permits partial

homomorphic encryption suitable for integer

computations. Its simplicity and efficiency of

execution of operations like addition,

subtraction, and scalar multiplication have

made it the first choice for basic operations in

mathematics. Furthermore, the integration

was rather simple to do, and we had clear

documentation which helped in the successful

development progress, allowing us to

recalibrate towards the front-end GUI

interface design and user experience

expedition.

• Pyfhel is the combined effort of all those

above-mentioned BGV, BFV, and CKKS

algorithms and popular choices for fully

homomorphic encryption schemes. These

features, which include multiplication,

exponentiation, and floating point number

calculations, accommodated the various needs

of our project well. Pyfhel's features and

flexibility were at the core of the subsequent

execution of the homomorphic encryption

functionalities within the GUI.

• During the advancement of GUIs, we tried

different Python packages for the making of

Graphical User Interfaces (GUIs). Finally, we

decided on customtkinter because of its

modern looks and the ease with which it

works with tkinter, which is the standard GUI

toolkit for Python. customtkinter offers more

styling choices and makes it easier to build

attractive GUIs. This alignment follows our

aim to let users do the homomorphic

encryption operations visually and intuitively.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV13IS030033
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

Volume 13, Issue 03 March 2024

www.ijert.org
www.ijert.org

Fig. 1 – Flowchart

The application initiates the process on the GUI

interface, where options to choose an algorithm and

operation come up on the drop-down menus. When

they are chosen, users enter two numbers into the

designated fields. The application finally checks if the

user input meets the defined rules of the algorithm

selected. If the numbers are suitable for the algorithm,

they are encrypted utilizing the related homomorphic

scheme. Encryption happens first; then the

mathematical operation is performed, and finally,

decryption takes place to produce the desired

result. The decrypted output appears in the result

window for the user. When the user inputs numbers

that are unnecessary for the specific algorithm, the

error window pops up. It informs the user about the

discrepancy. The flowchart depicts the flow of the

process in the application GUI, making sure that the

operations of the homomorphic encryption are done

smoothly and with ease for the user.

4 ARCHITECTURE

The architecture and design of our project are purpose-

built to form the foundation of a fairly resilient, user-

friendly system of homomorphic encryption

techniques. The crucial part of our project lies in an

architectural modular and scalable solution that

incorporates a series of encryption modules on a back-

end side with a GUI interface, thus enabling intuitive

interaction and transparent operations.

The architecture of our project is structured around

two main components: the GUI interface and the

server-side(backend). The GUI frontend acts as the

main communication channel with which users

communicate and get to select algorithms and

operations, visualize the results, and input the

designated data using understandable controls and

feedback. the frontend is designed by use of

customtkinter, a Python library that helps in the

creation of GUI elements tailored to the specific needs

of the application.

The cryptography back ends, working on Pyfhel, phe,

and other libraries, form the computational core of our

project, performing various homomorphic encryptions

with different levels of complexity. The modules

implement the Paillier, BGV, CKKS, and BFV cipher

schemes, each designed for specific applicability and

required mathematical operations. The modular

design of the backend functions as a plug-and-play

element, enabling effortless integration of cutting-

edge encryption techniques and schemes to meet the

demands of increased security and the ever-evolving

landscape of homomorphic encryption technology in

the future. The result window displays the result of the

operation. The application then asks users to refer to

the output folder, where they will come across other

elaborated information stored in the result.json file.

The file saves structural data about the encoding

process, for example the algorithm performed, the

input numbers, the operation performed, and the result

that underwent decryption. Besides, the output folder

has keys stored in files; due to this fact, users are

allowed to review and ensure the cryptographic

operations carried out by the application have been

correct.

4.1 Interaction Flow for Performing Homomorphic

Encryption Operations

The process flow in the guide user interface (GUI)

follows in an understandable way to users through the

usage of a sequence of logical steps that guides them

in the process of efficient implementation of

homomorphic encryption operations. The process

starts with the GUI interface opening, and the drop-

down menus are shown for algorithm selection and

operation. After you pick the options you want, you

enter two numbers into the specific fields and then

click the encryption button.

Then, the user input gets examined to ensure fit with

regard to the selection algorithm. If these numbers are

found to be suitable, they are encrypted with the

chosen encryption scheme. The encrypted numbers

are subjected to the operation specified and then

decrypted to derive the output. After completion of the

encryption and computation tasks, the decrypted final

result appears in the output area for user review.

4.2 Integrating Algorithms

The homomorphic encryption framework provides

support for four algorithms varying in functional

scope and practical complexity, allowing them to

satisfy the differing parameters of encryption. The

Paillier algorithm, well-known for its partial

homomorphic encryption faculties, ensures the

carrying out of the principal operations of addition,

subtraction, and scalar multiplication on integer

numbers. It is perfect for scenarios where data

honestly is of primary importance and where all the

operations are based on integers. On the other hand,

the BGV is a full homomorphic encryption

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV13IS030033
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

Volume 13, Issue 03 March 2024

www.ijert.org
www.ijert.org

implemented for integers. Therefore, more

complicated operations can also be executed by the

GUI platform, such as multiplication and

exponentiation. This furthers a functionality aimed at

making the GUI interaction matrices expand beyond

their immediate scope for a wider range of use cases,

thereby allowing the users to make complex

computations on their encrypted data.

The homomorphic encryption method designed by

CKKS and applicable to the whole field of floating-

point number operations has been created, ensuring

the necessary requirements for using it in numerical

computing. Incorporating CKKS into the architecture

of the GUI framework presents its ability to

manipulate floating-point data types, unlocking new

options for secure computation in finance, natural

sciences, and machine learning, to name just a few

fields. As an additional layer of flexibility, the BFV

algorithm acts as another method for fully

homomorphic encryption of integers besides the BGV

algorithm. BFV, similar to BGV in some aspects, may

be preferable and more robust in other circumstances,

conditioned by the particular needs of an individual.

These four algorithms put into the GUI framework

allow the GUI framework to become a tool that can

grapple with a variety of homomorphic encryption

ranges with dexterity and agility.

4.3 Handling Data Input and Output

 The GUI system makes it possible for the client to

enter data by means of intuitive controls where the

client has to present two numbers, choose an

encryption algorithm, and specify the operation to

undertake. Input validation blocks the introduction of

data that differs from system requirements and is

formed based on algorithm parameters and operation

usage; hence, it ensures a flawless computational

process. Once the data entry portion is completed, the

data is passed to the encryption module, where it is

then encrypted using the particular algorithm chosen.

The homomorphic encryption algorithm is supported

well by four frameworks: Pailler, BGV, CKSK, and

BFV, which pay attention to the differences in data

types and operations, respectively. The encryption

process attains the confidentiality objective for the

entered data and also provides the important function

of secure communication with encrypted values.

The impact of the input data encryption is further

influenced by the GUI framework, which executes the

operation on the encrypted values, utilizing the

possibilities of the selected one from the arsenal of

homomorphic encryption algorithms. An illustration

is the case when adding is the picked operation; the

GUI framework calculates the sum of the encrypted

numbers, allowing for the homomorphic addition

operation used in the selected algorithm. The modular

GUI framework design, which allows for the

convenient connection of different encryption

programs and actions, is a feature of the system. It

ensures flexibility and adaptability to the different

computational requirements of the system. Whether it

is basic arithmetic operations on integers or complex

computations on floating-point numbers, the GUI

framework offers the most secure solution for the

handling of the data.

Once the computations are performed on the

encrypted data, the GUI framework will be

responsible for decrypting the result to obtain the final

output. Decryption is the inverse process in which

corresponding decryption keys, which are created and

maintained internally by the encryption module, are

used. The outcome of decryption is exhibited in the

output area of the GUI interface, where the users get a

vivid and understandable statement of the

computation result. Moreover, the GUI interface will

not only display the decrypted file but also prompt the

client to explore the output folder for more details in

the result.json file. This file embodies data about the

encryption process, for instance the algorithm, input

numbers, operation, and decrypted outcome. Besides,

users are able to save the cryptographic keys in output

folder files, so they can audit and validate the

operations by the cryptographic application.

4.4 Error Messaging

Errors that might arise in the input data validation

process and during the encryption process will have

the GUI framework provide clear and useful error

messages for the user's explanation and to further

assist troubleshooting. The error messages are created

to be terse and particular, providing the users with the

kind of information that they need to come up with a

solution to the problem.

As an example, the GUI framework reveals error

messages that pinpoint the particular problems and

invite users to enter valid inputs if users attempt to

introduce wrong values. The error messages are

clearly displayed within the GUI interface in a very

noticeable form, so that the client can clearly locate

them and solve any input-related issues.

Fig. 2 – Error Handling Window

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV13IS030033
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

Volume 13, Issue 03 March 2024

www.ijert.org
www.ijert.org

5 SYSTEM REQUIREMENTS

• Processor: A modern multicore processor

(e.g., Intel Core i5 or AMD Ryzen) is

suggested to tackle the computational

challenges of homomorphic encryption

operations effectively.

• Memory (RAM): The RAM requirement

should be at least 4GB to have the GUI

framework run smoothly, particularly in

certain situations.

• Storage: Adequate space for the installation of

Python and the related libraries, input data,

output files, and keys generated after

encryption operations must be provided.

• Operating System: GUI Framework supports

major operating systems such as Windows,

macOS, and various Linux distributions,

which include Ubuntu, Fedora, and CentOS.

• Python: It requires the Python 3 version to

exist on the system. Users can download and

install Python from the official Python

website (https://www.python.org/).

Otherwise, you can use the package

managers provided by your operating system.

• Python Libraries: The homomorphic

encryption-based GUI framework is grounded

on several Python libraries, namely, for

homomorphic encryption (Pyfhel, phe), GUI

development (customtkinter) and image

handling (Pillow). Users must check that these

libraries are installed and correctly configured

in the Python environment they are using.

6 RESULT

Fig. 3 – Input Using BFV Homomorphic Encryption

Fig. 4 – Computation Output

Fig. 5 – Output Folder and result.json

7 CONCLUSION

In short, the introduced GUI framework represents

great progress in the area of homomorphic encryption,

where secure computations are performed while

maintaining data confidentiality and privacy. GUI

architecture adopting multiple homomorphic

encryption algorithms, among which we can list

Paillier, BGV, CKKS, and BFV, is capable of

supporting a wide range of calculations that vary from

integer-based ones to floating-point problems. The

GUI interface of the framework has made the

encryption process less complex for the users by

providing them with a list of algorithms and

operations that can be selected from the drop-down

menu. Data input and result visualization are made

easy by such an interface. The GUI gains cross-

platform usability by employing the potential

provided by Python, and customtkinter empowers

integration with already existing Python

environments.

Then again, the GUI framework sets additional high

level for data safety and transparency while storing

encrypted information on input data and performing

operations that result in a specified output folder. This

affords the user not only an improved understanding

of the encryption system but also easy auditing and

verification of the results. The GUI framework,

together with the user input validation feature and

error handling mechanism, guarantees the precision

and resistance of the encryption framework, with

almost no possibility of false computations and a

better user experience.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV13IS030033
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

Volume 13, Issue 03 March 2024

www.ijert.org
www.ijert.org

8 FUTURE SCOPE

• Improvement in Performance: Future refinements

on the GUI framework could be oriented towards

accomplishing this goal through parallelization

methods and exploiting hardware accelerators

such as GPUs. By taking advantage of the large

number of processors (i.e., hardware) found in the

current generation, the GUI framework can easily

have shorter execution times and perform more

sophisticated and advanced operations.

• Integration with Cloud Computing Platforms: As

cloud computing technology gains more and

more attention, it has become an amazing chance

for the cloud platform and GUI framework to go

together and thus provide unlimited expansion.

Through the utilization of cloud infrastructure,

users can transfer computationally heavy

encryption functions distant from local machines,

which could eventually result in less load on the

local computers and easier roughing because of

the computation upon demand while maintaining

security. Along with this, integration with cloud

storage services can lead to the accessibility of

encrypted data and outcomes from any place that

is smooth and retains these same values.

• Support for Additional Operations and Data

Types: At present, the architecture provides

diverse basic integer and floating-point number

operations. New enhancements are expected to

improve arithmetic with a wider variety of

operations and data types. This extension may

include support for division, logarithm, and

trigonometric operations, apart from columns and

rows of data structures like matrices and vectors.

Diversification of the supported operations and

data types can make the framework the best

solution for various applications and for solving

many tasks.

• Integration with Machine Learning and Data

Analytics: Encryption with homomorphic

characteristics can be a powerful solution for

ensuring user privacy in machine learning and

data analysis pipelines because it allows sensitive

data to be processed without breaking secrecy. At

the next stage, effort should be put into making

the machine learning libraries and data analytics

platforms integrated into the GUI framework to

attain the high security and privacy requirements.

This integration could be tapped into to achieve

tasks like encrypted machine learning, encrypted

data aggregation, and encrypted data mining,

which are vital for the security of private data and

open new areas of operation with regard to

privacy-preserving data analysis.

REFERENCES

[1] "Homomorphic Encryption: A New Paradigm for Secure Remote

Outsourcing of Biometric Identification Services" by Jose M.
Delgado et al. - This research paper is keen to the usage of

homomorphic encryption in the area of remote biometric

identification services. It shows the possibility to enhance the
privacy and security of this outsourcing scenario.

[2] "Homomorphic Encryption for Network Security: A Review" by
Muhammad Taha and Marwan Krunz – This paper focuses on

homomorphic encryption as a security enhancing tool, with

specific instances such as outsource secure computation and
privacy-preserving data analysis as applications.

[3] "PyCrypto: A Python Library for Cryptanalysis Operations" by
Dwayne C. Litzenberger – this marks the introduction of

PyCrypto, a Python library which provides cryptographic

functions, enabling future development of PyEncrypto, a GU
framework for homomorphic encryption.

[4] "Homomorphic Encryption for Privacy-Preserving Machine
Learning: A Tutorial" by Raluca Ada Popa et al. - This tutorial

presents in a practical manner a step-by-step guide to

implementing homomorphic encryption for privacy-preserving
machine learning, encouraging the readers to use those insights

for their research and practice.

[5] "Homomorphic Encryption: A Brief History of Homomorphic

Encryption: Past, Present, and Future Directions" by Kristin

Lauter- This review paper offers a historical account of
homomorphic encryption, ranging from the initial theoretical

breakthroughs to practical implementations and finally into the

future research directions.

[6] "Secure Computation with Homomorphic Encryption: A Review"

by Xiao Wang et al. - This article provides a wholesome
perspective of the secure computation methods using

homomorphic encryption, including the applications,

limitations, and future prospect.

[7] "Homomorphic Encryption for Privacy-Preserving Data

Analysis: Challenges and Opportunities: Homomorphic
Encryption in Privacy-Preserving Data Analysis" by Yulia R. Gel

et al. The paper discusses the challenges and opportunities of

using homomorphic encryption to solve the privacy-preserving
data analysis problem, but at the same stage notes that here is a

trade-off between efficiency, security, and usability.

[8] "Homomorphic Encryption for Secure Outsourcing of Genomic

Data Analysis: A Review" by Mohammad Sadegh Rasooli et al.
- The present review paper focuses on the homomorphic

encryption method for secure distribution of genome data

analysis; the method can permit the hidden information of data
to be kept in the purview of researchers’s collaboration without

loss of privacy of data.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV13IS030033
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

Volume 13, Issue 03 March 2024

www.ijert.org
www.ijert.org

