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Abstract— All multicore technologies aim to exploit 

parallelism to increase performance. Data synchronization 

among multiple cores has been one of the critical issues which 

must be resolved in order to optimize parallelism in these 

multicore systems. Efficient improvements in synchronization 

overheads in terms of latency, memory bandwidth, delay and 

scalability of the system involve a solution in hardware rather 

than in software. This paper investigates optimized 

synchronization techniques for shared memory on-chip multicore 

processors targeted at embedded systems. A hardware 

synchronization module, Sync-Lock is used here which exploits 

the unique nature of embedded systems which have demanding 

requirements for high performance and low power consumption. 

Balanced energy and performance efficiency of this approach is 

achieved by combining the advantages of true conflict detection 

and clock gating. Synchronization hardware is described by 
Verilog HDL and simulated using ModelSim SE 6.2c. 

Keywords— data synchronization, multicore, embedded 
system, clock gating. 

I.  INTRODUCTION 

Multicore has been around for many years in the desktop 

and supercomputing arenas. But it lagged in the mainstream 

embedded world; it is now here for embedded as well. 

Increasing demands for low power, performance/throughput 

and memory bandwidth are the driving forces to multicore 

architectures. Concurrency, more than one thing happening at 

a time is the main feature of multicore. Multicore platform 
will lead to bigger and faster parallel simulation that takes 

advantage of the larger number of inexpensive processing 

units. But it also opens up a number of significant challenges 

that haven’t deal with before. The processor synchronization is 

a performance bottleneck. When more than one processor 

attempt to access any shared data simultaneously data 

synchronization issue arises. The success of various pieces of 

a program running in parallel to yield a correct result depends 

strongly on good synchronization between these programs. 

Data synchronization prevents data from being invalidated 

by parallel access. Existing data synchronization methods are 
either lock-based or lock-free. The former includes locks, 

semaphores and barriers; these methods blocks access to 

shared data from processors which fail to acquire permission. 

But lock-free allow all processors to access the shared data in 

an optimistic manner and then perform roll back and/or re-

execution when conflict occurs. Most popular lock-free 

approach is transactional memory(TM) [13].  

The data synchronization method which was originally 

developed for general purpose cannot be transferred directly to 

embedded systems. Embedded system include stringent 

requirement for low energy consumption as well as high 

performance. Lock-based methods are widely used in 

embedded application because of their simple control 

mechanism. But they sacrifice much parallelism resulting in 

poor performance. In Transactional memory speculative 

execution turns out to be wasteful when rollback occurs. 

In general,  as multicore systems continue to provide 

increasingly more cores on a single die, hardware support for 

synchronization will take various steps to mitigate both 
complexity and performance issue. This paper investigates 

optimized synchronization techniques for shared memory on-

chip multicore processors targeted at embedded systems. It 

behaves like a lock scheme for energy efficiency, but it shows 

transactional behavior for checking data conflicts.  It delivers 

Transactional Memory like parallelism in race condition by 

detecting true conflicts. The detection is done by considering 

address range, type and dependency of simultaneous accesses. 

When true data conflict is detected only one of the cores gets 

access and others are clock-gated to minimize dynamic power 

consumption. There is no speculative execution and rollback 
as in Transactional Memory approach. So its energy efficient 

compared to TM-Approach. It utilizes the available 

parallelism much better than lock based approach due to true 

conflict detection. All these advantages are achieved by a 

simple hardware support, Sync-Lock. 

II. RELATED WORK 

Christian Stoif in the paper “Hardware Synchronization for 

Embedded Multi-Core Processors,” proposed Multi-Access 

Controller (MACtrl) consists of core-side and inter-core logic, 

establishing coherence and consistency for different types of 

shared memory by hardware means. It also support for point-

to-point synchronization between the processor cores is 
realized implementing different hardware barriers. Multiple 

cores use inherent parallelism by locking shared memory more 

intelligently using an address-sensitive method. 

Speculative Lock Elision (SLE) [11], a hardware-based 

approach which elides the unnecessary lock-induced 

serialization from dynamic execution stream and enable highly 

concurrent multithreaded execution. It allows non-conflicting 

critical sections to be executed ad committed concurrently. 

Misspeculation due to inter-thread data conflict is detected 
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using existing cache mechanism and roll back is used for 

recovery. SLE guarantees correct execution even in the 

absence of precise information from software and independent 

of nesting levels and memory ordering. Successful speculation 

elision is validated and committed without acquiring lock. In 

the paper “Transactional Lock-Free Execution of Lock-Based 
Programs,” he proposed Transactional Lock Removal. When 

data conflict occurs corresponding threads are restarted to 

acquire the lock in a serialized manner. Transactional Lock 

Removal (TLR)[9] also uses hardware to convert lock-based 

critical sections transparently and dynamically into lock-free 

optimistic transaction. It resolves data conflict based on time 

stamp in order to provide transactional semantics and freedom 

from starvation. 

Monchiero proposed a hardware lock that optimizes power 

and performance by replacing the processors polling with 

hardware notification in the paper “Power/performance 

hardware optimization for synchronization intensive 
applications in mpsocs”. The idea is to locally perform the 

synchronization operations which require the continuous 

polling of a shared variable, thus featuring large contention. 

They used a hardware block called Synchronization – operation 

Buffer (SB) which monitors the processors energy and 

bandwidth consuming polling operation can be avoided. SB is 

portioned into two separate components. One is devoted to 

manage events, named Event Buffer (EB), the other one is 

dedicated to spinlocks, named Lock Buffer (LB). SB queues 

and manages the requests issued by the processors. This 

improves performance and energy efficiency of data 
synchronization by reducing memory overhead [5]. 

Shavit proposed a software method for supporting flexible 

transactional programming of synchronization operations 

Software Transactional Memory (STM) in the paper 

“Software Transactional Memory”. STM is non-blocking and 

can be implemented on existing methods using only a 

Load_Linked/Store_Conditional operation. TM provides 

sufficient programmability to the programmers by abstracting 

the details of synchronization. Programmers rather focus on 

functionality. Even though TM simplifies the programming 

model and maximizes the concurrency, transaction may suffer 

from interference which causes them to abort and from heavy 
overheads for memory accesses [12]. 

 Takayuki in the paper “Adaptive Locks: Combining 

Transactions and Locks for Efficient Concurrency,” proposed 

an adaptive locking technique that dynamically observes 

whether a critical section would be best executed 

transactionally or while holding a mutex lock. The critical new 

elements of our approach include the adaptivity logic and cost-

benefit analysis, a low overhead implementation of statistics 

collection and adaptive locking in a full C compiler, and an 

exposition of the effects on the programming model. Adaptive 

locks simplify the programming model by reducing the need 
for fine-grained locking: with adaptive locks, the programmer 

can specify coarse-grained locking annotations and often 

achieve fine-grained locking performance due to the 

transactional memory mechanisms. Some other works 

proposed energy-aware lock methods [3]. 

III. SYNC-LOCK 

Ideal synchronization is the elimination of speculative 
execution while exploiting parallelism as much as possible. 

Sync-Lock is such a synchronization scheme. It uses the 

address range for detecting true dependencies which decide 

whether to execute or hold the operation. If the cores are 

accessing different variables, Sync-lock detects no conflict. 

Then operation can be performed simultaneously, achieving 

Transactional Memory (TM) [13] like parallelism. The system 

will permit only one access at a time if there is a true conflict 

among the cores. Moreover, the cores without access 

permission move into clock-gated state to reduce dynamic 

power consumption. Consequently Sync-Lock yields higher 

energy efficiency than TM and provides higher performance 
than Lock. 

A. Concept 

The main idea of Sync-Lock system is to exploit available 

parallelism with true conflict detection and to minimize 

dynamic power consumption with clock-gating idle cores. 

Fig.1 shows the concept of locking scheme. For explaining the 
concept a dual core system is considered and the 

synchronization among the cores is handled by Sync-Lock.   

 

 

 

 

 

 

 

 

 

 

Fig. 1. Concept of Sync-Lock mechanism 

Before executing the critical section, every core sends the 

address range to be accessed i.e., address range0 (core0) and 

address range1 (core1). After that, the centralized peripheral 
Sync-Lock decides whether address range overlaps or not. If 

there is an overlap, only one among the cores that cause 

conflict is permitted to run while the others are stalled with 

clock gating until the former ends the execution. The clock 

gating reduces dynamic power dissipation. If there is no true 

dependencies among the cores simultaneous execution are 

possible. This approach considers low power consumption 

requirement of embedded system and also provide more 

parallelism than lock-based method. This approach is energy 

and performance efficient. 

B. Sync-Lock Architecture  

The top-level architecture of a shared memory multicore 
system is shown in Fig. 2. There are N number of cores 
connected to a shared memory. The synchronization is 
handled by the hardware module Sync-Lock. Sync-Lock; the 
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hardware module is an additional peripheral and the key 
component of synchronization mechanism which is in charge 
of detecting true conflict among the accesses to shared data 
and controlling clock-gating of cores. Each core is in charge of 
setting the necessary information to Sync-Lock, which 
includes base address, size, and type of the data it intends to 
access. When the information is set, the core is allowed to 
attempt its atomic operation by notifying the Sync-Lock. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Top-level architecture 

Sync-Lock do conflict checking and in case of conflict, 
grants permission to only one of the cores while gating the 
other cores which tend to access the data.  Multiple cores can 
get the permissions if the accesses are not involved in any true 
conflict. After the core which has obtained the permission 
completes its atomic access, it notifies the Sync-Lock that its 
atomic access is finished. So the conflict checking routine in 
Sync-Lock is again triggered. After conflict checking Sync-
Lock gives permission to another core by de-asserting the 
corresponding clock gating signal. Each core in the processor 
can record access information with Sync-Lock. It refers to a 
storage that contains information for checking true conflict 
with the accesses of other cores. 

Access information consists of the following fields: 

 BaseAddr: base address 

 Size: access size 

 R’/W:  read/write 

 gIdx: global index  

 V:  valid bit  field for indication of the validity 

gIdx is used as a time stamp. Each core can register at 
most M such access records. Sync-Lock manages the status of 
the entries by checking the valid fields thus put the incoming 
record to an empty entry. Sync-Lock uses a dynamic priority 
scheme to determine which core should get the grant to store 

their access records. If the core gets grant it sets gIdx of the 
newly registered record with a proper time stamp. After that, 
the Sync-Lock check for conflicts by comparing the access 
records of requested core and other cores records. The major 
part of this process is done by the conflict checking logic. The 
conflict checking logic checks for true conflicts among the 
cores’ memory access. As an illustration, true conflict occurs 
when the following conditions are simultaneously present: 

 Both access records are valid 

 Their address range overlaps 

 At least one of them is a write operation 

 gIdx  of requesting core is greater  

 
The first two conditions are obvious, while third one filters 

out the false dependencies. The fourth condition detects the 
possible data hazard.  . 

Sync-Lock look for the true conflict among  requested 
cores record and the other core records for producing clock 
enable signal for the requesting core. If any conflict is 
reported, it means requested atomic access cannot be executed 
at this time and therefore Sync-Lock disables the clock of the 
corresponding core by de-asserting clock enable signal. Also 
conflict information are stored in a register so that the cores 
can watch the events of the blocking core being cleared and 
reattempt its access. When no conflicts are reported from the 
other core, the core keeps running and executes the atomic 
access for the corresponding access records. 

Each core has its own fixed number of access records that 

can be stored as M in the scheme. Therefore, if the number of 

records to be registered is larger than M, some addresses 

cannot be registered. Sync-Lock is designed to handle this 

problem as well. Core’s operation is stalled if other cores are 
executing critical section. 

IV. RESULTS AND DISCUSSION 

The design entry is modelled using Verilog HDL in Xilinx 

ISE Design Suite 13.2 and the simulation of the design is 

performed using Modelsim6.2c to validate the functionality of 

the design.  

 

 
 

Fig. 3. Simulation result of Sync-Lock 
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A fully generic design of the Sync-Lock has been 
developed in the hardware description language Verilog HDL 
in order to allow easy scaling in terms of the processor cores. 
The goal to keep the design as compact as possible is achieved 
by a code optimized algorithm that allows the core to access 
the shared memory in case no true conflict. For this purpose 
access information are first recorded before accessing the 
critical section. This access records are checked for conflict 
with cores which are accessing the critical section to produce 
clock enable signal. Once the atomic is finished they are 
notified to the Sync-Lock manager so that cores that are clock 
gated can again check for conflict. 

V. CONCLUSION 

This is an energy and performance efficient data 

synchronization for multicore embedded systems. It can save 

more energy by gating the clocks of some cores which request 

shared data but are blocked since data are being occupied by 

other cores. In order to minimize the performance loss due to 

conflict, Sync-Lock checks the true dependencies among the 

cores by examining their address range, access type and so on, 

unlike traditional lock. These properties of this synchronization 
scheme combine the advantages of locks and TM .It consists of 

special hardware Sync-Lock. The modules of this 

synchronization hardware are described by Verilog HDL to 

allow easy scaling and they are simulated for the functionality 

using ModelSim 6.2c.  
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