
A Hardware Synchronization for Multicore

Embedded Systems

Merin Y.

TKM Institute of Technology

Karuvelil P.O, Kollam, Kerala-691505, India

Chithra M.

TKM Institute of Technology

Kollam, India

Abstract— All multicore technologies aim to exploit

parallelism to increase performance. Data synchronization

among multiple cores has been one of the critical issues which

must be resolved in order to optimize parallelism in these

multicore systems. Efficient improvements in synchronization

overheads in terms of latency, memory bandwidth, delay and

scalability of the system involve a solution in hardware rather

than in software. This paper investigates optimized

synchronization techniques for shared memory on-chip multicore

processors targeted at embedded systems. A hardware

synchronization module, Sync-Lock is used here which exploits

the unique nature of embedded systems which have demanding

requirements for high performance and low power consumption.

Balanced energy and performance efficiency of this approach is

achieved by combining the advantages of true conflict detection

and clock gating. Synchronization hardware is described by
Verilog HDL and simulated using ModelSim SE 6.2c.

Keywords— data synchronization, multicore, embedded
system, clock gating.

I. INTRODUCTION

Multicore has been around for many years in the desktop

and supercomputing arenas. But it lagged in the mainstream

embedded world; it is now here for embedded as well.

Increasing demands for low power, performance/throughput

and memory bandwidth are the driving forces to multicore

architectures. Concurrency, more than one thing happening at

a time is the main feature of multicore. Multicore platform
will lead to bigger and faster parallel simulation that takes

advantage of the larger number of inexpensive processing

units. But it also opens up a number of significant challenges

that haven’t deal with before. The processor synchronization is

a performance bottleneck. When more than one processor

attempt to access any shared data simultaneously data

synchronization issue arises. The success of various pieces of

a program running in parallel to yield a correct result depends

strongly on good synchronization between these programs.

Data synchronization prevents data from being invalidated

by parallel access. Existing data synchronization methods are
either lock-based or lock-free. The former includes locks,

semaphores and barriers; these methods blocks access to

shared data from processors which fail to acquire permission.

But lock-free allow all processors to access the shared data in

an optimistic manner and then perform roll back and/or re-

execution when conflict occurs. Most popular lock-free

approach is transactional memory(TM) [13].

The data synchronization method which was originally

developed for general purpose cannot be transferred directly to

embedded systems. Embedded system include stringent

requirement for low energy consumption as well as high

performance. Lock-based methods are widely used in

embedded application because of their simple control

mechanism. But they sacrifice much parallelism resulting in

poor performance. In Transactional memory speculative

execution turns out to be wasteful when rollback occurs.

In general, as multicore systems continue to provide

increasingly more cores on a single die, hardware support for

synchronization will take various steps to mitigate both
complexity and performance issue. This paper investigates

optimized synchronization techniques for shared memory on-

chip multicore processors targeted at embedded systems. It

behaves like a lock scheme for energy efficiency, but it shows

transactional behavior for checking data conflicts. It delivers

Transactional Memory like parallelism in race condition by

detecting true conflicts. The detection is done by considering

address range, type and dependency of simultaneous accesses.

When true data conflict is detected only one of the cores gets

access and others are clock-gated to minimize dynamic power

consumption. There is no speculative execution and rollback
as in Transactional Memory approach. So its energy efficient

compared to TM-Approach. It utilizes the available

parallelism much better than lock based approach due to true

conflict detection. All these advantages are achieved by a

simple hardware support, Sync-Lock.

II. RELATED WORK

Christian Stoif in the paper “Hardware Synchronization for

Embedded Multi-Core Processors,” proposed Multi-Access

Controller (MACtrl) consists of core-side and inter-core logic,

establishing coherence and consistency for different types of

shared memory by hardware means. It also support for point-

to-point synchronization between the processor cores is
realized implementing different hardware barriers. Multiple

cores use inherent parallelism by locking shared memory more

intelligently using an address-sensitive method.

Speculative Lock Elision (SLE) [11], a hardware-based

approach which elides the unnecessary lock-induced

serialization from dynamic execution stream and enable highly

concurrent multithreaded execution. It allows non-conflicting

critical sections to be executed ad committed concurrently.

Misspeculation due to inter-thread data conflict is detected

2459

International Journal of Engineering Research & Technology (IJERT)

Vol. 3 Issue 2, February - 2014

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS21223

using existing cache mechanism and roll back is used for

recovery. SLE guarantees correct execution even in the

absence of precise information from software and independent

of nesting levels and memory ordering. Successful speculation

elision is validated and committed without acquiring lock. In

the paper “Transactional Lock-Free Execution of Lock-Based
Programs,” he proposed Transactional Lock Removal. When

data conflict occurs corresponding threads are restarted to

acquire the lock in a serialized manner. Transactional Lock

Removal (TLR)[9] also uses hardware to convert lock-based

critical sections transparently and dynamically into lock-free

optimistic transaction. It resolves data conflict based on time

stamp in order to provide transactional semantics and freedom

from starvation.

Monchiero proposed a hardware lock that optimizes power

and performance by replacing the processors polling with

hardware notification in the paper “Power/performance

hardware optimization for synchronization intensive
applications in mpsocs”. The idea is to locally perform the

synchronization operations which require the continuous

polling of a shared variable, thus featuring large contention.

They used a hardware block called Synchronization – operation

Buffer (SB) which monitors the processors energy and

bandwidth consuming polling operation can be avoided. SB is

portioned into two separate components. One is devoted to

manage events, named Event Buffer (EB), the other one is

dedicated to spinlocks, named Lock Buffer (LB). SB queues

and manages the requests issued by the processors. This

improves performance and energy efficiency of data
synchronization by reducing memory overhead [5].

Shavit proposed a software method for supporting flexible

transactional programming of synchronization operations

Software Transactional Memory (STM) in the paper

“Software Transactional Memory”. STM is non-blocking and

can be implemented on existing methods using only a

Load_Linked/Store_Conditional operation. TM provides

sufficient programmability to the programmers by abstracting

the details of synchronization. Programmers rather focus on

functionality. Even though TM simplifies the programming

model and maximizes the concurrency, transaction may suffer

from interference which causes them to abort and from heavy
overheads for memory accesses [12].

 Takayuki in the paper “Adaptive Locks: Combining

Transactions and Locks for Efficient Concurrency,” proposed

an adaptive locking technique that dynamically observes

whether a critical section would be best executed

transactionally or while holding a mutex lock. The critical new

elements of our approach include the adaptivity logic and cost-

benefit analysis, a low overhead implementation of statistics

collection and adaptive locking in a full C compiler, and an

exposition of the effects on the programming model. Adaptive

locks simplify the programming model by reducing the need
for fine-grained locking: with adaptive locks, the programmer

can specify coarse-grained locking annotations and often

achieve fine-grained locking performance due to the

transactional memory mechanisms. Some other works

proposed energy-aware lock methods [3].

III. SYNC-LOCK

Ideal synchronization is the elimination of speculative
execution while exploiting parallelism as much as possible.

Sync-Lock is such a synchronization scheme. It uses the

address range for detecting true dependencies which decide

whether to execute or hold the operation. If the cores are

accessing different variables, Sync-lock detects no conflict.

Then operation can be performed simultaneously, achieving

Transactional Memory (TM) [13] like parallelism. The system

will permit only one access at a time if there is a true conflict

among the cores. Moreover, the cores without access

permission move into clock-gated state to reduce dynamic

power consumption. Consequently Sync-Lock yields higher

energy efficiency than TM and provides higher performance
than Lock.

A. Concept

The main idea of Sync-Lock system is to exploit available

parallelism with true conflict detection and to minimize

dynamic power consumption with clock-gating idle cores.

Fig.1 shows the concept of locking scheme. For explaining the
concept a dual core system is considered and the

synchronization among the cores is handled by Sync-Lock.

Fig. 1. Concept of Sync-Lock mechanism

Before executing the critical section, every core sends the

address range to be accessed i.e., address range0 (core0) and

address range1 (core1). After that, the centralized peripheral
Sync-Lock decides whether address range overlaps or not. If

there is an overlap, only one among the cores that cause

conflict is permitted to run while the others are stalled with

clock gating until the former ends the execution. The clock

gating reduces dynamic power dissipation. If there is no true

dependencies among the cores simultaneous execution are

possible. This approach considers low power consumption

requirement of embedded system and also provide more

parallelism than lock-based method. This approach is energy

and performance efficient.

B. Sync-Lock Architecture

The top-level architecture of a shared memory multicore
system is shown in Fig. 2. There are N number of cores
connected to a shared memory. The synchronization is
handled by the hardware module Sync-Lock. Sync-Lock; the

Core0 Core1

Address range0

Address range1

Address

Conflict

Address

range1

Sync-Lock

Permit Hold

2460

International Journal of Engineering Research & Technology (IJERT)

Vol. 3 Issue 2, February - 2014

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS21223

hardware module is an additional peripheral and the key
component of synchronization mechanism which is in charge
of detecting true conflict among the accesses to shared data
and controlling clock-gating of cores. Each core is in charge of
setting the necessary information to Sync-Lock, which
includes base address, size, and type of the data it intends to
access. When the information is set, the core is allowed to
attempt its atomic operation by notifying the Sync-Lock.

Fig. 2. Top-level architecture

Sync-Lock do conflict checking and in case of conflict,
grants permission to only one of the cores while gating the
other cores which tend to access the data. Multiple cores can
get the permissions if the accesses are not involved in any true
conflict. After the core which has obtained the permission
completes its atomic access, it notifies the Sync-Lock that its
atomic access is finished. So the conflict checking routine in
Sync-Lock is again triggered. After conflict checking Sync-
Lock gives permission to another core by de-asserting the
corresponding clock gating signal. Each core in the processor
can record access information with Sync-Lock. It refers to a
storage that contains information for checking true conflict
with the accesses of other cores.

Access information consists of the following fields:

 BaseAddr: base address

 Size: access size

 R’/W: read/write

 gIdx: global index

 V: valid bit field for indication of the validity

gIdx is used as a time stamp. Each core can register at
most M such access records. Sync-Lock manages the status of
the entries by checking the valid fields thus put the incoming
record to an empty entry. Sync-Lock uses a dynamic priority
scheme to determine which core should get the grant to store

their access records. If the core gets grant it sets gIdx of the
newly registered record with a proper time stamp. After that,
the Sync-Lock check for conflicts by comparing the access
records of requested core and other cores records. The major
part of this process is done by the conflict checking logic. The
conflict checking logic checks for true conflicts among the
cores’ memory access. As an illustration, true conflict occurs
when the following conditions are simultaneously present:

 Both access records are valid

 Their address range overlaps

 At least one of them is a write operation

 gIdx of requesting core is greater

The first two conditions are obvious, while third one filters

out the false dependencies. The fourth condition detects the
possible data hazard. .

Sync-Lock look for the true conflict among requested
cores record and the other core records for producing clock
enable signal for the requesting core. If any conflict is
reported, it means requested atomic access cannot be executed
at this time and therefore Sync-Lock disables the clock of the
corresponding core by de-asserting clock enable signal. Also
conflict information are stored in a register so that the cores
can watch the events of the blocking core being cleared and
reattempt its access. When no conflicts are reported from the
other core, the core keeps running and executes the atomic
access for the corresponding access records.

Each core has its own fixed number of access records that

can be stored as M in the scheme. Therefore, if the number of

records to be registered is larger than M, some addresses

cannot be registered. Sync-Lock is designed to handle this

problem as well. Core’s operation is stalled if other cores are
executing critical section.

IV. RESULTS AND DISCUSSION

The design entry is modelled using Verilog HDL in Xilinx

ISE Design Suite 13.2 and the simulation of the design is

performed using Modelsim6.2c to validate the functionality of

the design.

Fig. 3. Simulation result of Sync-Lock

Core0

Core1

CoreN-1

Clock

Source

Sync-Lock

Memory

…

Clock_enable0

Clock_enableN-1

2461

International Journal of Engineering Research & Technology (IJERT)

Vol. 3 Issue 2, February - 2014

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS21223

A fully generic design of the Sync-Lock has been
developed in the hardware description language Verilog HDL
in order to allow easy scaling in terms of the processor cores.
The goal to keep the design as compact as possible is achieved
by a code optimized algorithm that allows the core to access
the shared memory in case no true conflict. For this purpose
access information are first recorded before accessing the
critical section. This access records are checked for conflict
with cores which are accessing the critical section to produce
clock enable signal. Once the atomic is finished they are
notified to the Sync-Lock manager so that cores that are clock
gated can again check for conflict.

V. CONCLUSION

This is an energy and performance efficient data

synchronization for multicore embedded systems. It can save

more energy by gating the clocks of some cores which request

shared data but are blocked since data are being occupied by

other cores. In order to minimize the performance loss due to

conflict, Sync-Lock checks the true dependencies among the

cores by examining their address range, access type and so on,

unlike traditional lock. These properties of this synchronization
scheme combine the advantages of locks and TM .It consists of

special hardware Sync-Lock. The modules of this

synchronization hardware are described by Verilog HDL to

allow easy scaling and they are simulated for the functionality

using ModelSim 6.2c.

REFERENCES

[1] Christian Stoif, Martin Schoeberl, Benito Liccardi, Jan Haase,

“Hardware Synchronization for Embedded Multi-Core Processors”

IEEE International Symposium on Circuits and Systems (ISCAS),

[2] Bryon Moyer, Real World Multicore Embedded Systems, 1st Edition
Elsevier/Newnes, 2013

[3] T. Usui, R. Behrends, J. Evans, and Y. Smaragdakis, “Adaptive Locks:

Combining Transactions and Locks for Efficient Concurrency,” Journal
of Parallel and Distributed Computing, vol. 70, no. 10, pp. 1009–1023,

2010.

[4] A. Tumeo et al., “HW/SW methodologies for synchronization in FPGA

multiprocessors,” in FPGA’09, Monterey, California, USA. IEEE Press,
2009, pp. 265–268.

[5] M. Monchiero, G. Palermo, C. Silvano, and O. Villa,

“Power/performance hardware optimization for synchronization
intensive applications in mpsocs,” in Proc. Design, Automation and Test

in Europe, vol. 1, 2006

[6] J. Li, J. F. Martinez, and M. C. Huang, “The Thrifty Barrier: Energy-
Aware Synchronization in Shared-Memory Multiprocessors,” in Proc.

Int’l Symp. on IEEE High-Performance Computer Architecture, vol. 10,
2004, pp. 14–23.

[7] P. G. Paulin, C. Pilkington, M. Langevin, E. Bensoudane, and G.

Nicolescu, “Parallel Programming Models for a Multi-Processor SoC
Platform Applied to High-speed Traffic Management,” in Proc. 2nd

IEEE/ACM/IFIP Int’l. Conf. on Hardware/Software Codesign and
Systems Synthesis, CODES+ISSS 2004, 2004, pp. 48–53

[8] M. Herlihy, V. Luchangco, M. Moir, and W. Scherer III, “Software

Transactional Memory for Dynamic-Sized Data Structures,” in Proc. of
the 22nd Symp. on Principles of Distributed Computing.ACM, 2003, pp.

92–101.

[9] R. Rajwar and J. Goodman, “Transactional Lock-Free Execution of
Lock-Based Programs,” in Proc. 10th Int’l Conf. on Architectural

Support for Programming Languages and Operating systems. ACM,
2002, pp. 5–17.

[10] Eung S. Shin, Vincent J. Mooney III and George F. Riley, “ Round-
robin Arbiter Design and Generation, ” ISSS’02

[11] R. Rajwar and J. Goodman, “Speculative Lock Elision: Enabling Highly

Concurrent Multithreaded Execution,” in Proc. 34th Annual ACM/IEEE
Int’l. Symp. on Microarchitecture. IEEE Computer Society, 2001, pp.

294–305

[12] N. Shavit and D. Touitou, “Software Transactional Memory,” in Proc.
14th Symp. on Principles of Distributed Computing. ACM, 1995, pp.

204–213

[13] M. Herlihy and J. E. B. Moss, “Transactional Memory: Architectural
Support For Lock-free Data Structures,” in Proc. 20th Int’l Symp. on

Computer Architecture (ISCA ’93), 1993, pp. 289–300.

2462

International Journal of Engineering Research & Technology (IJERT)

Vol. 3 Issue 2, February - 2014

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS21223

