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                  Abstract 
For high data rate Multiple Input 

Multiple Output technology is used in 

wireless communications. The use of 

multiple antennas at both transmitter 

and receiver (MIMO) significantly 

increases the capacity and spectral 

efficiency of wireless systems. This 

project presents a Field Programmable 

Gate Array (FPGA) implementation for 

a 4 x 4 breadth first K- best MIMO 

decoder using a 64 Quadrature 

Amplitude Modulation (QAM) scheme. 

A project sort free approach to path 

extension, as well as, quantized metrics 

result in a high throughput, low power 

and area. Finally, VLSI architectural 

trade-offs are explored for a synthesized 

using the power analysis, throughput 

analysis in 120nm technology. The 

power needed is 20.0025 μW. 

                I.INTRODUCTION 

To satisfy the growing demand of high-speed, 

reliable wireless communication, MIMO 

techniques are extensively deployed in several 

standards, ranging from local area networks to 

mobile systems. In principle, multiple transmit 

antennas increase the transmission rate; 

multiple receive antennas improve signal 

reliability, equivalently extending the 

communication range.             

 Complex computations are therefore required for 

MIMO algorithms to jointly combine the multiple 

input streams at the receiver end. The sphere 

decoding algorithm is one of the most promising 

solutions to achieve Maximum Likelihood (ML) 

performance with reasonable computational 

complexity. Direct mapping from algorithm to 

hardware is straightforward, but not power and area- 

efficient. Leveraging specific data patterns and 

application, the DSP architecture can be better 

optimized for reduced power and area.  

    The k-best decoding approach reduces the MIMO 

detection problem to a tree search operation, where 

nodes that exceed a certain metric are pruned to 

reduce the search space [2].Furthermore, to maintain 

a constant throughput, at each level of the tree, K 

best nodes are selected to be expanded to the next 

level. Any other nodes are discarded. This process 

essentially involves two tasks. The first task involves 

finding the “center” at that specific tree level, while 

the second task involves finding the partial branch 

metric or cost of extension to a node. 

  
 OBJECTIVES: 

   The main objective of this project is to develop a 

sort free algorithm using XILINX ISE 14.3where the 

focus is to set high throughput, low power and area. 

The objectives of the system are presented below: 

1. Reducing complexity that grows exponentially 

with the number of transmitting and receiving 

antennas (MIMO). 

2. Achieve near ML performance together with 

reduced complexity. 
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II. LITERATURE REVIEW 

Multiple-Input Multiple-Output (MIMO) technology 

has emerged as a promising technology for 

achieving the high data rates of next generation 

wireless communication systems. MIMO systems 

improve either the bit-error rate (BER) performance 

by using Spatial diversity or the data rate via spatial 

multiplexing. However, Maximum-likelihood (ML) 

detection for high order MIMO systems faces a 

major challenge in computational Complexity that 

grows exponentially with the number of transmit and 

receive antennas. This limits the practicality of these 

systems from an implementation point of view, 

particularly for mobile battery-operated devices. 

    This reality motivated researchers to consider 

other suboptimal approaches for MIMO decoding, 

such as Zero Forcing (ZF), Minimum Mean Square 

Error (MMSE) and VBLAST (Proakis & Salehi, 

1994; Guo & Nilsson, 2003; Myllyla et al., 2005). 

All of these suboptimal approaches vary in 

performance and complexity. Recently, the sphere 

decoding (SD) algorithm which is a tree-based 

search algorithm enabled the implementation of 

efficient MIMO decoders that achieve near MLD 

performance together with reduced complexity 

(Burg et al., 2005; Barbero et al., 2005; Khairy et al., 

2009). Instead of the exhaustive search over all 

possible combinations of the transmitted symbols, 

the SD algorithm reduces the complexity by 

searching only over a finite number of symbols 

within a circle of radius R centered at the received 

vector. While the SD approach provides a near ML 

solution, the runtime measured by the required 

operations to find the optimum solution is highly 

dependent on the received signal to noise ratio and 

the channel conditions. Consequently, the SD 

algorithm experiences variable throughput problems 

as the search radius R for each symbol varies 

according to the noise levels and the channel 

coefficients. Moreover, the sequential search results 

in hardware implementations that are not fully 

pipelined. 

    To alleviate these problems, the fixed sphere 

decoding (FSD) algorithm was recently proposed 

(Barbero & Thompson, 2006 b). The FSD algorithm 

achieves a fixed throughput performance and enables 

fully-pipelined hardware by performing fixed 

number of operations per detected symbol, 

independent of the noise level. 

    All of which vary in performance and complexity. 

Recently, there has been significant research activity 

in k-best sphere decoders [2], [3] as a means of 

achieving close to ML solutions with lower 

complexity.  

    The k-best decoding approach reduces the MIMO 

detection problem to a tree search operation, where 

nodes that exceed a certain metric are pruned to 

reduce the search space [2]. Furthermore, to 

maintain a constant throughput, at each level of the 

tree, K best nodes are selected to be expanded to the 

next level. Any other nodes are discarded. 

 

PROPOSED SORT-FREE APPROACH 
   The WPE technique is illustrated in Fig. 3.3. 

Instead of extending all the children of a node in 

parallel, only the minimum metric child of each node 

is extended. The minimum among these is selected 

as the winner and the first of the K-best extended 

paths; the parent who produced the winner is 

allowed to extend to its next best child, and the 

process is repeated till all K paths have been 

extended. This requires only 2K-1 paths to be 

extended for selection of K paths, and eliminates the 

need for a sorter. This approach has been first 

reported by the authors in [12] and [13], and also 

independently in [15] and [16]. In this paper, we 

study the complexity of the WPE approach versus 

traditional extension and sorting. 

 
 

Fig 1 Sort-free, WPE approach. 

K-BEST DETECTOR (KB): 
The K-best detector can guarantee a fixed 

throughput and has a BER performance that is close 

to-ML. In the following, the focus will be on the 

VLSI implementation of the K-best algorithm. 

Contributions: The main contributions of this are 

summarized as follows: 
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1. A new K-best architecture is presented 

that operates in a pipelined and parallel 

fashion. 

2. A simplified K-best algorithm based on 

the l-1norm is introduced, which    

greatly reduces circuit complexity and 

increases throughput, while only causing 

a small BER performance degradation. 

3. Finally, a design space exploration 

examines different algorithm and 

architecture trade-offs for the 

implementation of the K-best algorithm. 

The presented designs achieve of up to 

100 Mbps for K=64 or K=8. 

 

 

Figure2.  One of 2MT pipeline stages of the K-best 

VLSI architecture 

    The K-best detector is pipelined such that one 

layer of the tree is always processed in one pipeline 

stage (Fig. 2). Each stage consists of a metric 

computation unit (MCU), a K-best unit (KBU) that 

determines the K smallest PEDs, and a register bank 

LK where the K smallest nodes of the previous layer 

are stored. Together, they form a computation unit. 

Resource sharing is applied such that the K nodes at 

the input of the stage are processed one after the 

other. In each cycle, the MCU delivers the PEDs of 

all children of a parent node in LK. These PEDs 

need to be sorted into a list LK where the K smallest 

PEDs found so far are stored. After K iterations, all 

children ofthe nodes in LK have been computed by 

the MCU. The KBU has determined the K smallest 

PEDs and delivers them to the next pipeline stage. In 

total, 2MT almost identical copies of the 

computation unit form the 2MT pipeline stages of 

the detector. 

 

III. MIMO Detection Methods 
3.1 ZERO-FORCING (ZF) DETECTOR 
The ZF detector first solves 

2

Ω∈s
ML ||Hsy||arg=S min

M

                      (1) 

 neglecting the constraint s  

||Hsy||minarg=s~
nR∈s

Δ

      

.y~L=||Lsy~||minarg= 1

R∈s n
                         (2) 

Of course, 
1L does not need to be explicitly 

computed. For example, one can do Gaussian 

elimination: take 1,111 L/y~=s~ , then 

2,21,2122 L/)L/s~y~(=s~  and so forth. ZF then 

approximates S by projecting each ks
~

onto the 

constellation S. |s~s|minarg=]s~[=ŝ kk
s∈s

Δ

kk
k

   (3) 

We see that s~ = eQL+s T1
 so ks

~
in 1 is free of 

inter symbol interference. This is how ZF got its 

name. However, unfortunately ZF works poorly 

unless H is well conditioned. The reason is that the 

correlation between the noises in ks
~

is neglected in 

the projection operation (). This correlation can be 

very strong, especially if H is ill conditioned. 

   There are some variants of the ZF approach. For 

example, instead of computing s~ as in (1), one can 

use the MMSE estimate (take s~ = E[s|y]). This can 

improve performance somewhat, but it does not 

overcome the fundamental problem of the approach 
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Figure 3.1 Exemplified for binary modulation (S = 

{–1, +1}, |S| = 2) and n = 3. The branch metrics 

fk(s1, . . ., sk) are in blue written next to each branch. 

The cumulative metrics f1(s1)+ . . . + fk(s1, . .sk) are 

written in red in the circles representing each node. 

The double circle represents the optimal (ML) 

decision. 

3.2 Sphere Decoding (SD) 
The SD [2], [9] first selects a user parameter R, 

called the sphere radius. It then traverses the entire 

tree (from left to right, say). However, once it 

encounters a node with cumulative metric larger than 

R, then it does not follow down any branch from this 

node. Hence, in effect, SD enumerates all leaf nodes 

which lie inside the sphere ≤ R this also 

explains the algorithm’s name. 

     In Figure 3.2, we set the sphere radius to R= 6. 

The SD algorithm then traverses the tree from left to 

right. When it encounters the node “7” in the right 

sub tree, for which 7 > 6 =R, SD does not follow any 

branches emanating from it. Similarly, since 8 > 6, 

SD does not visit any branches below the node “8” 

in the rightmost sub tree. 

 
Figure 3.2 SD, No Pruning, (here : R=6) 

SD in this basic form can be much improved by a 

mechanism called pruning. The idea is this: Every 

time we reach a leaf node with cumulative metric M, 

we know that the solution to (4) must be contained in 

the sphere ≤ M. So if M <R, we can set  

R:=M, and continue the algorithm with a smaller 

sphere radius. Effectively, we will adaptively prune 

the decision tree, and visit much fewer nodes than 

those in the original sphere. Figure 5.3(c) 

exemplifies the pruning. Here the radius is initialized 

to R= , and then updated any time a leaf node is 

visited. For instance, when visiting the leaf node “4,” 

R will be set to R = 4. This means that the algorithm 

will not follow branches from nodes that have a 

branch metric larger than four. In particular, the 

algorithm does not examine any branches stemming 

from the node “5” in the right sub tree. 

    The SD algorithm can be improved in many other 

ways, too. The symbols can be sorted in an arbitrary 

order, and this order can be optimized. Also, when 

traveling down along the branches from a given 

node, one may enumerate the branches either in the 

natural order or in a zigzag fashion (e.g., ={-5,-3,-

1,-1,-3,5}versus = {-1,1,-3,3,-5,5}). The SD 

algorithm is easy to implement although the 

procedure cannot be directly parallelized. Given 

large enough initial radius R, SD will solve noise 

problem However, depending on H, the time the 

algorithm takes to finish will fluctuate, and may 

occasionally be very long. 

 

 
Figure 3.3 SD, Pruning (here R= ) 

 

 

3.3 FIXED-COMPLEXITY SPHERE 

DECODER (FCSD) 

FCSD [3] is, strictly speaking, not really sphere 

decoding, but rather a clever combination of brute-

force enumeration and a low-complexity, 

approximate detector. In view of the decision tree, 

FCSD visits all 
r|s| nodes on layer r, where 

r, n≤r≤0 is a user parameter. For each node on 

layer r, the algorithm considers { rs,...,s 11 } fixed 

and formulates and solves the sub 

problem

)}s,...,s(f_...+)s,...,s(f{min n1n1+r11+r
s∈s}s,..,,s{ kn1

 In 
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effect, by doing so, FCSD will reach down to 
r|s| of 

the 
n|s| leaves. To form its symbol decisions, FCSD 

selects the leaf, among the leaves it has visited, 

which has the smallest cumulative 

metric )s...s(f+...+)s(f n1n11 . The sub problem 

(3.6) must be solved once for each 

combination }s....s{ n1 , that is 
r|s| times. FCSD does 

this approximately, using a low-complexity method 

(ZF or ZF-DF are good choices). This works well 

because (3.6) is over determined: there are n 

observations )y~...y~( n1 , but only n – r 

unknowns )s...s( n1+r . More precisely, the equivalent 

channel matrix will be a tall sub matrix of H, which 

is generally much better conditioned than H. Figure 

(3.4) illustrates the algorithm. Here r=1. Thus, both 

nodes “1” and “5” in the layer closest to the root 

node are visited. Starting from each of these two 

nodes, a ZF-DF search is performed. 

    Naturally, the symbol ordering can be optimized. 

The optimal ordering is the one which renders the 

problem (2) most well-conditioned. This is achieved 

by sorting the symbols so that the most “difficult” 

symbols end up near the tree root. Note that 

“difficult symbol” is nontrivial to define precisely 

here, but intuitively think of it as a symbol for 

which  ∑ k,k is large. 

    The choice of r offers a tradeoff between 

complexity and performance. FCSD solves (1) with 

high probability even for small r, it runs in constant 

time, and it has a natural parallel structure. Relatives 

of FCSD that produce soft output also exist [4]. 

 
Figure 3.4 FCSD (here r=1) 

IV.HARDWARE IMPLEMENTATION 

 

Figure 4 Sort Free 4x4 MIMO Decoder H/W Block. 

The input data received will be in the Complex form 

which contains the data received by a receiver the 

received  data will convoluted with the channel 

model (will be the sum of all the data transmitted by 

4 transmitters). The data fed will already be 

multiplied by Unitary matrix Q’(Transpose of Q) 

    The 1
st
 data from the receive memory will be 1

st
 

sent to K-best module which will give the 8-(K) best 

possible values which will result in minimal error. 

The data and the error will be stored in the Tree 

array memory. 

    Subsequent data will be sent to path matrix 

computation block which intern feed to Minimum 

finder block which will find the minimum; this will 

be added with the error of previous message and 

stored in the Tree array. 

    The sequence is repeated for 3 levels. Once 

complete Tree building is done, the tree tracer will 

trace the tree to find the data with minimal error and 

stores in output Memory. 
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V. DETAILED FLOW CHART 

 
 

 

 Figure 5.  Detailed Flow Chart 

3474

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 12, December - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS121304



 

  

 

 

 
 

In the paper, a MIMO transmitter and receiver 

system has been used. In this project, four 

transmitter and four receivers are considered. The 

idea can be further extended to any number of 

transmitter and receivers but it would require a lot 

more hardware than the design present in this 

project. The alphabet size is assumed to be 64 also 

known as constellation size. Now, four transmitters 

can send any of the 64 constellations. The aim of the 

receiver should be decode the signal which is nearest 

to the transmitted signal i.e. the signal which has the 

minimum noise.  At the receiver end, all the 

receivers would be getting the combined signals 

from the all the four transmitters. This can be viewed 

as a tree which has 64 branches emerging from the 

root node. Now, 64 branches from the root node 

denote the 64 constellations which the any of the 

four transmitters has sent. At next level of the tree, 

each of these 64 branches will have 64 more 

branches. Now at level 2, the tree covers the any 

combination of the signals from any of the 2 

transmitters. At the level 2, there would 4096 

combinations of the signal can be possible. In this 

project, four transmitter have been studied which 

means by the time the end of tree is reached till the 

level four there would be 16777216  leaf nodes. The 

traversing of each of these nodes from the root node 

is a humongous task and will require a lot of 

hardware support. In case, the hardware optimization 

is considered the amount of time to calculate the 

decoded signal would be very large. The maximum 

likelihood will traverse each node and find out the 

minimum path metric of each leaf node. At each 

level, matrix multiplication is used to calculate the 

noise. The noise of each branch of the tree is known 

as branch matrix. All the paths form the leaf root 

node to the leaf node is traversed. For each traversed 

path, the branch metric of each node in that path is 

added and stored in the memory. The path (from the 

root to the leaf node) which has the smallest path 

metric is the decoded signal. It is pretty clear if the 

maximum likelihood algorithm is used for the 

decoding of the signals, it will require a lot of 

hardware. Also, if the numbers of transmitters are 

more, at some point of time it would become 

impractical to implement the maximum likelihood. 
    So, in the above flowchart another decoding 

technique called fixed sphere decoding has been 

used which is more practical to implement in 

hardware. In this implementation, the “fixed” (also 
known as “K”) has been limited to eight. In this 

technique, the noise is calculated for all the 64 

constellations at the level 1 of the tree. Out of these 

64 constellations, only eight nodes are selected. The 

selection criterion is the nodes which have the 

minimum branch metric value.  

     The branch metric for the each node at level 1 is 

the difference of correct signal and received signal. 

The correct signal is calculated by multiplication of 

each constellation(C) (which represents nodes in the 

tree) with channel realization metric (R) as shown as 

first step in the flowchart. Now difference of each 

multiplication with received signal is stored into the 

memory. At this point of time, all the path metric of 

the nodes (corresponding to the each constellation) is 

known. Now, using the stored value, the eight nodes 

for which the path metric is minimum are selected. 

All the other nodes would not be traversed further 

and would be discarded. Now, for these eight nodes 

further traversing will be done. Each of the eight 

nodes would have 64 child nodes.  

    One of these eight nodes is selected; again the 

difference of the correct signal with the received 

signal is calculated. At the level 2, the received 

signal is combination of one constellation with 

another constellation. For the correct signal 

calculation, the constellation of the parent node is 

fixed (one of the eight node selected above) i.e. one 

constellation is fixed. The second constellation can 

have 64 values as represented by the 64 child node 

of the selected node. So, 64 branch metric are 

calculated for the 64 nodes and stored into the 

memory. Once the entire 64 branch metric are 

available, the path metric of the parent node is added 

to these branch metric to calculate the path metric of 

the 64 child nodes. The child node which has the 

minimum path metric is selected and all the 

remaining 63 nodes are discarded. This selected 

node will have 64 child nodes (at level 3). The 

received signal at this level would be combination of 

3 constellation points. For the correct signal 

calculation, first 2 nodes (representing the selected 

constellations above at level1 & level2) are fixed. 

The third signal can be any of the 64 constellation 

point. The difference between all the 64 correct 

signal and received signal is calculated and stored in 

the memory. Once all the 64 noise are available, the 

node which has the smallest noise is selected for 

further and other 63 nodes are rejected. Again, the 

same process is repeated at the final level (level 4) 

by keeping the first 3 constellations fixed. The 64 
differences between the correct signal and received 
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signal is calculated. The node with the smallest 

difference (minimum noise) is selected and stored. In 

this way, the first path of the complete tree is 

traversed and a received signal has been decoded. 

The same process of depth first search tree traversing 

is done for the remaining seven nodes selected at the 

level 1. At the end of it, 8 paths would be available 

and the path which has the minimum path metric 

would be the decoded signal from the decoder. This 

implementation is present in each of the four 

receivers. 

 

IV. VLSI ARCHITECTURE 
The detector cell architecture of the system is shown 

in Fig. 3. The two basic tasks of computing the 

center and computing the path metric are carried out 

by the center calculator (CC) and the path metric 

computer (PM) block, respectively. Each detector 

cell has its local memory blocks, M1 and M2. At the 

beginning of the cycle, M1 contains the K best paths 

extended till the (i-1) the level. In each cycle, the 

computes, in parallel, the PEDs points of their 

children of one of the K parent nodes. Typically, 

multiple detector cells are employed on a chip to 

achieve the required throughput. Each detector cell 

processes one received symbol; however, each 

detector cell requires different multiplicative 

resources based on the tree level it is processing. 

Finally, the WPE technique also requires the 

selection of the minimum metric path from a set of K 

paths after every extension. This is achieved by the 

Min Finder (MF) block, which is implemented using 

a logarithmic arrangement of K comparators. The 

MF is pipelined with registers after every 

comparator 

 

V. SIMULATION RESULTS AND  

VERIFICATION 

 
An FPGA implementation of the system utilizing six 

parallel detectors was carried out using a Xilinx 

XC2VP30device. The experimental results are 

shown the simulation results in Fig. 5 the entire 

decoder performance. Fig 6.Denotes the Synopsys 

power report, where the power required is 20.0025 

μW for the KB unit. The area analysis using 

Synopsys is given in fig 7.The detection problem 

and the computational complexity is reduced. The 

throughput value obtained is about453Mbps. The 

Min Finder (MF) block, which is implemented using 

a logarithmic arrangement of K comparators and the 

MF is pipelined with registers after every 

comparator. Therefore, the power consumption is 

reduced and the computational complexity is 

reduced. The applications like smart antennas are 

used with the technology. 

 

 
 

Figure 5.1 Ascending order Sorter Output 

Figure 5.2 Sort Free Output 
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V. CONCLUSION 

A novel, high –throughput, VLSI architecture for the 

K-best MIMO detector system has been simulated 

using Synopsys, ModelSim and verified. The use of 

sort free K-best engine in conjunction with a 

quantized path metric unit yields a highly scalable 

and power efficient architecture as compared to 

state-of-the art approaches. A 4 x 4 breadth first K-

best MIMO decoder using a 64 Quadrature 

Amplitude Modulation (QAM) scheme is carried 

out. A novel sort free approach to path extension, as 

well as, quantized metrics result in a high 

throughput, low power and area is obtained. 
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