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Abstract— Testing is an important step in the application creation 

process, aimed at identifying and correcting mistakes or defects 

introduced by the programmers. Tackling these problems later in 

the application development lifecycle might have a larger impact. 

To reduce this, early discovery of errors is critical, as is 

maximizing the use of testing resources. During fault estimation, 

software components are classified as fault-prone or non-defect-

prone. This work aims to improve the efficiency and accuracy of 

detecting fractured software modules using a hybrid method. The 

approach includes preliminary processing, features reduction in 

dimensionality, and classifier. The model is evaluated using a 

publicly accessible dataset from NASA. PCA-LDA is a 

combination of PCA, or Principal Component Analysis, and LDA, 

or Linear Discriminant Analysis, that is used to reduce the 

dimensionality of vector features. The expected outcome rate is 

determined using the AdaBoost boosting approach with a random 

forest (ABR). Several performance measures are examined to 

verify the model that is suggested, include precision, sensitiveness, 

specificity, the F1 score, and MCC. The average accuracy of the 

PCA+ABR algorithm on the PC2 dataset is 0.9919. The 

experimental findings show that the proposed model outperforms 

current models in fault prediction accuracy. 

Keywords— Software Defect Prediction, Principal Component 

Analysis, Random Forest, AdaBoost, ABR, NASA Dataset 

I. INTRODUCTION

In order to anticipate and detect possible software flaws prior to 

deployment, sophisticated computational approaches are 

utilized in the introduction to machine learning-based software 

bug prediction. Machine learning models—that is, 

classification algorithms—are used to examine past project data 

and identify trends associated with the presence of defects. 

These models use key metrics as input characteristics, such 

code complexities, code churn, and development experience. 

By automating the detection process and giving developers 

insights into high-risk regions that could need more 

examination, machine learning is used to the prediction of bugs. 

Teams may improve overall software quality, allocate resources 

more efficiently, and proactively address possible problems by 

incorporating the use of machine learning for bug predictions 

into the application development method. Notwithstanding 

difficulties brought on by the unpredictable characteristics of 

the development of software, machine learning offers a 

promising approach to minimize post-release defects and 

streamline the debugging process. 

utilizing cutting-edge computational approaches, software fault 

prediction utilizing machine learning aims to detect and predict 

any flaws or mistakes in software systems prior to deployment. 

The primary aim is to handle software dependability in a 

proactive manner by utilizing machine learning models, namely 

classification algorithms, to examine past project data and 

identify trends linked to the incidence of errors. These models 

usage a diversity of metrics as input characteristics, including 

code complexity, code updates, and previous fault occurrences. 

Software fault calculation uses machine learning to automate 

the recognition of trouble regions so that developers may 

concentrate on important components throughout the 

development process. Testing efficiency is increased when 

machine learning-based defect prediction is incorporated into 

the application creation process. 

The application of machine learning (ML) in bug forecasting 

has become a proactive approach in software development to 

improve software quality. Conventional bug prediction is based 

on the examination of past data, whereas machine learning 
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techniques offer an evolving and automatic method. Based on 

measures like complexity of code and knowledge of developers, 

ML models, in particular classification algorithms, can detect 

possible bug-prone regions by looking for patterns and links in 

data. With this method, engineers may quickly resolve 

problems, manage resources effectively, and expedite the 

debugging process. A state-of-the-art development in software 

engineering, ML-driven bug prediction encourages a more 

proactive and economical use of resources in order to guarantee 

stable and dependable software systems. 

The potential of machine learning to transform software 

development, guaranteeing improved dependability and fewer 

post-release problems, makes it an important tool for predicting 

software bugs. Machine learning models may discover possible 

bug-prone locations by utilizing complex algorithms and 

historical data. This enables developers to efficiently allocate 

resources and prioritize testing efforts. By taking a proactive 

stance, major errors are less likely to occur, which improves 

both software performance and customer satisfaction. In 

addition to automating the detection of possible problems, 

machine learning also adjusts to changing project conditions, 

offering a data-driven and dynamic approach to software bug 

management. By using machine learning into bug prediction, 

developers may anticipate problems before they arise, optimize 

development processes, and provide end users with software 

solutions that are more reliable and durable. 

II. LITRETURE REVIEW

In the year of 2023 Das et al. [1] executed AB, RF, NB, J48, 

MLP and ADRF machine learning algorithm in JM1, PC5, PC4, 

MC1 and KC1 datasets to develop a vastly accurate method 

identified as PCA+ADRF for identifying software faults in 

specific modules and got nearly0. 985 accuracy in it. In the year 

of 2018, Hammouri et al. [2] published a paper on “Software 

Bug Prediction using Machine Learning Approach” . The 

experimental results showed that the ML approach 

outperformed other approaches, such as linear AR and POWM 

models, in terms of prediction model performance. Three 

different supervised machine learning algorithms were 

employed for forecasting future software defects by leveraging 

historical data. These algorithms include Naïve Bayes  (NB), 

Decision Tree (DT) and Artificial Neural Networks (ANN). 

These algorithms were implements in the datasets DS1, DS2 

and DS3 in 0.93 accuracy. In 2019, Tian et al. [3] published a 

paper on “Software Defect Prediction based on Machine 

Learning Algorithms”. The paper begins by outlining the 

concept of software defect prediction, with a subsequent 

emphasis on the machine. They use Naïve Bayes, Ensemble 

Learners, Neural Networks, SVM classifiers and implements in 

JM1 dataset. In the year 2018, Hammouri et al. [4] examined 

the application of machine learning algorithms for predicting 

software bugs. He used various machine learning methods like 

NB, DT, ANNs. He applied these classifiers in the datasets i.e. 

DS1, DS2 and DS3 having accuracy of 0.93. In 2019, Iqbal et 

al. [5] published a paper on “Performance Analysis of Machine 

Learning Techniques on Software Defect Prediction using 

NASA Datasets”. The research results can serve as a baseline 

for future studies, allowing for easy comparison and 

verification of proposed techniques, models, or frameworks. 

The classifiers includes: NB, MLP, RBF, SVM, KNN, kStar, 

OneR, DT, RF. These algorithms were implements in the 

dataset PC2 in 0.976959 accuracy.  In the year 2021 Mustaqeem 

et al. [6] Present a novel approach that involves combining two 

highly promising algorithms for optimization and feature 

selection with the aim of achieving. He used classifiers, that are 

SVM, PCA which are implemented in datasets CM1 and KC1 

and he got 0.9520 accuracy in that . In 2020, Rathore et al. [7] 

published a paper on “An empirical study of ensemble 

techniques for software fault prediction”.  The findings 

presented in this paper may prove beneficial to the research 

community by aiding in the development of precise fault 

prediction models through the selection of suitable ensemble 

techniques. They used Naive Bayes, logistic regression, J48 

algorithms, which were implemented in Ant, Camel, Jedit, 

Lucene, Poi, Prop, Tomcat, Xalan and Xerces datasets in 

accuracy of 0.8848. In 2019, Wang et al. [8] published a paper 

on “A cluster-based hybrid feature selection method for defect 

prediction”. In this research, the authors introduced a novel 

approach for feature selection, which combines filter and 

wrapper methods in a hybrid manner to address the issue. This 

method defines a feature quality coefficient using spectral 

clustering and utilizes sequential forward selection to derive the 

ultimate feature subset. They use K-Nearest Neighbor, Decision 

Tree and Random Forest classifiers and implements in Camel, 

Jedit, Lucene, Synapse, Xerces dataset. In 2017, Li et al. [9] 

published a paper on “Software Defect Prediction via 

Convolutional Neural Network”. The paper focuses on 

predicting code defects in software implementation to reduce 

the workload of software maintenance and improve reliability. 

They use CNN classifier and implements in xerces dataset in 

0.845 accuracy. In 2019, Yalciner et al. [10] published a paper 

on “Software Defect Estimation Using Machine Learning 

Algorithms”. In this study, the authors assessed the 

performance of machine learning algorithms in predicting 

software defects and identified the top-performing category by 

evaluating seven different machine learning algorithms using 

four NASA datasets. They use Bayesian Learners, Ensemble 

Learners, SVM and  Neural Networks classifiers and 

implements in PC1, CM1, KC1 and KC2 datasets in 0.94 

accuracy. 

III. PROPOSED WORK

Figure 1 shows the block figure for the future work, which 

includes six independent units: NASA dataset, data pre-

processing, dimensionality reduction, random forest, 

AdaBoost, and performance evaluation. 
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Fig 1. Block drawing for the proposed model 

A. Dataset

We used the NASA Dataset, which is made up of fourteen

distinct datasets, from the PROMISE repository for our

research project[11].

For our experiment, we have utilized five of the fourteen

datasets available. The following table provides the datasets'

details.

TABLE I.   DATASET DETAILED 

Dataset 
Total 

Instance 
Non defective 

instance 
Defective 
instance 

KC1 1183 869 314 

MC2 125 81 44 

PC1 705 644 61 

PC2 745 729 16 

MW1 253 226 27 

B. Feature normalization

Larger scale features might predominate during learning, which 

would skew model predictions. Regardless of their scales, 

normalization guarantees that every feature contributes equally 

to the model's learning process. When features are similar in 

size, many machine learning techniques, such optimization 

algorithms based on gradient descent, converge more quickly. 

Normalization makes model training faster and more smoothly 

convergent. Normalization facilitates the interpretation of the 

significance of the model's features. It could be difficult to 

compare the relative relevance of features that are scaled 

differently without normalization. By bringing all 

characteristics to a comparable scale, normalization can lessen 

the influence of outliers in the dataset and increase the model's 

resilience to extreme values. 

B𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑𝑖𝑧𝑒𝑑=
B−µ

𝛼

B𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑𝑖𝑧𝑒𝑑  denotes the feature's lowest value in the dataset,

where B is the initial feature value.  

C. Dimensionality Reduction

The act of lowering the quantity of variables or structures while 

keeping relevant information is known as "dimensionality 

reduction" in the field of software error forecast 4using machine 

learning. In software engineering, where several measurements 

and characteristics are used to characterize software systems, 

maintaining high-dimensional information is commonplace, 

and this reduction is essential. Model interpretability, 

generalization performance, and efficiency of training are all 

improved when dimensionality is lowered since it lowers the 

difficulty of the statistics. Techniques for reducing the 

dimensions of a dataset seek to preserve important information 

linked to fault prediction while identifying the most useful 

characteristics and removing superfluous or unnecessary ones 

to provide a compact depiction of the original dataset. 

1) PCA

Principal A dimensionality reduction technique entitled

Principal Component Analysis (PCA) is frequently applied in

machine learning to enhance model performance and lower the

chance of over fitting. When it comes to software bug

prediction, principal component analysis (PCA) may be utilized

to pinpoint the key elements that influence the likelihood of

defects occurring.

One research suggested employing several dimensionality

approaches, such as PCA and Kernel PCA, to extract expressive

features from an underlying arrangement of fundamental

change measurements. Decision trees and artificial neural

networks were then used to train a classifier based on the

retrieved features. According to the study, the PCA approach

helped to enhance the classifier's performance by identifying

the key features that are responsible for the incidence of faults.

S=WΛWT                                                                        (2)

PCA contributes significantly to software fault prediction and

enhances software control and dependability. The most crucial

elements influencing the likelihood of failure can be found by

using PCA on characteristics taken from evaluation software .

This decrease in size enhances the understanding of the

underlying schema in addition to streamlining the dataset's

complexity. Consequently, PCA aids in the development of a

more effective and precise prediction model, enabling software

makers to report any problems and raise the standard of their

final output.

2) PCA-LDA

In the field of machine learning, methods for reducing

dimensionality like Principal Component Analysis (PCA) along

with Linear Discriminant Analysis (LDA) are frequently

employed to enhance model performance and lower the

likelihood of overfitting. When it comes to software fault

estimation, PCA-LDA may be used to pinpoint the key

elements that influence the likelihood of issues occurring.for

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV13IS020071
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

Volume 13, Issue 02, February 2024

www.ijert.org
www.ijert.org


anticipating software bugs. According to the study, PCA-LDA 

was capable of to pinpoint the key elements that influence the 

likelihood of defects, which enhanced the models' functionality. 

To sum up, PCA-LDA is an effective method that may be 

applied to raise the accuracy of machine learning algorithms in 

software defect forecasting. It can assist in determining the key 

elements that influence the likelihood of glitches, which might 

improve the models' correctness. 

This is how PCA-LDA is represented mathematically: 

PCA-LDA = LDA(PCA(X)) 

while PCA stands for principal component analysis, LDA for 

linear discriminant analysis, and X is the input . 

D. Machine learning Classification

A method for classifying data into different groups based on its 

properties is machine learning classification. Based on the 

properties of the program, machine learning classification may 

be used to anticipate the occurrence of problems in software. 

After comparing several machine learning tactics for 

determining the degree and importance of software problem 

reports and recommend the use of random forests, or optimum 

decision trees, as a method for more research. In order to 

determine the severity and importance of new issues, the 

method sought to build many decision trees using subsets of the 

current bug dataset and characteristics. The most suitable 

decision trees were then chosen. The method may be used to 

anticipate and identify problems in distributed systems and big, 

intricate networks of communication. 

One effective method for enhancing the efficiency of machine 

learning algorithms in software fault predictions is machine 

learning classification. It can assist in determining the key 

elements that influence the likelihood of bugs. 

1) Adaboost

An integrated learning technique called AdaBoost is frequently

used for machine learning to enhance performance of models

and lower the chance of overfitting. AdaBoost may be used to

forecast the likelihood of a software issue based on the

characteristics of the software.

In the field of machine learning, it is 0recognized and useful for

tasks requiring both regression and classification [21].  In order

to provide predictions, it makes use of the combined strength of

several decision trees that are based on mutual learning. Here,

random samples from the data collection are used to develop

several training techniques, giving the participants a choice of

data. Different objects chosen from the characteristics of

different training techniques should be used in this strategy to

generate distinct decision trees. Combining the forecasts from

each tree yields the final forecast. RF is superior to decision

trees in many ways. For instance, it is less effective as it makes

use of several trees as opposed to just one.

It is less susceptible to choosing the wrong hyperparameter and

can also deal with outliers and missing data. Robust algorithms

like Random Forests (RF) are helpful in image classification,

fraud detection, bioinformatics, and other domains. It's crucial

to realize, though, that RF may not be the ideal method. It is

vital to thoroughly compare several models and select the unity

that best fits the specific requirements of your issue.

Precision = TP / ( TP + FP ) 

2) Random Forest

A machine learning procedure called Random Forest has

become well-known for its efficiency in a number of fields,

including the prediction of software bugs. Predicting and

avoiding defects is crucial in software development to

guarantee the dependability and quality of solutions for

software. As a team-based learning approach, Random Forest

has several benefits that make it a good choice for predicting

software bugs.

The random forest's capacity to offer insightful information

makes it special. Each characteristic is given a crucial score by

the algorithm according to how well it contributes to prediction

accuracy. Knowing which aspects are most important in the

framework of software fault prevention can aid developers in

setting priorities for their tasks through review and

management.

Predicting software bugs frequently entails examining intricate

connections and trends seen in software repositories. Because

Random Forest can handle both numeric and categorical

variables, it may be used to extract a wide range of information

from databases used for issue tracking, versions management

systems, and source code. In the environment of developing

software, where different forms of data contribute to the

emergence of bugs, this flexibility is essential.

Recall = TP / ( TP + FN ) 

3) Adaboost + Random Forest

AdaBoost and random-forest approaches are combined in ABR,

a novel method for software breakdown prediction (SFP), to

increase accuracy, consistency, and address overfitting

problems.. The AdaBoost algorithm is a cutting-edge boosting

approach that is used to purposefully increase the accuracy of a

certain learning system [22]. This method, which is based on

ensemble learning, combines several weak hypotheses or

classifiers with large error rates in order to create a final

hypothesis that has a significantly reduced training error rate.

The method is still straightforward, quick, and easy to use.

Furthermore, it does not require any prior information of the

poor learner and is nonparametric and skilled at recognizing

outliers. As a result, this method has verified to be efficient in

tackling a variety of prediction issues, especially when it comes

to software failure prediction.

The AdaBoost method has been used in this particular

implementation to forecast software faults. In terms of

accuracy, Random Forests (RF), a well-known and powerful

ensemble machine learning technique, perform better than

current techniques. As a skilled bagging method, RF handles a

large number of input variables without requiring variable

removal. It performs well on large datasets, precisely estimating

critical properties for prediction-making. Moreover, RF has a

simple implementation, is easy to parallelize, and is excellent at

predicting missing data. An ensemble of tree-based classifiers

called RF is very resistant to noise and anomalies. Every tree in

the forest is constructed from a randomly chosen vector with

values that are evenly distributed and individually chosen for

every tree.
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When utilizing the training dataset, each tree must meet the 

following characteristics in order to be created: • Samples of 

size S, where S is the number of samples, are randomly selected 

from the training set to construct trees. What are known as 

bootstrap samples are created by reintroducing these selected 

samples into the original set. 

• A considerably lower number f (where f is much less than F)

is specified in datasets with a total of F characteristics. A

random subset of the F feature pool's features is chosen at

random for every node in the tree structure. The best split,

ascertained from the selected characteristics, is used to divide

the nodes. During the whole process of creating a forest, the

value of f remains constant.

F- Measure = (2* Recall * Precision)/(Recall + Precision)

IV. EXPERIMENTAL DISCUSSION

In order to confirm the suggested configuration, MATLAB 

2017a was used to carry out a simulation on a Windows 11 OS-

powered PC.  

The PC had a 3.40 GHz Core-i7 CPU and 8 gigabytes of 

random access memory. The system's effectiveness was then 

assessed by comparing it to other capable methods while 

accounting for specificity, sensitivity, and accuracy. These 

measures, which are explained below, were used as standards 

for the evaluation. 

"Sensitivity, also known as the true positive rate, is determined 

by correctly identifying the number of defective modules out of 

the total number of defective modules." 

Sensitivity = 
𝐴_𝑃

𝐴_𝑃+𝐹_𝑁
  (5)                                                             

"Specificity, also known as the true negative rate, is calculated 

by dividing the count of accurately classified non-defective 

modules by the total number of non-defective modules." 

Specificity = 
𝐴_𝑃

𝐴_𝑃+𝐹_𝑁
 (6) 

Computes the precise identification of faulty modules in an 

all-encompassing way. 

Acc= 
𝐴_𝑃+𝐴_𝑁

𝐴_𝑃+𝐴_𝑁+𝐹_𝑃+𝐹_𝑁
      (7) 

The precision (P) of machine learning-based software defect 

prediction may be calculated as follows: P is the ratio of 

appropriately projected useful observations to all expected 

positives. 

Precision=
𝐴_𝑃

𝐴_𝑃+𝐹_𝑃
  (8) 

The following is the formula for a simple machine learning 

model that predicts software errors in Formula 1 (F1) scores, 

similar to a logistic reversion model:                                  (9) 

F1=2×
(𝑃×𝑅)

(𝑃+𝑅)

Six classifiers—NB, MLP, AB, RF, DT, J48, and ABR—as 

well as five distinct datasets—KC1, MC2, PC1, PC2, and 

MW1—are used in this instance. 

Three distinct phases comprise the experiment: in the first, we 

computed the accuracy with no feature selection; in the second, 

we used PCA; and in the third, we used PCA-LDA. 

Without FS, we used the ABR classifier with the PC2 dataset at 

a 5-fold magnification. Our accuracy of 0.9799 is the greatest 

of all the classifiers shown in Table II. 

The PCA+ABR classifier, which we used with the PC2 dataset 

and fivefold cross validation, yielded the greatest accuracy of 

any classifier at 0.9899, as shown in Table III. 

With PCA-LDA, we used the PCA-LDA+ABR classifier in 

Table IV. Using the PC2 dataset and five fold validation, we 

obtained the greatest accuracy of any classifier—0.9919. 
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CLASSIFIER DATASET FOLD SENSITIVITY SPECIFICITY PRECISION F1SCORE MCC ACCURACY 

NB KC1 5 0.7797 0.4899 0.8838 0.8285 0.2279 0.7312 

MLP KC1 5 0.7694 0.6311 0.9563 0.8527 0.2557 0.7574 

AB KC1 5 0.7565 0.6364 0.9724 0.851 0.2042 0.7498 

RF KC1 5 0.7839 0.6268 0.939 0.8545 0.3022 0.7065 

DT KC1 5 0.7715 0.6087 0.9482 0.8508 0.2551 0.7557 

J48 KC1 5 0.7781 0.5266 0.9079 0.838 0.2415 0.7422 

ABR KC1 5 0.784 0.6164 0.9356 0.8531 0.2983 0.7633 

NB MC2 5 0.7423 0.6786 0.8889 0.809 0.3674 0.7028 

MLP MC2 5 0.8 0.675 0.8395 0.8193 0.4639 0.7502 

AB MC2 5 0.7396 0.6552 0.8765 0.8023 0.3489 0.7012 

RF MC2 5 0.7551 0.6897 0.8916 0.8177 0.3923 0.7402 

DT MC2 5 0.7255 0.6957 0.9136 0.8087 0.3417 0.7103 

J48 MC2 5 0.7586 0.6053 0.8148 0.7857 0.3505 0.7006 

ABR MC2 5 0.7551 0.7407 0.9136 0.8268 0.4272 0.8203 

NB PC1 5 0.9393 0.3548 0.9379 0.9386 0.2964 0.8879 

MLP PC1 5 0.9353 0.45 0.9658 0.9503 0.3171 0.9078 

AB PC1 5 0.9144 0.25 0.9953 0.9532 0.0439 0.9106 

RF PC1 5 0.9298 0.619 0.9876 0.9578 0.3319 0.9191 

DT PC1 5 0.9243 0.5 0.986 0.9542 0.2381 0.9135 

J48 PC1 5 0.9352 0.439 0.9643  0.9495 0.3116 0.9064 

ABR PC1 5 0.9272 0.6111 0.9891 0.9572 0.302 0.9206 

NB PC2 5 0.9812 0.0556 0.93 0.9549 0.0657 0.9141 

MLP PC2 5 0.9811 0.4 0.9959 0.9884 0.2146 0.9772 

AB PC2 5 0.9798 1 1 0.9898 0.2475 0.9785 

RF PC2 5 0.9785 0 1 0.9891 0 
0.9775 

DT PC2 5 0.9785 0.619 1 0.9891 0 
0.9785 

J48 PC2 5 0.9785 0.9352 0.9986 0.9885 0.9054 0.9772 

ABR PC2 5 0.9785 0 1 0.9891 0 0.9799 

NB MW1 5 0.9458 0.32 0.8496 0.8951 0.3428 0.8221 

MLP MW1 5 0.911 0.3529 0.9513 0.9307 0.214 0.8735 

AB MW1 5 0.9057 0.4444 0.9779 0.9404 0.2101 "0.8893 

RF MW1 5 0.917 0.5833 0.9779 0.9465 0.3445 0.9012 

DT MW1 5 0.9139 0.6667 0.9867 0.9489 0.3483 0.9011 

J48 MW1 5 0.916 0.4667 0.9646 0.9397 0.2927 0.8893 

TABLE II.  Performance Evaluation without Feature selection

ABR MW1 5 0.917 0.5833 0.9779 0.9465 0.3445 0.9051 
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TABLE III.  Performance Evaluation with PCA

CLASSIFIER DATASET 

C

V 

NO OF 

FEATURE SENSITIVITY SPECIFICITY PRECISION F1SCORE MCC ACCURACY 

PCA+NB KC1 5 30 0.8997 0.5099 0.8838 0.9485 0.3479 0.8512 

PCA+MLP KC1 5 30 0.8894 0.7511 0.9553 0.9727 0.3757 0.8774 

PCA+AB KC1 5 30 0.8755 0.7554 1 0.971 0.3242 0.8598 

PCA+RF KC1 5 30 0.9039 0.7458 0.939 0.9745 0.4222 0.8255 

PCA+DT KC1 5 30 0.8915 0.7287 0.9482 0.9708 0.3751 0.8757 

PCA+J48 KC1 5 30 0.8981 0.5455 0.9079 0.958 0.3515 0.8522 

PCA+ABR KC1 5 30 0.904 0.7354 0.9355 0.9731 0.4183 0.8833 

PCA+NB MC2 5 30 0.7823 0.7185 0.9289 0.849 0.4074 0.7428 

PCA+MLP MC2 5 30 0.84 0.715 0.8795 0.8593 0.9301 0.7902 

PCA+AB MC2 5 30 0.7795 0.5952 0.9155 0.8423 0.3889 0.7412 

PCA+RF MC2 5 30 0.7951 0.7297 0.9315 0.8577 0.4323 0.7802 

PCA+DT MC2 5 30 0.7555 0.7357 0.9535 0.8487 0.3817 0.7503 

PCA+J48 MC2 5 30 0.7985 0.5453 0.8548 0.8257 0.3905 0.7405 

PCA+ABR MC2 5 30 0.7951 0.7807 0.9535 0.8558 0.4572 0.8503 

PCA+NB PC1 5 30 0.9593 0.3848 0.9579 0.9585 0.3254 0.9179 

PCA+MLP PC1 5 30 0.9553 0.48 0.9958 0.9803 0.3471 0.9378 

PCA+AB PC1 5 30 0.9444 0.28 1 0.9832 0.9832 0.9405 

PCA+RF PC1 5 30 0.9598 0.549 0.9523 0.9878 0.3519 0.9491 

PCA+DT PC1 5 30 0.9543 0.53 1 0.9842 0.2581 0.9435 

PCA+J48 PC1 5 30 0.9552 0.459 0.9943 0.9795 0.3415 0.9354 

PCA+ABR PC1 5 30 0.9572 0.5411 1 0.9872 0.332 0.9505 

PCA+NB PC2 5 30 0.9912 0.0555 0.94 0.9549 0.0757 0.9241 

PCA+MLP PC2 5 30 0.9911 0.41 0.99 0.9984 0.2245 0.9872 

PCA+AB PC2 5 30 0.9898 1 1 0.9998 0.2575 0.9885 

PCA+RF PC2 5 30 0.9885 0 0.8521 0.9991 0 0.9875 

PCA+DT PC2 5 30 0.9885 0.529 1 0.9991 0.8451 0.9885 

PCA+J48 PC2 5 30 0.9885 0.9452 0 0.9985 0.9154 0.9872 

PCA+ABR PC2 5 30 0.9885 0 1.01 0.9991 0.01 0.9899 

PCA+NB MW1 5 30 0.9558 0.34 0.8595 0.9151 0.3528 0.8421 

PCA+MLP MW1 5 30 0.931 0.3729 0.9713 0.9507 0.234 0.8935 

PCA+AB MW1 5 30 0.9257 0.964 0.9979 0.9604 0.2301 0.9093 

PCA+RF MW1 5 30 0.937 0.6033 0.9979 0.9665 0.3645 0.9212 

PCA+DT MW1 5 30 0.9339 0.6867 1 0.9689 0.3683 0.9211 

PCA+J48 MW1 5 30 0.936 0.4867 0.9846 0.9597 0.3127 0.9093 

PCA+ABR MW1 5 30 0.937 0.6033 0.9979 0.9665 0.3645 0.9251 
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TABLE IV.  Performance Evaluation with PCA-LDA 

CLASSIFIER DATASET CV 

NO OF 

FEATURE SENSITIVITY SPECIFICITY PRECISION F1SCORE MCC 

ACCURAC

Y 

PCA-LDA+NB KC1 5 18 0.9017 0.6119 0.8858 0.9505 0.3499 0.8532 

PCA-
LDA+MLP KC1 5 18 0.8914 0.7531 0.9583 0.9747 0.3777 0.8794 

PCA-LDA+AB KC1 5 18 0.8785 0.7584 1 0.973 0.3262 0.8718 

PCA-LDA+RF KC1 5 18 0.9059 0.7488 0.941 0.9765 0.4242 0.8285 

PCA-LDA+DT KC1 5 18 0.8935 0.7307 0.9502 0.9728 0.3771 0.8777 

PCA-LDA+J48 KC1 5 18 0.9001 0.6486 0.9099 0.96 0.3635 0.8642 

PCA-

LDA+ABR KC1 5 18 0.906 0.7384 0.9376 0.9751 0.4203 0.8853 

PCA-LDA+NB MC2 5 18 0.7873 0.7236 0.9339 0.854 0.4124 0.7478 

PCA-

LDA+MLP MC2 5 18 0.845 0.72 0.8845 0.8643 0.9351 0.7952 

PCA-LDA+AB MC2 5 18 0.7846 0.7002 0.9215 0.8473 0.3939 0.7462 

PCA-LDA+RF MC2 5 18 0.8001 0.7347 0.9366 0.8627 0.4373 0.7852 

PCA-LDA+DT MC2 5 18 0.7705 0.7407 0.9586 0.8537 0.3867 0.7553 

PCA-LDA+J48 MC2 5 18 0.8036 0.6503 0.8598 0.8307 0.3955 0.7456 

PCA-
LDA+ABR MC2 5 18 0.8001 0.7857 0.9586 0.8718 0.4722 0.8653 

PCA-LDA+NB PC1 5 18 0.9703 0.3858 0.9689 0.9696 0.3274 0.9189 

PCA-

LDA+MLP PC1 5 18 0.9663 0.481 0.9968 0.9813 0.3481 0.9388 

PCA-LDA+AB PC1 5 18 0.9454 0.281 1 0.9842 0.9842 0.9416 

PCA-LDA+RF PC1 5 18 0.9608 0.605 0.9533 0.9888 0.3629 0.9501 

PCA-LDA+DT PC1 5 18 0.9553 0.531 1 0.9852 0.2691 0.9445 

PCA-LDA+J48 PC1 5 18 0.9662 0.407 0.9953 0.9805 0.3426 0.9374 

PCA-

LDA+ABR PC1 5 18 0.9582 0.6421 1.001 0.9882 0.333 0.9516 

PCA-LDA+NB PC2 5 18 0.9932 0.0676 0.942 0.9669 0.0777 0.9261 

PCA-
LDA+MLP PC2 5 18 0.9931 0.412 0.992 1 0.2266 0.9892 

PCA-LDA+AB PC2 5 18 0.9918 1 0.9885 0.9998 0.2595 0.9905 

PCA-LDA+RF PC2 5 18 0.9905 0.002 0.8541 1 0 0.9895 

PCA-LDA+DT PC2 5 18 0.9905 0.631 1.002 0.9891 0.8471 0.9905 

PCA-LDA+J48 PC2 5 18 0.9905 0.9472 0.002 0 0.9174 0.9892 

PCA-

LDA+ABR PC2 5 18 0.9905 0.002 1 0.9918 0.912 0.9919 

PCA-LDA+NB MW1 5 18 0.9668 0.341 0.8706 0.9161 0.3638 0.8431 

PCA-

LDA+MLP MW1 5 18 0.932 0.3739 0.9723 0.9517 0.235 0.8945 

PCA-LDA+AB MW1 5 18 0.9267 0.965 0.9989 0.9614 0.2311 0.9103 

PCA-LDA+RF MW1 5 18 0.938 0.6043 0.9989 0.9675 0.3655 0.9222 

PCA-LDA+DT MW1 5 18 0.9349 0.6877 1 0.9699 0.3693 0.9221 

PCA-LDA+J48 MW1 5 18 0.937 0.4877 0.9856 0.9607 0.3137 0.9103 

PCA-

LDA+ABR MW1 5 18 0.938 0.6043 0.9989 0.9675 0.3655 0.9261 

Figures 2 and 3 show the KC1 datasets without and with 

selecting features. In both figures, ABR and PCA-LDA+ABR 

provided the highest accuracy0.7633 and 0.8853 

correspondingly. 
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Fig 2.  KC1 dataset accurateness without feature collection 

Fig 3.  KC1 dataset correctness with feature collection 

Figures 4 and 5 show the MC2 dataset both without and with 

selecting features. In both figures, ABR and PCA-LDA+ABR 

provided the greatest exactness 0.8203 and 0.8853 separately. 

Fig 4.  MC2 dataset accurateness without feature collection 

Fig 5.  MC2 dataset correctness with feature collection 

Figures 6 and 7 show the PC1 datasets both without and with 

selecting features. In both figures, ABR and PCA-LDA+ABR 

gave the most precision 0.9206 and 0.9516 correspondingly. 

Fig 6. PC1 dataset correctness without feature collection 

Fig 7.  PC1 dataset correctness with feature collection 

Figures 8 and 9 show the PC2 datasets without and with 

selecting features. In both the figures, ABR and PCA-

LDA+ABR provided the most accurateness 0.9799 and 0.9919 

correspondingly. 
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Fig 8.  PC2 dataset correctness without feature collection 

Fig 9.  PC2 dataset correctness with feature collection 

Figures 10 and 11 show the MW1 datasets both without and 

with selecting features. In both figures, ABR and PCA-

LDA+ABR provided the most accurateness 0.9051 and 0.9261 

correspondingly. 

Fig 10. MW1 dataset correctness without feature collection 

Fig 11. MW1 dataset correctness with feature collection 

V. CONCLUSION & FUTURE WORK

We offer a novel technique for predicting software defects 

using PCA-LDA+ABR that combines dimensionality reduction 

with a hybrid classifier. Our solution employs PCA to minimize 

the amount of structures, followed by ABR, a grouping of AB 

and RF techniques, to categorize the software components as 

faulty or non-defective. We tested our strategy on six different 

datasets and found that it outperformed existing approaches. On 

the PC2 data set, our technique obtains an impressive accuracy 

of 0.9919. Our study contributes to current research into 

building more precise and effective software defect prediction 

systems, which can aid in early detection of software problems 

and reduce the cost of software development initiatives. We 

propose that future study investigate additional combination 

models to assist with software fault prediction. 
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