
A NASA Dataset Based Automated Software Bug

Prediction Model Using Feature Reduction

Techniques

Amit Kumar Sahoo
Department of M.Sc.(CS)

NIIS Institute of Information Science and

 Management Bhubaneswar, India

Aditya Kumar Nayak
Department of M.Sc.(CS)

NIIS Institute of Information Science and

 Management Bhubaneswar, India

Ankita Nayak
Department of M.Sc.(CS)

NIIS Institute of Information Science and

Management Bhubaneswar, India

Debasish Pradhan
Department of MCA

NIIS Institute of Business Administration

Bhubaneswar, India

Abstract— Testing is an important step in the application creation

process, aimed at identifying and correcting mistakes or defects

introduced by the programmers. Tackling these problems later in

the application development lifecycle might have a larger impact.

To reduce this, early discovery of errors is critical, as is

maximizing the use of testing resources. During fault estimation,

software components are classified as fault-prone or non-defect-

prone. This work aims to improve the efficiency and accuracy of

detecting fractured software modules using a hybrid method. The

approach includes preliminary processing, features reduction in

dimensionality, and classifier. The model is evaluated using a

publicly accessible dataset from NASA. PCA-LDA is a

combination of PCA, or Principal Component Analysis, and LDA,

or Linear Discriminant Analysis, that is used to reduce the

dimensionality of vector features. The expected outcome rate is

determined using the AdaBoost boosting approach with a random

forest (ABR). Several performance measures are examined to

verify the model that is suggested, include precision, sensitiveness,

specificity, the F1 score, and MCC. The average accuracy of the

PCA+ABR algorithm on the PC2 dataset is 0.9919. The

experimental findings show that the proposed model outperforms

current models in fault prediction accuracy.

Keywords— Software Defect Prediction, Principal Component

Analysis, Random Forest, AdaBoost, ABR, NASA Dataset

I. INTRODUCTION

In order to anticipate and detect possible software flaws prior to

deployment, sophisticated computational approaches are

utilized in the introduction to machine learning-based software

bug prediction. Machine learning models—that is,

classification algorithms—are used to examine past project data

and identify trends associated with the presence of defects.

These models use key metrics as input characteristics, such

code complexities, code churn, and development experience.

By automating the detection process and giving developers

insights into high-risk regions that could need more

examination, machine learning is used to the prediction of bugs.

Teams may improve overall software quality, allocate resources

more efficiently, and proactively address possible problems by

incorporating the use of machine learning for bug predictions

into the application development method. Notwithstanding

difficulties brought on by the unpredictable characteristics of

the development of software, machine learning offers a

promising approach to minimize post-release defects and

streamline the debugging process.

utilizing cutting-edge computational approaches, software fault

prediction utilizing machine learning aims to detect and predict

any flaws or mistakes in software systems prior to deployment.

The primary aim is to handle software dependability in a

proactive manner by utilizing machine learning models, namely

classification algorithms, to examine past project data and

identify trends linked to the incidence of errors. These models

usage a diversity of metrics as input characteristics, including

code complexity, code updates, and previous fault occurrences.

Software fault calculation uses machine learning to automate

the recognition of trouble regions so that developers may

concentrate on important components throughout the

development process. Testing efficiency is increased when

machine learning-based defect prediction is incorporated into

the application creation process.

The application of machine learning (ML) in bug forecasting

has become a proactive approach in software development to

improve software quality. Conventional bug prediction is based

on the examination of past data, whereas machine learning

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV13IS020071
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

Volume 13, Issue 02, February 2024

www.ijert.org
www.ijert.org

techniques offer an evolving and automatic method. Based on

measures like complexity of code and knowledge of developers,

ML models, in particular classification algorithms, can detect

possible bug-prone regions by looking for patterns and links in

data. With this method, engineers may quickly resolve

problems, manage resources effectively, and expedite the

debugging process. A state-of-the-art development in software

engineering, ML-driven bug prediction encourages a more

proactive and economical use of resources in order to guarantee

stable and dependable software systems.

The potential of machine learning to transform software

development, guaranteeing improved dependability and fewer

post-release problems, makes it an important tool for predicting

software bugs. Machine learning models may discover possible

bug-prone locations by utilizing complex algorithms and

historical data. This enables developers to efficiently allocate

resources and prioritize testing efforts. By taking a proactive

stance, major errors are less likely to occur, which improves

both software performance and customer satisfaction. In

addition to automating the detection of possible problems,

machine learning also adjusts to changing project conditions,

offering a data-driven and dynamic approach to software bug

management. By using machine learning into bug prediction,

developers may anticipate problems before they arise, optimize

development processes, and provide end users with software

solutions that are more reliable and durable.

II. LITRETURE REVIEW

In the year of 2023 Das et al. [1] executed AB, RF, NB, J48,

MLP and ADRF machine learning algorithm in JM1, PC5, PC4,

MC1 and KC1 datasets to develop a vastly accurate method

identified as PCA+ADRF for identifying software faults in

specific modules and got nearly0. 985 accuracy in it. In the year

of 2018, Hammouri et al. [2] published a paper on “Software

Bug Prediction using Machine Learning Approach” . The

experimental results showed that the ML approach

outperformed other approaches, such as linear AR and POWM

models, in terms of prediction model performance. Three

different supervised machine learning algorithms were

employed for forecasting future software defects by leveraging

historical data. These algorithms include Naïve Bayes (NB),

Decision Tree (DT) and Artificial Neural Networks (ANN).

These algorithms were implements in the datasets DS1, DS2

and DS3 in 0.93 accuracy. In 2019, Tian et al. [3] published a

paper on “Software Defect Prediction based on Machine

Learning Algorithms”. The paper begins by outlining the

concept of software defect prediction, with a subsequent

emphasis on the machine. They use Naïve Bayes, Ensemble

Learners, Neural Networks, SVM classifiers and implements in

JM1 dataset. In the year 2018, Hammouri et al. [4] examined

the application of machine learning algorithms for predicting

software bugs. He used various machine learning methods like

NB, DT, ANNs. He applied these classifiers in the datasets i.e.

DS1, DS2 and DS3 having accuracy of 0.93. In 2019, Iqbal et

al. [5] published a paper on “Performance Analysis of Machine

Learning Techniques on Software Defect Prediction using

NASA Datasets”. The research results can serve as a baseline

for future studies, allowing for easy comparison and

verification of proposed techniques, models, or frameworks.

The classifiers includes: NB, MLP, RBF, SVM, KNN, kStar,

OneR, DT, RF. These algorithms were implements in the

dataset PC2 in 0.976959 accuracy. In the year 2021 Mustaqeem

et al. [6] Present a novel approach that involves combining two

highly promising algorithms for optimization and feature

selection with the aim of achieving. He used classifiers, that are

SVM, PCA which are implemented in datasets CM1 and KC1

and he got 0.9520 accuracy in that . In 2020, Rathore et al. [7]

published a paper on “An empirical study of ensemble

techniques for software fault prediction”. The findings

presented in this paper may prove beneficial to the research

community by aiding in the development of precise fault

prediction models through the selection of suitable ensemble

techniques. They used Naive Bayes, logistic regression, J48

algorithms, which were implemented in Ant, Camel, Jedit,

Lucene, Poi, Prop, Tomcat, Xalan and Xerces datasets in

accuracy of 0.8848. In 2019, Wang et al. [8] published a paper

on “A cluster-based hybrid feature selection method for defect

prediction”. In this research, the authors introduced a novel

approach for feature selection, which combines filter and

wrapper methods in a hybrid manner to address the issue. This

method defines a feature quality coefficient using spectral

clustering and utilizes sequential forward selection to derive the

ultimate feature subset. They use K-Nearest Neighbor, Decision

Tree and Random Forest classifiers and implements in Camel,

Jedit, Lucene, Synapse, Xerces dataset. In 2017, Li et al. [9]

published a paper on “Software Defect Prediction via

Convolutional Neural Network”. The paper focuses on

predicting code defects in software implementation to reduce

the workload of software maintenance and improve reliability.

They use CNN classifier and implements in xerces dataset in

0.845 accuracy. In 2019, Yalciner et al. [10] published a paper

on “Software Defect Estimation Using Machine Learning

Algorithms”. In this study, the authors assessed the

performance of machine learning algorithms in predicting

software defects and identified the top-performing category by

evaluating seven different machine learning algorithms using

four NASA datasets. They use Bayesian Learners, Ensemble

Learners, SVM and Neural Networks classifiers and

implements in PC1, CM1, KC1 and KC2 datasets in 0.94

accuracy.

III. PROPOSED WORK

Figure 1 shows the block figure for the future work, which

includes six independent units: NASA dataset, data pre-

processing, dimensionality reduction, random forest,

AdaBoost, and performance evaluation.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV13IS020071
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

Volume 13, Issue 02, February 2024

www.ijert.org
www.ijert.org

Fig 1. Block drawing for the proposed model

A. Dataset

We used the NASA Dataset, which is made up of fourteen

distinct datasets, from the PROMISE repository for our

research project[11].

For our experiment, we have utilized five of the fourteen

datasets available. The following table provides the datasets'

details.

TABLE I. DATASET DETAILED

Dataset
Total

Instance
Non defective

instance
Defective
instance

KC1 1183 869 314

MC2 125 81 44

PC1 705 644 61

PC2 745 729 16

MW1 253 226 27

B. Feature normalization

Larger scale features might predominate during learning, which

would skew model predictions. Regardless of their scales,

normalization guarantees that every feature contributes equally

to the model's learning process. When features are similar in

size, many machine learning techniques, such optimization

algorithms based on gradient descent, converge more quickly.

Normalization makes model training faster and more smoothly

convergent. Normalization facilitates the interpretation of the

significance of the model's features. It could be difficult to

compare the relative relevance of features that are scaled

differently without normalization. By bringing all

characteristics to a comparable scale, normalization can lessen

the influence of outliers in the dataset and increase the model's

resilience to extreme values.

B𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑𝑖𝑧𝑒𝑑=
B−µ

𝛼

B𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑𝑖𝑧𝑒𝑑 denotes the feature's lowest value in the dataset,

where B is the initial feature value.

C. Dimensionality Reduction

The act of lowering the quantity of variables or structures while

keeping relevant information is known as "dimensionality

reduction" in the field of software error forecast 4using machine

learning. In software engineering, where several measurements

and characteristics are used to characterize software systems,

maintaining high-dimensional information is commonplace,

and this reduction is essential. Model interpretability,

generalization performance, and efficiency of training are all

improved when dimensionality is lowered since it lowers the

difficulty of the statistics. Techniques for reducing the

dimensions of a dataset seek to preserve important information

linked to fault prediction while identifying the most useful

characteristics and removing superfluous or unnecessary ones

to provide a compact depiction of the original dataset.

1) PCA

Principal A dimensionality reduction technique entitled

Principal Component Analysis (PCA) is frequently applied in

machine learning to enhance model performance and lower the

chance of over fitting. When it comes to software bug

prediction, principal component analysis (PCA) may be utilized

to pinpoint the key elements that influence the likelihood of

defects occurring.

One research suggested employing several dimensionality

approaches, such as PCA and Kernel PCA, to extract expressive

features from an underlying arrangement of fundamental

change measurements. Decision trees and artificial neural

networks were then used to train a classifier based on the

retrieved features. According to the study, the PCA approach

helped to enhance the classifier's performance by identifying

the key features that are responsible for the incidence of faults.

S=WΛWT (2)

PCA contributes significantly to software fault prediction and

enhances software control and dependability. The most crucial

elements influencing the likelihood of failure can be found by

using PCA on characteristics taken from evaluation software .

This decrease in size enhances the understanding of the

underlying schema in addition to streamlining the dataset's

complexity. Consequently, PCA aids in the development of a

more effective and precise prediction model, enabling software

makers to report any problems and raise the standard of their

final output.

2) PCA-LDA

In the field of machine learning, methods for reducing

dimensionality like Principal Component Analysis (PCA) along

with Linear Discriminant Analysis (LDA) are frequently

employed to enhance model performance and lower the

likelihood of overfitting. When it comes to software fault

estimation, PCA-LDA may be used to pinpoint the key

elements that influence the likelihood of issues occurring.for

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV13IS020071
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

Volume 13, Issue 02, February 2024

www.ijert.org
www.ijert.org

anticipating software bugs. According to the study, PCA-LDA

was capable of to pinpoint the key elements that influence the

likelihood of defects, which enhanced the models' functionality.

To sum up, PCA-LDA is an effective method that may be

applied to raise the accuracy of machine learning algorithms in

software defect forecasting. It can assist in determining the key

elements that influence the likelihood of glitches, which might

improve the models' correctness.

This is how PCA-LDA is represented mathematically:

PCA-LDA = LDA(PCA(X))

while PCA stands for principal component analysis, LDA for

linear discriminant analysis, and X is the input .

D. Machine learning Classification

A method for classifying data into different groups based on its

properties is machine learning classification. Based on the

properties of the program, machine learning classification may

be used to anticipate the occurrence of problems in software.

After comparing several machine learning tactics for

determining the degree and importance of software problem

reports and recommend the use of random forests, or optimum

decision trees, as a method for more research. In order to

determine the severity and importance of new issues, the

method sought to build many decision trees using subsets of the

current bug dataset and characteristics. The most suitable

decision trees were then chosen. The method may be used to

anticipate and identify problems in distributed systems and big,

intricate networks of communication.

One effective method for enhancing the efficiency of machine

learning algorithms in software fault predictions is machine

learning classification. It can assist in determining the key

elements that influence the likelihood of bugs.

1) Adaboost

An integrated learning technique called AdaBoost is frequently

used for machine learning to enhance performance of models

and lower the chance of overfitting. AdaBoost may be used to

forecast the likelihood of a software issue based on the

characteristics of the software.

In the field of machine learning, it is 0recognized and useful for

tasks requiring both regression and classification [21]. In order

to provide predictions, it makes use of the combined strength of

several decision trees that are based on mutual learning. Here,

random samples from the data collection are used to develop

several training techniques, giving the participants a choice of

data. Different objects chosen from the characteristics of

different training techniques should be used in this strategy to

generate distinct decision trees. Combining the forecasts from

each tree yields the final forecast. RF is superior to decision

trees in many ways. For instance, it is less effective as it makes

use of several trees as opposed to just one.

It is less susceptible to choosing the wrong hyperparameter and

can also deal with outliers and missing data. Robust algorithms

like Random Forests (RF) are helpful in image classification,

fraud detection, bioinformatics, and other domains. It's crucial

to realize, though, that RF may not be the ideal method. It is

vital to thoroughly compare several models and select the unity

that best fits the specific requirements of your issue.

Precision = TP / (TP + FP)

2) Random Forest

A machine learning procedure called Random Forest has

become well-known for its efficiency in a number of fields,

including the prediction of software bugs. Predicting and

avoiding defects is crucial in software development to

guarantee the dependability and quality of solutions for

software. As a team-based learning approach, Random Forest

has several benefits that make it a good choice for predicting

software bugs.

The random forest's capacity to offer insightful information

makes it special. Each characteristic is given a crucial score by

the algorithm according to how well it contributes to prediction

accuracy. Knowing which aspects are most important in the

framework of software fault prevention can aid developers in

setting priorities for their tasks through review and

management.

Predicting software bugs frequently entails examining intricate

connections and trends seen in software repositories. Because

Random Forest can handle both numeric and categorical

variables, it may be used to extract a wide range of information

from databases used for issue tracking, versions management

systems, and source code. In the environment of developing

software, where different forms of data contribute to the

emergence of bugs, this flexibility is essential.

Recall = TP / (TP + FN)

3) Adaboost + Random Forest

AdaBoost and random-forest approaches are combined in ABR,

a novel method for software breakdown prediction (SFP), to

increase accuracy, consistency, and address overfitting

problems.. The AdaBoost algorithm is a cutting-edge boosting

approach that is used to purposefully increase the accuracy of a

certain learning system [22]. This method, which is based on

ensemble learning, combines several weak hypotheses or

classifiers with large error rates in order to create a final

hypothesis that has a significantly reduced training error rate.

The method is still straightforward, quick, and easy to use.

Furthermore, it does not require any prior information of the

poor learner and is nonparametric and skilled at recognizing

outliers. As a result, this method has verified to be efficient in

tackling a variety of prediction issues, especially when it comes

to software failure prediction.

The AdaBoost method has been used in this particular

implementation to forecast software faults. In terms of

accuracy, Random Forests (RF), a well-known and powerful

ensemble machine learning technique, perform better than

current techniques. As a skilled bagging method, RF handles a

large number of input variables without requiring variable

removal. It performs well on large datasets, precisely estimating

critical properties for prediction-making. Moreover, RF has a

simple implementation, is easy to parallelize, and is excellent at

predicting missing data. An ensemble of tree-based classifiers

called RF is very resistant to noise and anomalies. Every tree in

the forest is constructed from a randomly chosen vector with

values that are evenly distributed and individually chosen for

every tree.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV13IS020071
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

Volume 13, Issue 02, February 2024

www.ijert.org
www.ijert.org

When utilizing the training dataset, each tree must meet the

following characteristics in order to be created: • Samples of

size S, where S is the number of samples, are randomly selected

from the training set to construct trees. What are known as

bootstrap samples are created by reintroducing these selected

samples into the original set.

• A considerably lower number f (where f is much less than F)

is specified in datasets with a total of F characteristics. A

random subset of the F feature pool's features is chosen at

random for every node in the tree structure. The best split,

ascertained from the selected characteristics, is used to divide

the nodes. During the whole process of creating a forest, the

value of f remains constant.

F- Measure = (2* Recall * Precision)/(Recall + Precision)

IV. EXPERIMENTAL DISCUSSION

In order to confirm the suggested configuration, MATLAB

2017a was used to carry out a simulation on a Windows 11 OS-

powered PC.

The PC had a 3.40 GHz Core-i7 CPU and 8 gigabytes of

random access memory. The system's effectiveness was then

assessed by comparing it to other capable methods while

accounting for specificity, sensitivity, and accuracy. These

measures, which are explained below, were used as standards

for the evaluation.

"Sensitivity, also known as the true positive rate, is determined

by correctly identifying the number of defective modules out of

the total number of defective modules."

Sensitivity =
𝐴_𝑃

𝐴_𝑃+𝐹_𝑁
 (5)

"Specificity, also known as the true negative rate, is calculated

by dividing the count of accurately classified non-defective

modules by the total number of non-defective modules."

Specificity =
𝐴_𝑃

𝐴_𝑃+𝐹_𝑁
 (6)

Computes the precise identification of faulty modules in an

all-encompassing way.

Acc=
𝐴_𝑃+𝐴_𝑁

𝐴_𝑃+𝐴_𝑁+𝐹_𝑃+𝐹_𝑁
 (7)

The precision (P) of machine learning-based software defect

prediction may be calculated as follows: P is the ratio of

appropriately projected useful observations to all expected

positives.

Precision=
𝐴_𝑃

𝐴_𝑃+𝐹_𝑃
 (8)

The following is the formula for a simple machine learning

model that predicts software errors in Formula 1 (F1) scores,

similar to a logistic reversion model: (9)

F1=2×
(𝑃×𝑅)

(𝑃+𝑅)

Six classifiers—NB, MLP, AB, RF, DT, J48, and ABR—as

well as five distinct datasets—KC1, MC2, PC1, PC2, and

MW1—are used in this instance.

Three distinct phases comprise the experiment: in the first, we

computed the accuracy with no feature selection; in the second,

we used PCA; and in the third, we used PCA-LDA.

Without FS, we used the ABR classifier with the PC2 dataset at

a 5-fold magnification. Our accuracy of 0.9799 is the greatest

of all the classifiers shown in Table II.

The PCA+ABR classifier, which we used with the PC2 dataset

and fivefold cross validation, yielded the greatest accuracy of

any classifier at 0.9899, as shown in Table III.

With PCA-LDA, we used the PCA-LDA+ABR classifier in

Table IV. Using the PC2 dataset and five fold validation, we

obtained the greatest accuracy of any classifier—0.9919.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV13IS020071
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

Volume 13, Issue 02, February 2024

www.ijert.org
www.ijert.org

CLASSIFIER DATASET FOLD SENSITIVITY SPECIFICITY PRECISION F1SCORE MCC ACCURACY

NB KC1 5 0.7797 0.4899 0.8838 0.8285 0.2279 0.7312

MLP KC1 5 0.7694 0.6311 0.9563 0.8527 0.2557 0.7574

AB KC1 5 0.7565 0.6364 0.9724 0.851 0.2042 0.7498

RF KC1 5 0.7839 0.6268 0.939 0.8545 0.3022 0.7065

DT KC1 5 0.7715 0.6087 0.9482 0.8508 0.2551 0.7557

J48 KC1 5 0.7781 0.5266 0.9079 0.838 0.2415 0.7422

ABR KC1 5 0.784 0.6164 0.9356 0.8531 0.2983 0.7633

NB MC2 5 0.7423 0.6786 0.8889 0.809 0.3674 0.7028

MLP MC2 5 0.8 0.675 0.8395 0.8193 0.4639 0.7502

AB MC2 5 0.7396 0.6552 0.8765 0.8023 0.3489 0.7012

RF MC2 5 0.7551 0.6897 0.8916 0.8177 0.3923 0.7402

DT MC2 5 0.7255 0.6957 0.9136 0.8087 0.3417 0.7103

J48 MC2 5 0.7586 0.6053 0.8148 0.7857 0.3505 0.7006

ABR MC2 5 0.7551 0.7407 0.9136 0.8268 0.4272 0.8203

NB PC1 5 0.9393 0.3548 0.9379 0.9386 0.2964 0.8879

MLP PC1 5 0.9353 0.45 0.9658 0.9503 0.3171 0.9078

AB PC1 5 0.9144 0.25 0.9953 0.9532 0.0439 0.9106

RF PC1 5 0.9298 0.619 0.9876 0.9578 0.3319 0.9191

DT PC1 5 0.9243 0.5 0.986 0.9542 0.2381 0.9135

J48 PC1 5 0.9352 0.439 0.9643 0.9495 0.3116 0.9064

ABR PC1 5 0.9272 0.6111 0.9891 0.9572 0.302 0.9206

NB PC2 5 0.9812 0.0556 0.93 0.9549 0.0657 0.9141

MLP PC2 5 0.9811 0.4 0.9959 0.9884 0.2146 0.9772

AB PC2 5 0.9798 1 1 0.9898 0.2475 0.9785

RF PC2 5 0.9785 0 1 0.9891 0
0.9775

DT PC2 5 0.9785 0.619 1 0.9891 0
0.9785

J48 PC2 5 0.9785 0.9352 0.9986 0.9885 0.9054 0.9772

ABR PC2 5 0.9785 0 1 0.9891 0 0.9799

NB MW1 5 0.9458 0.32 0.8496 0.8951 0.3428 0.8221

MLP MW1 5 0.911 0.3529 0.9513 0.9307 0.214 0.8735

AB MW1 5 0.9057 0.4444 0.9779 0.9404 0.2101 "0.8893

RF MW1 5 0.917 0.5833 0.9779 0.9465 0.3445 0.9012

DT MW1 5 0.9139 0.6667 0.9867 0.9489 0.3483 0.9011

J48 MW1 5 0.916 0.4667 0.9646 0.9397 0.2927 0.8893

TABLE II. Performance Evaluation without Feature selection

ABR MW1 5 0.917 0.5833 0.9779 0.9465 0.3445 0.9051

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV13IS020071
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

Volume 13, Issue 02, February 2024

www.ijert.org
www.ijert.org

TABLE III. Performance Evaluation with PCA

CLASSIFIER DATASET

C

V

NO OF

FEATURE SENSITIVITY SPECIFICITY PRECISION F1SCORE MCC ACCURACY

PCA+NB KC1 5 30 0.8997 0.5099 0.8838 0.9485 0.3479 0.8512

PCA+MLP KC1 5 30 0.8894 0.7511 0.9553 0.9727 0.3757 0.8774

PCA+AB KC1 5 30 0.8755 0.7554 1 0.971 0.3242 0.8598

PCA+RF KC1 5 30 0.9039 0.7458 0.939 0.9745 0.4222 0.8255

PCA+DT KC1 5 30 0.8915 0.7287 0.9482 0.9708 0.3751 0.8757

PCA+J48 KC1 5 30 0.8981 0.5455 0.9079 0.958 0.3515 0.8522

PCA+ABR KC1 5 30 0.904 0.7354 0.9355 0.9731 0.4183 0.8833

PCA+NB MC2 5 30 0.7823 0.7185 0.9289 0.849 0.4074 0.7428

PCA+MLP MC2 5 30 0.84 0.715 0.8795 0.8593 0.9301 0.7902

PCA+AB MC2 5 30 0.7795 0.5952 0.9155 0.8423 0.3889 0.7412

PCA+RF MC2 5 30 0.7951 0.7297 0.9315 0.8577 0.4323 0.7802

PCA+DT MC2 5 30 0.7555 0.7357 0.9535 0.8487 0.3817 0.7503

PCA+J48 MC2 5 30 0.7985 0.5453 0.8548 0.8257 0.3905 0.7405

PCA+ABR MC2 5 30 0.7951 0.7807 0.9535 0.8558 0.4572 0.8503

PCA+NB PC1 5 30 0.9593 0.3848 0.9579 0.9585 0.3254 0.9179

PCA+MLP PC1 5 30 0.9553 0.48 0.9958 0.9803 0.3471 0.9378

PCA+AB PC1 5 30 0.9444 0.28 1 0.9832 0.9832 0.9405

PCA+RF PC1 5 30 0.9598 0.549 0.9523 0.9878 0.3519 0.9491

PCA+DT PC1 5 30 0.9543 0.53 1 0.9842 0.2581 0.9435

PCA+J48 PC1 5 30 0.9552 0.459 0.9943 0.9795 0.3415 0.9354

PCA+ABR PC1 5 30 0.9572 0.5411 1 0.9872 0.332 0.9505

PCA+NB PC2 5 30 0.9912 0.0555 0.94 0.9549 0.0757 0.9241

PCA+MLP PC2 5 30 0.9911 0.41 0.99 0.9984 0.2245 0.9872

PCA+AB PC2 5 30 0.9898 1 1 0.9998 0.2575 0.9885

PCA+RF PC2 5 30 0.9885 0 0.8521 0.9991 0 0.9875

PCA+DT PC2 5 30 0.9885 0.529 1 0.9991 0.8451 0.9885

PCA+J48 PC2 5 30 0.9885 0.9452 0 0.9985 0.9154 0.9872

PCA+ABR PC2 5 30 0.9885 0 1.01 0.9991 0.01 0.9899

PCA+NB MW1 5 30 0.9558 0.34 0.8595 0.9151 0.3528 0.8421

PCA+MLP MW1 5 30 0.931 0.3729 0.9713 0.9507 0.234 0.8935

PCA+AB MW1 5 30 0.9257 0.964 0.9979 0.9604 0.2301 0.9093

PCA+RF MW1 5 30 0.937 0.6033 0.9979 0.9665 0.3645 0.9212

PCA+DT MW1 5 30 0.9339 0.6867 1 0.9689 0.3683 0.9211

PCA+J48 MW1 5 30 0.936 0.4867 0.9846 0.9597 0.3127 0.9093

PCA+ABR MW1 5 30 0.937 0.6033 0.9979 0.9665 0.3645 0.9251

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV13IS020071
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

Volume 13, Issue 02, February 2024

www.ijert.org
www.ijert.org

TABLE IV. Performance Evaluation with PCA-LDA

CLASSIFIER DATASET CV

NO OF

FEATURE SENSITIVITY SPECIFICITY PRECISION F1SCORE MCC

ACCURAC

Y

PCA-LDA+NB KC1 5 18 0.9017 0.6119 0.8858 0.9505 0.3499 0.8532

PCA-
LDA+MLP KC1 5 18 0.8914 0.7531 0.9583 0.9747 0.3777 0.8794

PCA-LDA+AB KC1 5 18 0.8785 0.7584 1 0.973 0.3262 0.8718

PCA-LDA+RF KC1 5 18 0.9059 0.7488 0.941 0.9765 0.4242 0.8285

PCA-LDA+DT KC1 5 18 0.8935 0.7307 0.9502 0.9728 0.3771 0.8777

PCA-LDA+J48 KC1 5 18 0.9001 0.6486 0.9099 0.96 0.3635 0.8642

PCA-

LDA+ABR KC1 5 18 0.906 0.7384 0.9376 0.9751 0.4203 0.8853

PCA-LDA+NB MC2 5 18 0.7873 0.7236 0.9339 0.854 0.4124 0.7478

PCA-

LDA+MLP MC2 5 18 0.845 0.72 0.8845 0.8643 0.9351 0.7952

PCA-LDA+AB MC2 5 18 0.7846 0.7002 0.9215 0.8473 0.3939 0.7462

PCA-LDA+RF MC2 5 18 0.8001 0.7347 0.9366 0.8627 0.4373 0.7852

PCA-LDA+DT MC2 5 18 0.7705 0.7407 0.9586 0.8537 0.3867 0.7553

PCA-LDA+J48 MC2 5 18 0.8036 0.6503 0.8598 0.8307 0.3955 0.7456

PCA-
LDA+ABR MC2 5 18 0.8001 0.7857 0.9586 0.8718 0.4722 0.8653

PCA-LDA+NB PC1 5 18 0.9703 0.3858 0.9689 0.9696 0.3274 0.9189

PCA-

LDA+MLP PC1 5 18 0.9663 0.481 0.9968 0.9813 0.3481 0.9388

PCA-LDA+AB PC1 5 18 0.9454 0.281 1 0.9842 0.9842 0.9416

PCA-LDA+RF PC1 5 18 0.9608 0.605 0.9533 0.9888 0.3629 0.9501

PCA-LDA+DT PC1 5 18 0.9553 0.531 1 0.9852 0.2691 0.9445

PCA-LDA+J48 PC1 5 18 0.9662 0.407 0.9953 0.9805 0.3426 0.9374

PCA-

LDA+ABR PC1 5 18 0.9582 0.6421 1.001 0.9882 0.333 0.9516

PCA-LDA+NB PC2 5 18 0.9932 0.0676 0.942 0.9669 0.0777 0.9261

PCA-
LDA+MLP PC2 5 18 0.9931 0.412 0.992 1 0.2266 0.9892

PCA-LDA+AB PC2 5 18 0.9918 1 0.9885 0.9998 0.2595 0.9905

PCA-LDA+RF PC2 5 18 0.9905 0.002 0.8541 1 0 0.9895

PCA-LDA+DT PC2 5 18 0.9905 0.631 1.002 0.9891 0.8471 0.9905

PCA-LDA+J48 PC2 5 18 0.9905 0.9472 0.002 0 0.9174 0.9892

PCA-

LDA+ABR PC2 5 18 0.9905 0.002 1 0.9918 0.912 0.9919

PCA-LDA+NB MW1 5 18 0.9668 0.341 0.8706 0.9161 0.3638 0.8431

PCA-

LDA+MLP MW1 5 18 0.932 0.3739 0.9723 0.9517 0.235 0.8945

PCA-LDA+AB MW1 5 18 0.9267 0.965 0.9989 0.9614 0.2311 0.9103

PCA-LDA+RF MW1 5 18 0.938 0.6043 0.9989 0.9675 0.3655 0.9222

PCA-LDA+DT MW1 5 18 0.9349 0.6877 1 0.9699 0.3693 0.9221

PCA-LDA+J48 MW1 5 18 0.937 0.4877 0.9856 0.9607 0.3137 0.9103

PCA-

LDA+ABR MW1 5 18 0.938 0.6043 0.9989 0.9675 0.3655 0.9261

Figures 2 and 3 show the KC1 datasets without and with

selecting features. In both figures, ABR and PCA-LDA+ABR

provided the highest accuracy0.7633 and 0.8853

correspondingly.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV13IS020071
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

Volume 13, Issue 02, February 2024

www.ijert.org
www.ijert.org

Fig 2. KC1 dataset accurateness without feature collection

Fig 3. KC1 dataset correctness with feature collection

Figures 4 and 5 show the MC2 dataset both without and with

selecting features. In both figures, ABR and PCA-LDA+ABR

provided the greatest exactness 0.8203 and 0.8853 separately.

Fig 4. MC2 dataset accurateness without feature collection

Fig 5. MC2 dataset correctness with feature collection

Figures 6 and 7 show the PC1 datasets both without and with

selecting features. In both figures, ABR and PCA-LDA+ABR

gave the most precision 0.9206 and 0.9516 correspondingly.

Fig 6. PC1 dataset correctness without feature collection

Fig 7. PC1 dataset correctness with feature collection

Figures 8 and 9 show the PC2 datasets without and with

selecting features. In both the figures, ABR and PCA-

LDA+ABR provided the most accurateness 0.9799 and 0.9919

correspondingly.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV13IS020071
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

Volume 13, Issue 02, February 2024

www.ijert.org
www.ijert.org

Fig 8. PC2 dataset correctness without feature collection

Fig 9. PC2 dataset correctness with feature collection

Figures 10 and 11 show the MW1 datasets both without and

with selecting features. In both figures, ABR and PCA-

LDA+ABR provided the most accurateness 0.9051 and 0.9261

correspondingly.

Fig 10. MW1 dataset correctness without feature collection

Fig 11. MW1 dataset correctness with feature collection

V. CONCLUSION & FUTURE WORK

We offer a novel technique for predicting software defects

using PCA-LDA+ABR that combines dimensionality reduction

with a hybrid classifier. Our solution employs PCA to minimize

the amount of structures, followed by ABR, a grouping of AB

and RF techniques, to categorize the software components as

faulty or non-defective. We tested our strategy on six different

datasets and found that it outperformed existing approaches. On

the PC2 data set, our technique obtains an impressive accuracy

of 0.9919. Our study contributes to current research into

building more precise and effective software defect prediction

systems, which can aid in early detection of software problems

and reduce the cost of software development initiatives. We

propose that future study investigate additional combination

models to assist with software fault prediction.

 REFERENCES

[1] Hammouri, Awni, et al. "Software bug prediction using machine learning
approach." International journal of advanced computer science and

applications 9.2 (2018).

[2] Immaculate, S. Delphine, M. Farida Begam, and M. Floramary. "Software
bug prediction using supervised machine learning algorithms." 2019

International conference on data science and communication (IconDSC).

IEEE, 2019.
[3] Khan, F., Kanwal, S., Alamri, S. and Mumtaz, B., 2020. Hyper-parameter

optimization of classifiers, using an artificial immune network and its

application to software bug prediction. Ieee Access, 8, pp.20954-20964.
[4] Rhmann, W., Pandey, B., Ansari, G., & Pandey, D. K. (2020). Software

fault prediction based on change metrics using hybrid algorithms: An

empirical study. Journal of King Saud University-Computer and
Information Sciences, 32(4), 419-424.

[5] Chaturvedi, K. K., & Singh, V. B. (2012, September). Determining bug
severity using machine learning techniques. In 2012 CSI sixth

international conference on software engineering (CONSEG) (pp. 1-6).

IEEE.
[6] Aleem, S., Capretz, L. F., & Ahmed, F. (2015). Benchmarking machine

learning technologies for software defect detection. arXiv preprint

arXiv:1506.07563.
[7] Ferenc, Rudolf, Péter Gyimesi, Gábor Gyimesi, Zoltán Tóth, and Tibor

Gyimóthy. "An automatically created novel bug dataset and its validation

in bug prediction." Journal of Systems and Software 169 (2020): 110691.
[8] Jayanthi, R., and Lilly Florence. "Software defect prediction techniques

using metrics based on neural network classifier." Cluster Computing 22

(2019): 77-88.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV13IS020071
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

Volume 13, Issue 02, February 2024

www.ijert.org
www.ijert.org

[9] Shivaji, S., Whitehead, E. J., Akella, R., & Kim, S. (2009, November).

Reducing features to improve bug prediction. In 2009 IEEE/ACM
International Conference on Automated Software Engineering (pp. 600-

604). IEEE.

[10] Gupta, Aashish, et al. "Novel xgboost tuned machine learning model for
software bug prediction." 2020 international conference on intelligent

engineering and management (ICIEM). IEEE, 2020.

[11] Catal, Cagatay. "Software fault prediction: A literature review and current
trends." Expert systems with applications 38.4 (2011): 4626-4636.

[12] Catal, Cagatay, Ugur Sevim, and Banu Diri. "Practical development of an

Eclipse-based software fault prediction tool using Naive Bayes
algorithm." Expert Systems with Applications 38.3 (2011): 2347-2353.

[13] Das M, Pradhan D, Mohapatra S, “A PCA BASED SOFTWARE FAULT

PREDICTION MODEL USING ADRF", International Journal of
Emerging Technologies and Innovative Research (www.jetir.org | UGC

and issn Approved), ISSN:2349-5152, Vol.10, Issue 5, page no. ppj189-

j199, June-2023.
[14] Rathore, Santosh S., and Sandeep Kumar. "An empirical study of

ensemble techniques for software fault prediction." Applied Intelligence

51 (2021): 3515-3544.
[15] Erturk, Ezgi, and Ebru Akcapinar Sezer. "A comparison of some soft

computing methods for software fault prediction." Expert systems with

applications 42.4 (2015): 1872-1879.
[16] D'Ambros, Marco, Michele Lanza, and Romain Robbes. "An extensive

comparison of bug prediction approaches." Mining Software Repositories
(MSR), 2010 7th IEEE Working Conference on. IEEE, 2010.

[17] Y. Tohman, K. Tokunaga, S. Nagase, and M. Y., “Structural approach to
the estimation of the number of residual software faults based on the

hyper-geometric districution model,” IEEE Trans. on Software

Engineering, pp. 345–355, 1989.
[18] T. Angel Thankachan1, K. Raimond2, “A Survey on Classification and

Rule Extraction Techniques for Data mining”,IOSR Journal of Computer

Engineering ,vol. 8, no. 5,(2013), pp. 75-78.
[19] Okutan, Ahmet, and Olcay Taner Yıldız. "Software defect prediction

using Bayesian networks." Empirical Software Engineering 19.1 (2014):

154-181.
[20] Olsen, David L. and Delen, “ Advanced Data Mining Techniques ”,

Springer, 1st edition, page 138, ISBN 3-540-76016-1, Feb 2008.

[21] D. Pradhan and D. Muduli, "Software Defect Prediction Model Using

AdaBoost based Random Forest Technique," 2023 14th International
Conference on Computing Communication and Networking

Technologies (ICCCNT), Delhi, India, 2023, pp. 1-6, doi:

10.1109/ICCCNT56998.2023.10308208.
[22] Anwesh Kumar Mahanta, Smruti Rekha Pradhan, Biswajeet Sahoo,

Debasish Pradhan, 2024, An Automated Pca-lda Based Software Fault
Prediction Model Using Machine Learning Classifier,

INTERNATIONAL JOURNAL OF ENGINEERING RESEARCH &

TECHNOLOGY (IJERT) Volume 13, Issue 1 (January 2024).

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV13IS020071
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

Volume 13, Issue 02, February 2024

www.ijert.org
www.ijert.org

