
Abstract

Many algorithms are available for sorting the

unordered elements. Most important of them are

Bubble sort, Heap sort, Insertion sort and Quick sort.

This paper presents the new algorithm for sorting the

elements which is based on minimum and maximum

elements of the array which results in placing the

elements at appropriate position. This will reduce the

number of passes in which the sorting takes place.

We will examine this sorting technique and compare

with the other available sorting algorithms in terms

of complexity, memory and other factors.

1. INTRODUCTION

Sorting has been a profound area for the algorithmic

researchers. And many resources are invested to

suggest a more working sorting algorithm. For this

purpose many existing sorting algorithms were

observed in terms of the efficiency of the algorithmic

complexity. Since the dawn of computing, the sorting

problem has attracted a great deal of research [1]. Till

date, Sorting algorithms are open problems and many

researchers in past have attempted to optimize them

with optimal space and time scale. This paper

describes the new sorting algorithm named Min-Max

Sorting based on minimum and maximum element.

This algorithm finds the minimum and maximum

element from the array and placed in first and last

position of the array. Then it increment the array

index from the first position and decrement the array

index from the last position, from this we find the

new array and from this new array again we find the

minimum and maximum element and placed in first

and last position of the new array and so on. In this

way, number of passes is reduced to sort the number

of elements and it also reduces the time which the

algorithm takes to sort the numbers.

This paper includes:

 Section 2 describes the proposed algorithm.

 Section 3 describes the comparative study

with the other algorithms.

 Section 4 describes the conclusion.

2. PROPOSED ALGORITHM

The Min-Max Sorting Algorithm works on the

minimum and maximum element of the array. It finds

the minimum and maximum element from the array

and set on the first and last position of the array.

Then the array index increment from the first position

and decrement from the last position to get the new

array. From this new array, it again finds the

minimum and maximum element and set on their

respective positions. In this way, this sorting

algorithm sorts the elements of the array.

Here we provide the Pseudo-Code for this sorting

algorithm.

Pseudo-Code for Min-Max Sorting

1. Set p:=0,q:=n-1 //n is the number of elements

2. while p<q do:

 Repeat steps 3 to 6

3. Minimum(a,p,q) //pass array,p,q to find

minimum element of current array

4. Maximum(a,p,q) //pass array,p,q to find

maximum element of current array

5. Set p:=p+1 //increment p

6. Set q:=q+1 //increment q

7. End while

8. Print sorted array //end of algorithm

Pseudo-Code for finding the minimum element from

the array:

Pseudo-Code for Minimum Function

Minimum(int a[],int p,int q) //Receive array,p,q

1. Set min:=a[p] //set the first element of array

to min

2. for l=p to q do:

 Repeat Steps 3 to 5

3. if a[l]<min then

4. swap(a[l],min) //swapping is done and find

the minimum element
5. Set l:=l+1;

6. End for

7. a[p]=min

 Pseudo-Code for finding the maximum element

from the array:

A New Approach To Sorting: Min-Max Sorting Algorithm

Aayush Agarwal Vikas Pardesi Namita Agarwal

 M.Tech, CDAC Noida M.Tech, DTU, Delhi B.Tech, BITS, Sonepat

445

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 5, May - 2013
ISSN: 2278-0181

www.ijert.org

IJ
E
R
T

IJ
E
R
T

Pseudo-Code for Maximum Function

Maximum(int a[],int p,int q) //Receive array,p,q

1. Set max:=a[q] //set the last element of array

to min

2. for i=p to q do:

 Repeat Steps 3 to 5

3. if a[i]>max then

4. swap(a[i],max) //swapping is done and find

the maximum element

5. Set i:=i+1;

6. End for

7. max=a[q]

 We provide the source code of the Min-Max Sorting

Technique:

Source Code in C

#include<stdio.h>

#include<conio.h>

void minimum(int a[],int p,int q)

{

 int min=a[p];

for(int l=p;l<=q;l++)

{

if(a[l]<min)

 {

 int temp=min;

 min=a[l];

 a[l]=temp;

 }

 a[p]=min;

 }

}

void maximum(int a[],int p,int q)

{

 int max=a[q];

for(int i=p;i<=q;i++)

{

int temp;

if(a[i]>max)

{

temp=a[i];

a[i]=a[q];

a[q]=temp;

}

max=a[q];

}

}

void main()

{

Clrscr();

int n,a[20];

 printf("\nHow many element you want to

enter...?\n");

scanf("%d",&n);

for(int i=0;i<n;i++)

Scanf("%d",&a[i]);

for(int j=0;j<n;j++)

 printf("\nYour Array is :%d ",a[j]);

 printf("\nSorted Array is :");

int p=0,q=n-1;

while(p<q)

{

minimum(a,p,q);

maximum(a,p,q);

p++;

q--;

}

for(int k=0;k<n;k++)

printf("%d\n",a[k]);

getch();

}

OUTPUT

How many elements you want to enter…?

6

23 43 12 54 27 5

Your Array is: 23 43 12 54 27 5

Sorted Array is: 5 12 23 27 43 54

3. COMPARATIVE STUDY WITH

OTHER ALGORITHMS

In this section, we provide the comparison of our

Min-Max sorting algorithm with others existing

sorting algorithms in different cases with example.

A. Comparison in terms of Time Complexity

with other Algorithms:

Table 1: Complexity Comparison
NAME BEST CASE AVERAGE

CASE

WORST CASE

MIN-MAX

SORT

n2 n2 n2

QUICKSORT nlog n nlog n n2

HEAP SORT nlog n nlog n nlog n

MERGE

SORT

nlog n nlog n nlog n

BUBBLE

SORT

n n2 n2

SELECTION

SORT

n2 n2 n2

INSERTION

SORT

n n2 n2

446

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 5, May - 2013
ISSN: 2278-0181

www.ijert.org

IJ
E
R
T

IJ
E
R
T

B. Comparison in Number of Passes to Sort the

Elements:

This comparison is shown by taking an example. In

this, we have an array of 5 integers andwe are

differentiating sorting algorithms in terms of number

of passes and proved that our algorithm takes

minimum number of passes to sort an array. Here we

are comparing only with two sorting i.e., Selection

sort and bubble sort.

Let us take an example:

Array: 5 4 3 2 1

Min-Max Sorting:

2, 3, 5, 1, 4 (Given Array)

1, 3, 5, 2, 4 (After Minimum Function)

1, 3, 4, 2, 5 (After MaximumFunction) Pass 1

1, 3, 4, 2, 5 (After Minimum Function)

1, 2, 4, 3, 5 (After Maximum Function) Pass 2

1, 2, 3, 4, 5 Resultant Sorted Array

It will take only two passes to sort the elements. In

General, it takes / 2n  passes to sort the elements

where n is the number of elements.

Bubble Sorting:

2, 3, 5, 1, 4 (Given Array)

2, 3, 5, 1, 4

2, 3, 5, 1, 4

2, 3, 1, 5, 4 Pass 1

2, 3, 1, 4, 5

2, 3, 1, 4, 5 (Intermediate Array after Pass 1)

2, 3, 1, 4, 5

2, 1, 3, 4, 5 Pass 2

2, 1, 3, 4, 5

2, 1, 3, 4, 5

2, 1, 3, 4, 5 (Intermediate Array after Pass 2)

1, 2, 3, 4, 5

1, 2, 3, 4, 5 Pass 3

1, 2, 3, 4, 5

1, 2, 3, 4, 5

1, 2, 3, 4, 5 (Intermediate Array after Pass 3)

1, 2, 3, 4, 5

1, 2, 3, 4, 5 Pass 4

1, 2, 3, 4, 5

1, 2, 3, 4, 5 (Final Sorted Array after Pass 4)

It will take four passes to sort the elements. In

General, it takes (n-1) passes to sort the elements

where n is the number of elements. It takes just

double passes to sort the elements compare to Min-

Max sorting.

Selection Sort:

2, 3, 5, 1, 4 (Given Array)

1, 3, 5, 2, 4 Pass 1

1, 2, 5, 3, 4 Pass 2

1, 2, 3,5, 4 Pass 3

1, 2, 3, 4, 5 Pass 4

It will also take (n-1) passes just taking double time

compare to Min-Max sorting algorithm.

C. Comparison in terms of other factors:

All the sorting algorithms have two properties on

which they follow. Some sorting algorithms follow

these properties but some are not. Our sorting

algorithm follows these properties which are as

follows:

 Stable Sorting: A sorting algorithm is

called stable if it keeps elements with equal

keys in the same relative order in the output

as they were in the input [10].

For example, in the following input the two 4's are

indistinguishable:

1, 4a, 3, 4b, 2

And so the output of a stable sorting algorithm must

be:

1, 2, 3, 4a, 4b

 Inplace Sorting: In-place algorithm is

an algorithm which transforms input using

a data structure with a small, constant

amount of extra storage space. The input is

usually overwritten by the output as the

algorithm executes. An algorithm which is

not in-place is sometimes called not-in-

place or out-of-place [11].

447

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 5, May - 2013
ISSN: 2278-0181

www.ijert.org

IJ
E
R
T

IJ
E
R
T

Table 2: Comparison in terms of Stable

and Inplace Sorting

4. CONCLUSION

This paper describe the new sorting algorithm named

Min-Max Sorting based on finding the minimum and

maximum element of the array and sort the elements.

In this way, we are able to reduce the number of

passes required to sort the elements in comparison

with other sorting algorithms and also able to remove

rabbit and turtle problem. In future work we can try

to reduce it’s time complexity then it can be an

efficient and effective sorting algorithm.

REFERENCES

[1] John Darlington, Remarks on “A Synthesis of Several

Sorting Algorithms”, Springer Berlin / Heidelberg, pp 225-

227, Volume 13, Number 3 / March, 1980.

[2] Talk presented by Dr. Sedgewick ,” Open problems in

the analysis of sorting and searching algorithms”, at the

Workshop on the probabilistic analysis of algorithms,

Princeton, May, 1997.

[3] Dr. D. E. Knuth, The Art of Computer Programming,

3rd volume, "Sorting and Searching”, second edition.

[4] J.P. Linderman. "Theory and Practice in the

Construction of a Working Sort Routine." Bell System

Technical Journal 63, pp.1827-1843, 1984.

[5] S. Baase, Computer Algorithms: Introduction to Design

and Analysis, Addison-Wesley Publishing Co., pp. 58-132,

1978.

[6] http://en.wikipedia.org/wiki/Sorting_algorithm

[7] Lavore, Robert. Arrays, Big O Notation and Simple

Sorting. Data Structures andAlgorithms in Java (2nd

Edition) . Sams, 978-0-672-32453-6.

[8] Savitch, Walter and Carrano, Frank. Arrays. Java:

Introduction to Problem Solving and Programming (5th

Edition). Prentice Hall, 9780136072256.

[9] Sedgewick, Robert. Fundamentals, Data Structures,

Sorting, Searching, and Graph Algorithms. Bundle of

Algorithms in Java, Third Edition. Addison-

WesleyProfessional, 9780201775785.

[10] www.algorithmist.com/index.php/Stable_Sort

[11] www.geeksforgeeks.org/forums/topic/inplace-sorting

NAME STABLE INPLACE

MIN-MAX SORT YES YES

QUICKSORT Depends YES

HEAP SORT NO YES

MERGE SORT YES NO

BUBBLE SORT YES YES

SELECTION SORT NO YES

INSERTION SORT YES YES

448

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 5, May - 2013
ISSN: 2278-0181

www.ijert.org

IJ
E
R
T

IJ
E
R
T

