A New Approach To Sorting: Min-Max Sorting Algorithm

Aayush Agarwal
M.Tech, CDAC Noida

Vikas Pardesi
M.Tech, DTU, Delhi

Namita Agarwal
B.Tech, BITS, Sonepat

Abstract

Many algorithms are available for sorting the unordered elements. Most important of them are Bubble sort, Heap sort, Insertion sort and Quick sort. This paper presents the new algorithm for sorting the elements which is based on minimum and maximum elements of the array which results in placing the elements at appropriate position. This will reduce the number of passes in which the sorting takes place. We will examine this sorting technique and compare with the other available sorting algorithms in terms of complexity, memory and other factors.

1. INTRODUCTION

Sorting has been a profound area for the algorithmic researchers. And many resources are invested to suggest a more working sorting algorithm. For this purpose many existing sorting algorithms were observed in terms of the efficiency of the algorithmic complexity. Since the dawn of computing, the sorting problem has attracted a great deal of research [1]. Till date, Sorting algorithms are open problems and many researchers in past have attempted to optimize them with optimal space and time scale. This paper describes the new sorting algorithm named Min-Max Sorting based on minimum and maximum element. This algorithm finds the minimum and maximum element from the array and placed in first and last position of the array. Then it increment the array index from the first position and decrement the array index from the last position, from this we find the new array and from this new array again we find the minimum and maximum element and placed in first and last position of the new array and so on. In this way, number of passes is reduced to sort the number of elements and it also reduces the time which the algorithm takes to sort the numbers.

This paper includes:

- Section 2 describes the proposed algorithm.
- Section 3 describes the comparative study with the other algorithms.
- Section 4 describes the conclusion.

2. PROPOSED ALGORITHM

The Min-Max Sorting Algorithm works on the minimum and maximum element of the array. It finds the minimum and maximum element from the array and set on the first and last position of the array. Then the array index increment from the first position and decrement from the last position to get the new array. From this new array, it again finds the minimum and maximum element and set on their respective positions. In this way, this sorting algorithm sorts the elements of the array.
Here we provide the Pseudo-Code for this sorting algorithm.

Pseudo-Code for Min-Max Sorting

1. Set $\mathrm{p}:=0, \mathrm{q}:=\mathrm{n}-1 \quad / / \mathrm{n}$ is the number of elements
2. while $\mathrm{p}<\mathrm{q}$ do:

Repeat steps 3 to 6
3. Minimum(a,p,q) //pass array,p,q to find minimum element of current array
4. Maximum(a,p,q) //pass array, p, q to find maximum element of current array
5. Set $\mathrm{p}:=\mathrm{p}+1 \quad / /$ increment p
6. Set $\mathrm{q}:=\mathrm{q}+1 \quad / /$ increment q
7. End while
8. Print sorted array //end of algorithm

Pseudo-Code for finding the minimum element from the array:

Pseudo-Code for Minimum Function

Minimum(int a[],int p,int q) //Receive array,p,q 1. Set $\min :=a[p] \quad / /$ set the first element of array to min
2. for $\mathrm{l}=\mathrm{p}$ to q do:

Repeat Steps 3 to 5
3. if $\mathrm{a}[1]<\min$ then
4. $\operatorname{swap}(\mathrm{a}[1], \min) \quad / /$ swapping is done and find
the minimum element
5. Set $1:=1+1$;
6. End for
7. $a[p]=m i n$

Pseudo-Code for finding the maximum element from the array:

Pseudo-Code for Maximum Function

Maximum(int a[],int p,int q) //Receive array,p,q 1. Set max: $=\mathrm{a}[\mathrm{q}] \quad / /$ set the last element of array to min
2. for $i=p$ to q do:

Repeat Steps 3 to 5
3. if $\mathrm{a}[\mathrm{i}]>\max$ then
4. $\operatorname{swap}(\mathrm{a}[\mathrm{i}], \max) \quad / /$ swapping is done and find the maximum element
5. Set $\mathrm{i}:=\mathrm{i}+1$;
6. End for
7. $\max =\mathrm{a}[\mathrm{q}]$

We provide the source code of the Min-Max Sorting Technique:

Source Code in C

\#include<stdio.h>

\#include<conio.h>
void minimum(int a[],int p,int q)
\{
int min=a[p];
for(int $\mathrm{l}=\mathrm{p} ; 1<=\mathrm{q} ; 1++$)
\{
if(a[1]<min)
\{
int temp=min;
$\min =\mathrm{a}[1]$;
a[1]=temp;
\}
$\mathrm{a}[\mathrm{p}]=\mathrm{min}$;
\}
\}
void maximum(int a[],int p ,int q)
\{
int $\max =\mathrm{a}[\mathrm{q}]$;
for(int $\mathrm{i}=\mathrm{p} ; \mathrm{i}<=\mathrm{q} ; \mathrm{i}++$)
\{
int temp;
if(a[i]>max)
\{
temp=a[i];
$\mathrm{a}[\mathrm{i}]=\mathrm{a}[\mathrm{q}]$;
$\mathrm{a}[\mathrm{q}]=$ temp;
\}
$\max =\mathrm{a}[\mathrm{q}]$;
\}
\}
void main()
\{
Clrscr();
int $\mathrm{n}, \mathrm{a}[20]$;
printf("\nHow many element you want to
enter...?\n");
scanf("\%d",\&n);
for (int $\mathrm{i}=0 ; \mathrm{i}<\mathrm{n} ; \mathrm{i}++$)
Scanf("\%d",\&a[i]);
for (int $\mathrm{j}=0 ; \mathrm{j}<\mathrm{n} ; \mathrm{j}++$)
printf("\nYour Array is :\%d ",a[j]);
printf("\nSorted Array is :");
int $\mathrm{p}=0, \mathrm{q}=\mathrm{n}-1$;
while $(\mathrm{p}<\mathrm{q})$
\{
minimum (a,p,q);
maximum (a,p,q);
p++;
q--;
\}
for (int $\mathrm{k}=0 ; \mathrm{k}<\mathrm{n} ; \mathrm{k}++$)
printf("\%d\n",a[k]);
getch();
\}

OUTPUT

How many elements you want to enter...?
6
23431254275
Your Array is: 23431254275
Sorted Array is: 51223274354

3. COMPARATIVE STUDY WITH OTHER ALGORITHMS

In this section, we provide the comparison of our Min-Max sorting algorithm with others existing sorting algorithms in different cases with example.

A. Comparison in terms of Time Complexity with other Algorithms:

Table 1: Complexity Comparison

NAME	BEST CASE	$\begin{aligned} & \text { AVERAGE } \\ & \text { CASE } \end{aligned}$	WORST CASE
$\begin{aligned} & \text { MIN-MAX } \\ & \text { SORT } \end{aligned}$	n^{2}	n^{2}	n^{2}
QUICKSORT	$n \log \mathrm{n}$	$n \log \mathrm{n}$	n^{2}
HEAP SORT	$n \log \mathrm{n}$	$n \log \mathrm{n}$	$n \log \mathrm{n}$
MERGE SORT	$n \log \mathrm{n}$	$n \log \mathrm{n}$	$n \log \mathrm{n}$
$\begin{aligned} & \hline \text { BUBBLE } \\ & \text { SORT } \end{aligned}$	n	n^{2}	n^{2}
SELECTION SORT	n^{2}	n^{2}	n^{2}
INSERTION SORT	n	n^{2}	n^{2}

B. Comparison in Number of Passes to Sort the Elements:

This comparison is shown by taking an example. In this, we have an array of 5 integers andwe are differentiating sorting algorithms in terms of number of passes and proved that our algorithm takes minimum number of passes to sort an array. Here we are comparing only with two sorting i.e., Selection sort and bubble sort.
Let us take an example:
Array: 54321

Min-Max Sorting:

$\underline{2}, 3,5, \underline{1}, 4 \quad$ (Given Array)
 $1,3, \underline{5}, 2, \underline{4} \quad$ (After Minimum Function) 1, 3, 4, 2,5 (After MaximumFunction) \int Pass 1
 $1, \underline{3}, 4, \underline{2}, 5 \quad$ (After Minimum Function)
 $1,2, \underline{4}, \underline{3}, 5 \quad$ (After Maximum Function) $]$ Pass 2
 1, 2, 3, 4, $5 \quad$ Resultant Sorted Array
 It will take only two passes to sort the elements. In General, it takes $\lfloor n / 2\rfloor$ passes to sort the elements where n is the number of elements.

Bubble Sorting:

$\underline{2}, \underline{3}, 5,1,4 \quad$ (Given Array)
$2,3,5,1,4$
$2,3, \underline{5}, \underline{1}, 4$
$2,3,1,5,4$
$2,3,1,4,5$$\quad \quad$ Pass 1
$\underline{2}, \underline{3}, 1,4,5 \quad$ (Intermediate Array after Pass 1)
$2, \underline{3}, 1,4,5$
$2,1, \underline{3}, \underline{4}, 5 \quad$ Pass 2
$2,1,3, \underline{4}, \underline{5}$
$2,1,3,4,5$
$\underline{2}, \underline{1}, 3,4,5 \quad$ (Intermediate Array after Pass 2)
$1, \underline{2}, \underline{3}, 4,5$
$1,2, \underline{3}, \underline{4}, 5 \quad$ Pass 3
$1,2,3,4,5$
$1,2,3,4,5$
$\underline{1}, \underline{2}, 3,4,5 \rightarrow$ (Intermediate Array after Pass 3)
$1, \underline{2}, \underline{3}, 4,5$
$1,2, \underline{3}, \underline{4}, 5 \quad$ Pass 4
$1,2,3, \underline{4}, \underline{5}$
1, 2, 3, 4, 5 (Final Sorted Array after Pass 4)

It will take four passes to sort the elements. In General, it takes ($\mathrm{n}-1$) passes to sort the elements where n is the number of elements. It takes just double passes to sort the elements compare to MinMax sorting.

Selection Sort:

$\underline{2}, 3,5, \underline{1}, 4 \quad$ (Given Array)
$1, \underline{3}, 5, \underline{2}, 4\} \quad$ Pass 1
$1,2, \underline{5}, \underline{3}, 4$ 子 Pass 2
$1,2,3, \underline{5}, \underline{4} \quad$ 〕 \quad Pass 3
$1,2,3,4,5 \quad$ Pass 4
It will also take ($\mathrm{n}-1$) passes just taking double time compare to Min-Max sorting algorithm.

C. Comparison in terms of other factors:

All the sorting algorithms have two properties on which they follow. Some sorting algorithms follow these properties but some are not. Our sorting algorithm follows these properties which are as follows:

- Stable Sorting: A sorting algorithm is called stable if it keeps elements with equal keys in the same relative order in the output as they were in the input [10].

For example, in the following input the two 4 's are indistinguishable:

$$
1,4_{\mathrm{a}}, 3,4_{\mathrm{b}}, 2
$$

And so the output of a stable sorting algorithm must be:

$$
1,2,3,4_{\mathrm{a}}, 4_{\mathrm{b}}
$$

- Inplace Sorting: In-place algorithm is an algorithm which transforms input using a data structure with a small, constant amount of extra storage space. The input is usually overwritten by the output as the algorithm executes. An algorithm which is not in-place is sometimes called not-inplace or out-of-place [11].

Table 2: Comparison in terms of Stable and Inplace Sorting

NAME	STABLE	INPLACE
MIN-MAX SORT	YES	YES
QUICKSORT	Depends	YES
HEAP SORT	NO	YES
MERGE SORT	YES	NO
BUBBLE SORT	YES	YES
SELECTION SORT	NO	YES
INSERTION SORT	YES	YES

4. CONCLUSION

This paper describe the new sorting algorithm named Min-Max Sorting based on finding the minimum and maximum element of the array and sort the elements. In this way, we are able to reduce the number of passes required to sort the elements in comparison with other sorting algorithms and also able to remove rabbit and turtle problem. In future work we can try to reduce it's time complexity then it can be an efficient and effective sorting algorithm.

REFERENCES

[1] John Darlington, Remarks on "A Synthesis of Several Sorting Algorithms", Springer Berlin / Heidelberg, pp 225227, Volume 13, Number 3 / March, 1980.
[2] Talk presented by Dr. Sedgewick "Open problems in the analysis of sorting and searching algorithms", at the Workshop on the probabilistic analysis of algorithms, Princeton, May, 1997.
[3] Dr. D. E. Knuth, The Art of Computer Programming, 3rd volume, "Sorting and Searching", second edition.
[4] J.P. Linderman. "Theory and Practice in the Construction of a Working Sort Routine." Bell System Technical Journal 63, pp.1827-1843, 1984.
[5] S. Baase, Computer Algorithms: Introduction to Design and Analysis, Addison-Wesley Publishing Co., pp. 58-132, 1978.
[6] http://en.wikipedia.org/wiki/Sorting_algorithm
[7] Lavore, Robert. Arrays, Big O Notation and Simple Sorting. Data Structures andAlgorithms in Java (2nd Edition) . Sams, 978-0-672-32453-6.
[8] Savitch, Walter and Carrano, Frank. Arrays. Java: Introduction to Problem Solving and Programming (5th Edition). Prentice Hall, 9780136072256.
[9] Sedgewick, Robert. Fundamentals, Data Structures, Sorting, Searching, and Graph Algorithms. Bundle of Algorithms in Java, Third Edition. AddisonWesleyProfessional, 9780201775785.
[10] www.algorithmist.com/index.php/Stable_Sort
[11] www.geeksforgeeks.org/forums/topic/inplace-sorting

