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Abstract  
 

It is well recognized that even a high quality data set 

tends to contain a remarkable percent of unusual 

observations. There are various techniques to detect 

multivariate outliers.  But they are highly depends on 

mathematics. We propose a new graphical technique to 

detect multivariate outliers which is easy to understand 

without hard mathematics, it can be applied to data for 

both supervised and unsupervised learning, it can be 

directly applied to separate extreme outliers from 

general outliers.  
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Principal Component Analysis. 

 

 

1. Introduction  
Outliers detection problem is as old as statistics. 

Outliers present in both supervised and unsupervised 

learning of multivariate data set. Outlier can destroy 

our analysis. So outliers detection should be the first 

target of a statistician or a researcher. In this paper we 

mainly proposed a method for outliers detection in a 

multivariate data set and apply this in several well 

known data sets. 

 

In multivariate statistics we detect outliers by 

Mahalalanobis Distance but it is not suitable for outlier 

detection since it is dependent on nonrobust mean and 

covariance matrix. To detect outliers, Rousseeuw and 

Leroy (1987) proposed robust distances, which are 

robustified versions of the Mahalanobis distances 

)()(
1

ninnii txCtxRD  

with ),( nn ct robust estimates of location and scatter. 

Observations with RDi bigger than the critical value 

975.0,2

k can be considered as potential 

outliers (Rousseeuw and Van Zomeren, 1990). 

Regression analysis is one of the techniques of 

multivariate statistics. By regression analysis we can 

analyze business, economics and social science data. 

There are some existing techniques to detect outliers by 

using Regression analysis. In regression analysis 

statisticians mainly follow two ways. (i) After fitting 

classical least square lines they detect outliers in Y 

direction by standardized residuals, studentized 

residuals (Srikantan; 1961), deletion studentized 

residual (Ellenberg; 1976) and outliers in X direction 

by high leverage values. (ii) The robust techniques that 

are commonly used in the identification of multiple 

outliers are least median of squares (LMS) 

(Rousseeuw; 1984), least trimmed squares 

(LTS)(Rousseeuw; 1984) and reweighted least squares 

(RLS)(Rousseeuw and Leroy; 1987) etc. In logistic 

regression outliers are detected by generalized 

standardized pearson residual (GSPR) (Hadi and 

Simonoff, 1993; Atkinson, 1994; Munier, 1999 and 

Imon, 2005). 

2. Singular Value Decomposition 

The singular value decomposition (SVD) can be 

viewed as the extension of the eigenvalue 
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decomposition for the case of nonsquare matrices. It 

shows that any real matrix can be diagonalized by 

using two orthogonal matrices. The eigen value 

decomposition, instead, works only on square matrices 

and uses only one matrix ( and its inverse) to achieve 

diagonalization. If the matrix is square and symmetric, 

then the two orthogonal matrices of SVD become 

equal, and eigen value decomposition and SVD become 

one and same thing. Because the SVD is much more 

general than the eigen value decomposition and 

intimately related to the matrix rank and reduced rank 

least square approximations, it is a very important and 

useful tool in matrix theory, statistics and signal 

analysis. It can be used as a data reduction technique. 

 

Singular value decomposition, specially its low rank 

approximation property is an elegant part of modern 

matrix theory. After its inception (1936)[10] its two 

ways fascinating data reduction capacity remained 

unnoticed till the last quarter of last century. Since then 

statisticians have been showing increasing interest to 

SVD for principal component analysis (PCA), 

canonical correlation analysis (CCA) and cluster 

analysis. Principal component analysis (PCA), often 

performed by singular value decomposition (SVD), is a 

popular analysis method that has recently been 

explored as a method for analyzing large-scale 

expression data (Raychaudhuri et al., 2000; Alter et al., 

2000)[11,12]. Additionally SVD/PCA has been used to 

identify high-amplitude modes of fluctuations in 

macromolecular dynamics simulations (Garcia, 1992; 

Romo et al., 1995)[13,14], and identify structural 

intermediates in lysozyme folding using small-angle 

scattering experiments (Chen et al., 1996)[15]. One of 

the challenges of bioinformatics is to develop effective 

ways to analyze global gene expression data. A 

rigorous approach to gene expression analysis must 

involve an up-front characterization of the structure of 

the data. In addition to a broader utility in analysis 

methods, singular value decomposition (SVD) and 

principal component analysis (PCA) can be valuable 

tools in obtaining such a characterization. SVD and 

PCA are common techniques for analysis of 

multivariate data, and gene expression data are well 

suited to analysis using SVD/PCA. A single microarray 

experiment can generate measurements for thousands, 

or even tens of thousands of genes. Gene expression 

data are currently rather noisy, and SVD can detect and 

extract small signals from noisy data. Since SVD can 

reduce data in both ways–columns (generally indicates 

variables) and rows (generally indicates cases), and is 

more numerically stable, and moreover, PCA can be 

undertaken as a by product of SVD, in modern research 

it is being used more frequently in place of classical 

PCA for data compression ( Diamantaras and 

Kung,1996;)[16] , clustering (Murtagh,2002;)[17] and 

multivariate outliers detection (Penny and 

Jolliffe,2001;)[18]. 

3. Low Rank Approximation of SVD 

 Low rank approximation (C. Eckart and G. Young, 

1936)[10] is an important properties of SVD. It has an 

wonderful data reduction capacity with minimum 

recovery error.  We can reduce variables as well as 

observations by using SVD. If X is m×n matrix of rank 

k min(m,n). Then by singular value decomposition we 

can write, 

            
TVUX             (1) 

 

where U is the column orthonormal matrix whose 

columns are the eigen vectors of 
TXX , is the 

diagonal matrix contain the singular values of X and V 

is the orthogonal matrix whose columns are the eigen 

vectors of XX T
.  

From (1) we can write  
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Suppose we approximate X by X
~

 whose rank is r< k ≤ 

min(m,n).  

.
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where rU  is m×r, r  is a diagonal matrix of 

order r and rV is n × r. Now post multiply 
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rV  in both side we have, 

rrr UVX
~

 

its first column represents the first PC, second column 

represents the second PC and so on. Hence we see that 

X is a m×n matrix but rVX
~

 is a m×r. Generally n 

represents no. of variables, so it reduces data by 

minimizing no. of variables.  

 
4. SVD Based Outlier Detection Method 

We develop a graphical method of outliers 

detection using SVD. It is suitable for both 

general multivariate data and regression data. 

For this we construct the scatter plots of first 

two PC’s, and first PC and third PC. We also 

make a box in the scatter plot whose range lies 

median(1stPC) ± 3 × mad(1stPC) in the X-axis 

and median(2ndPC/3rdPC) ± 3 × 

mad(2ndPC/3rdPC) in the Y-axis. Where mad = 

median absolute deviation. The points that are 

outside the box can be considered as extreme 

outliers. The points outside one side of the box 

is termed as outliers. Along with the box we 

may construct another smaller box bounded by 

2.5/2 MAD line. 

 

5. Example 
In this section we will use our method in some real data 

sets. These datasets are well known in multivariate 

analysis and regression analysis. 

5.1 Car Data 

Our first example is the low-dimensional car data set 

which is available in S-PLUS as the data frame 

cu.dimensions. For n=111 cars, p=11 characteristics 

were measured such as the length, the width and the 

height of the car. Using our method we get the Figure-

1. From Figure-1(a) we see that observations 25, 30, 

32, 34, 36, 102, 104, 107, 108, 110 and 111 are outside 

the box by the two groups. Also from Figure-1(b) we 

see that the observations 6, 102 and 104-111 are 

outside the box. So in our above graph we can say that 

6, 25, 30, 32, 34, 36, 102, 104 -111 are unusual 

observations. Hubert, Rousseeuw and 

Branden(2005)[19] declared observations 25, 30, 32, 

34, 36, 102-111 as outliers by using ROBPCA. 

 

Figure 1. Scatter plot of car data (a) scatter plot of first 

two PC’s and (b) scatter plot of first and third PC. 

5.2.  Hawkins-Bradu-Kass (1984) Data 

Hawkins, Bradu and kass (Hawkins et al., 1984)[20] 

constructed an artificial three-predictor data set 

containing 75 observations with 14 influential 

observations. Among them there are ten high leverage 

outliers (cases 1-10) and for high leverage points (cases 

11-14) -Imon (2005)[21]. If we apply our method in 

this data then we get the Figure-2. From Figure-2 we 

see that observations 1-14 are outside our box so 

observations 1-14 are unusual observations. Also we 

see that three clusters are present in the data. 

Observations 1-10 make 1st cluster, observations 11-14 

make second cluster and the rest observations make 

third cluster in figure-2(a). Index plot of standardized 

residuals obtained from LMS (Rousseeuw and Leroy, 

1987)[5] is out performed by our plot. 
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Figure 2. Scatter plot of Hawkins, Bradu and kass data 

(a) scatter plot of first two PC’s and (b) scatter plot of 

first and third PC. 

5.3. Modified Brown Data 

We first consider the data set given by Brown 

(1980)[22]. Here the main objective was to see whether 

an elevated level of acid phosphates (A.P.) in the blood 

serum together would be of value for predicting 

whether or not prostate cancer patients also had lymph 

node involvement (L.N.I). Ryan (1997)[23] pointed out 

that the original data on the 53 patients which contains 

1 outlier (observation number 24). Imon and 

Hadi(2005)[9] modified this data set by putting two 

more outliers as cases 54 and 55. Also they showed that 

observations 24, 54 and 55 are outliers by using 

generalized standardized Pearson residual (GSPR) 

(Hadi and Simonoff,1993; Atkinson, 1994; Munier, 

1999; Imon, 2005) [6,7,8,9]. Now we apply our method 

in this data. Applying our method we get the figure 3. 

From figure-3 we see that observations 24, 54, 55, 53 

and 25 are detected as outliers by our method. 

 

Figure-3. Scatter plot of modified Brown  data (a) 

scatter plot of first two PC’s and (b) scatter plot of first 

and third PC. 

6. Advantages Our Method 

Our method has the following advantages over other 

competitive methods; 

 It is easy to understand without hard 

mathematics. 

 It can be applied for both regression data and 

other type of multivariate data. 

 It is directly applied to separate extreme 

outliers from general outliers. 

 It can detect several clusters that other outliers 

detection methods fail to pinpoint. 

 It can single out not only outlying 

observations but also outlying variables. 

  

7. Conclusion 

Form our above discussion we conclude that the 

proposed method is very much helpful for multivariate 

outlier detection. By using this method we can also see 

the structure of multivariate data graphically. Though 

there are several existing methods for detecting 
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multivariate outliers but SVD based technique is better 

than those methods. 
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