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ABSTRACT 

                This Paper Presents the Study of the Projective Tensor Product  and its consequences by defining  the  projective 

topology 𝜋  on Locally convex spaces E and F; U & V be the closed absolutely  convex  neighborhoods of Q in E and F 

respectively , forming the set  𝜏(U⨂V) = absolutely convex hull of U⨂V in E⨂F, it  is proved in this paper that the projective 

topology  𝜋 is the finest locally convex topology on E⨂F for which the Canonical mapping Ψ : E X F  →  E⨂F   is continuous. 

Tensor products are used to describe systems consisting of multiple subsystems. Each systems are  described by a vector in a 

Hilbert Space.    

KEYWORDS   :  Projective Topology, Locally convex spaces, Convex  hull, Canonical mapping, Automorphism, Canonical 

Isomorphism.  

INTRODUCTION: 

                                   The strongest locally convex topological vector space (TVS) topology on X⨂Y the tensor product of two 

locally Convex TVSs making the Cononical map ⨂ : X × Y → X ⨂ Y defined by sending (x,y) 𝜖 X × Y to X⊗Y Continous is 

called projective topology or 𝜋 Topology . When X⊗Y is equipiped with this topology then it is denoted by X⊗𝜋Y and called 

the projective tensor product of X and Y. Halub (1) and Kothe (2,3) are the pioneer worker of the present area. In fact the present 

work is the extension of work done by Tomiyama (6), Studied analytically about projective Tensor Product. 

      Here, we use the following definitions and fundamental ideas: 

Definition - I 

If V and W be vectors space of finite dimension then V ⊗ W is fnite diminsional and its dimension is product of the 

dimensions of V and W.  This result from the fact that V ⊗ W is formed by taking  all  Tansor Products of basis element 

of V and basis element of W. 

Definition – II 

        Let E and F be locally convex spaces , and let U & V be the closed absolutely convex neighborhood’s of O in E and F 

respectively, forming the set  𝜏 (U⨂V)  = absolutely convex,  hull of U⨂V in E⨂F ,  (E⨂F is denoted as tensorial product of E & 

F).                                     

Definition – II 

        If {U} and {V} are neighborhood bases in E and F respectively with U,V closed absolutely then the family { 𝜏 (U⨂V)}  is a 

neighbourhood basis of a locally convex topology on E⨂F 

                                                                This topology is called the projective topology on E⨂F and is denoted as E. 
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Properties  

  1.  Associativity as a Vector Space operation  

       (U⨂V) ⨂ W  ≅  U⨂(V⨂W)  

Where U,V,W be canonical isomorphism that maps  

            (U⨂V) ⨂ W  to   U⨂(V⨂W)  

This follows omitting parenthesis in the tensor product of more than two vector space or vectors.  

2.  Commutativity as a vector space operation  

       V ⨂ W  = W⨂V 

Where V & W is commutative in the sense that is a canonical  isomorphism. 

                  That maps       V ⨂ W  = W⨂V 

In fact V= W the tensor product of vectors is not commutative that is       V ⨂ W  ≠ W⨂V  

In general   X⨂ Y →  Y ⨂ X   from V ⨂ V  to itself induces  a linear auto morphism that is called braiding map.  

 

 

Proposition 1 :   Let p(x) and q(y) be the semi-norms defined by U and V respectively. The set  𝜏 (U⨂V)  is absorbing and thus 

defines a semi-norm . The semi-norm of 𝜏 (U⨂V)  is given by  

 

p⨂q (-Z)  =  in f1∑.p(xi)q(yi) -------------   (1) 

Where the infimum is taken over all representations  

  

-Z  =  ∑.xi ⨂ yi   in E⨂ F.  

 

 

 

Proof :       First we show 𝜏 (U⨂V)   is absorbing . Let  

        

-Z  =  ∑.xi ⨂ yi    be an element of E⨂ F. we observe that  

       U if p(Xi)  ≠ 0  

And  
yi 

𝑞(yi) 
                 V    if q(Yi)       ≠ 0 

 

Also  p(Xi) = 0 iff pixi   U all p > 0 and  

          q(Yi) =  0 iff qiyi    V  all p > 0 So we write  

  -Z  =  ∑.xi ⨂ yi     

      = p(Xi) q(Yi) [
𝑋𝑖

𝑃(𝑋𝑖)
  ⨂ 

𝑌𝑖

𝑞(𝑌𝑖)
  ] 

         + 𝛿q∑.(Yk) [ 
𝑥𝑘   

𝛿
   ⨂       

𝑌𝑘

𝑞(𝑌𝑘)
     ]  

          + 𝛿p∑.(Xj )  [  
𝑋𝑗

𝑃(𝑋𝑗)
    ⨂    

𝑌𝑗   

𝛿
  ] 

           + 𝛿2
m ∑. [

𝑥𝑚   

𝛿
    +        

𝑌𝑚  

𝛿
          ]     

In each of the four terms in the sum representing  -Zi the quantity in the brackets [ ] is in  𝜏(U⨂V). Given   𝜖  >    0 , we may 

choose sufficiently small so that    

(*) :  - Z  𝜖 (∑.p(xi)q(yi)  +  𝜖 ) 𝜏(U⨂V) 

So 𝜏(U⨂V) is absorbing. 
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                             Now 𝜏(U⨂V) is absorbing convex also , so it defines semi- norm 𝜏(-Z) on E⨂Few now show 𝜏(-Z)  = p ⨂ q(-

Z) 

(i) 𝜏(-Z)  ⊆  p ⨂  (-Z)  ,  𝜏(-Z)   is defined by  

𝜏(-Z)   = inf  𝜆, -z ∈ 𝜆 𝜏(U⨂V) , by  ( *)  above  

𝜏(-Z)    ≤  inf ∑.p(xi)q(yi)    +  𝜖 =   p ⨂ q(-Z)   +    𝜖   ,   𝜖 arbitrary yields                           𝜏(-Z)    ≤    p ⨂  q(-Z)     

(ii) p ⨂  q(-Z)   ≤   𝜏(-Z)     suppose  -Z ∈ 𝜆 𝜏(U⨂V), Then  

-Z  =  ∑. ∝𝑘(𝑋𝑘
𝑖 ⨂  𝑌𝑘

𝑖
  )  with p (𝑋𝑘

𝑖 )  ≤  1 , q (𝑌𝑘
𝑖  )  ≤  1, ∑.I 𝛼𝑘 I≤ 𝜆  and   ∝𝑘  ≥  0 . For this particular 

representation of –Z , we see 

 

∑.p(𝛼𝑘xk) q(yk)  = ∑.I 𝛼𝑘 I≤ 𝜆 So. 

p⨂ q(-Z) =inf  ∑.p(xi)q(yi)   ≤  𝜆 .  

This is true for every 𝜆 with –Z ∈ 𝜆𝜏(U⨂V). 

Thus p⨂ q(-Z) ≤  inf 𝜆, -z∈ 𝜆 𝜏(U⨂V) 

                         =  𝜏(-Z) 

This completes the proof 

Proposition 2 : The projective tensor product E⨂F of two normed space E, p and F. q is a normed space with norm p⨂q 

 

If E and F are metrizable locally convex spaces with semi norms p1 ≤ p2  ≤ ……….   and q1 ≤ q2 ….….     respectively, then E 

⨂Fis metrizable with defining semi- norms            p1 ⨂ q1   ≤  p2 ⨂ q2   ≤  ……… 

 

Proof: Follows immediately from Proposition 1 and definition 2. 

 

MAIN RESULT 

Theorem: The projective topology  𝜋 is the finest locally convex topology on E⨂F for which the canonical map Ψ : E X F  →  

E⨂F is continuous. 

 

Proof:   Ψ is continuous with respect to  𝜋 since Ψ : U X V  →  U⨂V ⊆ 𝜏(U⨂V)Now let 𝜏 be any topology on E⨂F for which Ψ 

is continuous and let W be an absolutely convex closed 𝜏 neighborhood of 0. Then there exist U, V with Ψ  (U x V) - U⨂ V ⊆ W 

.Since W is absolutely  convex, 𝜏(U⨂V) ⊆W. So 𝜋 is finer than 𝜏 

 

This completes the proof of the hypothesis. 
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