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 Abstract--According to the studies of (Schönberg & 

Chandrasekhar 1942; Henrich & Chandrasekhar 

1941)[6,4], it exists an upper limit to the

 

mass of the 

isothermal core for the stars situated on the post main 

sequence MS on the HR diagram with a mass

 MM 2 . In the present work, and using another 

approach that I find more  rigorous  than the calculus 

done in the other works, I demonstrate the existence of 

an other value to this upper limit and I establish in 

function of this upper limit isoM the formulae of the 

luminosity produced by these stars.

 

 
I.

   

INTRODUCTION 

 

 

 

For stars of masses greater than M2

 

and classified 

within the post main sequence on the HR diagram, the 

interior region or the core is under the rule of the 

gravitational contractions in the phase of hydrogen 

rarefaction.

 

Because of the lack of the hydrogen, the 

luminosity produced by the core is null ( L =0) and therfore 

the core is isothermal.

 

In this phase, the gravitational

 

energy 

generated from these contractions in the core heats the 

upper layers, and this increasing in temperature in these 

layers allows the nuclear reactions to take place in the so 

 

 

 called circum-nuclear shell situated above the core.  This 

shell feeds the core with the nuclear reaction products and  

contribuate in increasing the  mass of  this core.

 

Henrich & 

Chandrasekhar (1941) [4]and

 

Schönberg & Chandrasekhar 

 

 
(1942) [6] calculated    the    greatest     mass    isoM
supported by this isothermal core. In the present work, I find 

an other upper limit to this mass and in function of this mass 

I establish the formulae of the luminosity produced by these 

stars in the frame of the following approach:

 

 II.

   

CALCULUS OF THE MASS

 

isoM

 

WHICH 

CORRESPONDS TO THE MAXIMUM PRESSURE IN 

THE CORE

 

 
In this calculus, the core is assumed to be a sphere of gas 

with a quasi constant density. Using the equations of the 

hydrostatic equilibrium and the equation of the mass in a 

star, one can find the equation relating 

 between the quantities  rdMdP ,  rM

 

and r , 

 
where P

 

is the pressure,

 

 rM

 

is the mass of the

 
star and r is the radial coordinate. 

 The hydrostatic equilibrium of a spherical star of a quasi 

constant density 

 

and a mass  rM

 

is expressed as in 

[5],

  
2r

rGM

dr

dP 
                                                 (1)                                                                                                                        

 

where

 

 
3

4
rM  3r                                                                   

 

and,

 281067.6  gcmergG

 

is the gravitational 

constant.

 However,

 
4 dMdrr 2

                                                    

(2)                                                                                                                                                                                                                                                           Combining the relations (1) and (2), one finds:
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 
 

r

rGM

rdM

dP
r 34                                  (3)                                                                                                                                                                                                        

One can rewrite  rdMdPr 34  in the following 

form,  






P

rdM

Prd

rdM

dP
r

3

)(

)4(

)(
4

3
3                   (4)                                                                                                        

If one inserts this last relation in the relation (3) and 

integrates over the whole isothermal core of   mass isoM , 

one obtains, 

 

 
 

  )(
34

00

3

rdM
P

rdM
rdM

Prd
isoMisoM

 



    

 
 rdM

r

rGM
isoM


0

                                      (5)                                                                                                                                   

The right term of the relation (5) represents the gravitational 

energy of the core, it’s equal to isoiso RGM 53 2  if 

 rM =0 when r=0. Using the following state equation 

relative to a perfect isothermal gas, 

HmkTP   ,whereT is the temperature,  

T =Tiso=cte,   is the molecular weight,
Hm is the atomic 

mass of the hydrogen, and k  is the Boltzman constant, the 

relation (5) becomes then,  

iso

iso

iso

Hiso

iso

isoiso
R

GM
kT

m

M
PR

5

33
4

2

3 




           

(6)                                                                                                                                        

where isoR , isoP , isoM , iso  and isoT  are respectively 

the radius, the pressure, the mass, the molecular weight and 

the temperature of the isothermal core. Then, the pressure of 

this core is given by,  
















iso

iso

Hiso

isoiso

iso

iso
R

GM

m

kTM

R
P

2

3 5

1

4

3


            (7)                                                                                                                                                                       

In order to find the maximum value of the pressure in the 

core, one proceeds by the variation of the mass isoM . Since 

the density of the core iso  is considered quasi-constant, 

the radius of the core isoR varies when isoM varies. isoR  

and isoM  are so that, 

3
1

4

3












iso

iso

iso

M
R


                                               (8)                                                                                                                                          

and   isoisoisoiso RRM  3

3

4
  

For each mass isoM correspond isoR , isoT , iso  and iso  

which are being now functions of isoM . isoP  can be 

rewritten as, 

3
2

3
4

31

3

4

5
isoiso

Hiso

isoiso

iso M
G

m

kT
P 














             (9)                                                                                                                                                                           

Hence the derivative of isoP  with respect to isoM   is given 

by, 


























iso

iso

isoH

isoiso

iso

iso

Hiso

iso

iso

iso

isoiso

Hiso

iso

iso

iso

dM

d

m

kT

dM

dT

m

k

dM

d
M

G

m

kT

dM

dP


















2

3
2

3
13

1

3

4

15

4

 

3
1

3
43

1

3

4

15

2 









 M

G
iso


                                   (10)     

Assuming that iso  is quasi-constant in the core and 

doesn’t vary appreciably with the small variation of the 

mass isoM , one can neglect the derivative isoiso dMd and 

the relation (10) becomes, 

 

3
1

3
43

1

3
2

3
13

1

1

3

4

15

2

3

4

15

4

iso

iso

iso

iso

Hiso

iso

iso

iso

isoiso

Hiso

iso

iso

iso

M

G

dM

dT

m

k

dM

d
M

G

m

kT

dM

dP















































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(11)                                                                   

To evaluate isoiso dMdP , we need to calculate the 

derivatives isoiso dMd  and isoiso dMdT appearing in 

the relation (11). 

A.  Calculus of the derivative isoiso dMd  

isoiso dMd  can be rewritten under the following   form, 

iso

iso

iso

iso

iso

iso

dM

dR

dR

d

dM

d 
                                        (12)                                                                                                               

we set  isoisoisod    where iso  is the density of 

the core after the variation of the mass isoM  from  isoM  to 

isoiso dMM  , this leads to a radius variation from isoR  

to isoiso dRR   (the density iso  is still considered quasi-

constant in the core which is supposed to conserve its 

spherical form and has the new mass isoiso dMM  ). 

Therefore iso  is given by, 

 3
3

4
isoiso

isoiso

iso

dRR

dMM








                                 (13)                                                                                                         

Since   isoiso dRR  ,   one   can   do   the following 

approximation, 

 

3

3

4
iso

isoiso

iso

R

dMM






                                          (14)                                                                                                                                                                                                   

33

3

4

3

4
iso

iso

iso

iso

iso

R

dM

R

M



                                    (15)                                                                                                                                                                                                 

and since, 

isoisoisoiso dRRdM  24                                    (16)                                                                                                          

the relation (15) becomes, 

3

2

3

4

4

iso

isoisoiso

isoiso

R

dRR




        

Where,   
3

3

4
iso

iso

iso

R

M



   

then, iso

iso

iso

isoisoiso dR
R

d



3

  

we obtain, 

iso

iso

iso

iso

RdR

d  3
                                                      (17)                                                                                                                                                                                                                                

The relation (12) becomes, 

iso

iso

iso

iso

iso

iso

dM

dR

RdM

d  3
                                        (18)                                                                                                                                                                                              

From the relation (16), the derivative isoiso dMdR  is equal 

to, 

 

isoisoiso

iso

RdM

dR

 24

1
  

and the relation (18) becomes: 

isoisoiso

iso

iso

iso

RRdM

d




24

13
  

we obtain, 

34

3

isoiso

iso

RdM

d




                                                  (19)                                                                                                                                                                                                                         

as isoR  is given by the relation (8), isoiso dMd  is finally 

given by, 

iso

iso

iso

iso

MdM

d 
                                                     (20)                                                                                                                                                                                                                                  

we insert this expression of isoiso dMd  in the relation 

(11) and obtain the following relation for the derivative of 
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the pressure, 

3
1

3
43

1

3
2

3
13

1

1

3

4

15

2

3

4

15

4

iso

iso

iso

iso

Hiso

iso

iso

iso

isoiso

Hiso

iso

iso

iso

M

G

dM

dT

m

k

M
M

G

m

kT

dM

dP

















































                                                                                

(21)                                                                                                                                                  

B.  Calculus of  the derivative isoiso dMdT : 

The relation (3) can be rewritten as, 

 
 

iso

iso

iso

iso

iso

iso

iso
R

rGM

dM

dT

dT

dP
R 34                  (22)                                                                                                                                                                             

therefore, 

iso

iso

iso

iso

iso

iso

dP

dT

R

GM

dM

dT
44

                                    (23)                                                                                                                                                                                                              

From the state equation used above which 

 is given by
HmkTP   , we can write, 

iso

Hiso

iso

iso dT
m

k
dP




                                          (24)                                                                                                                 

so, 

k

m

dP

dT

iso

Hiso

iso

iso




                                                  (25)                                                                                                                                                                                                                               

After replacing the expression of  

isoiso dPdT  in the relation (23), we find, 

44 iso

iso

iso

iso

R

GM

dM

dT




k

m

iso

Hiso




                             (26)                                                                                                                                                                                                           

Since the radius isoR  depends on isoM  and it’s given by

  3
1

43 isoisoiso MR  , the relation (26) becomes, 

4

G

dM

dT

iso

iso 
3

4

3

4







 

3
1

3
1

iso

isoHiso

Mk

m 
          (27)                                                                                                                                                                       

we replace the expression of isoiso dMdT in the relation 

(21) and we obtain the following expression for the 

derivative isoiso dMdP , 

 

3
1

3
43

1

3
2

3
13

1

1

3

4

15

7

3

4

15

4

iso

iso

iso

iso

isoiso

Hiso

iso

iso

iso

M

G

M
M

G

m

kT

dM

dP












































                                                                                

(28)                                                                          

The value of isoM  for which 0isoiso dMdP  is given 

by, 

2
3

3
1

2
3

2

1

3
1

11

15

4

3













































isoiso

iso

H

iso

kT

Gm
M


 

         

2
3

3
1

2
3

1
778.0

























isoiso

iso

H

kT

Gm 
           (29)                                                                                                                                                                                                                                                                     

The maximum value of pressure corresponding to this mass 

is then given by, 













Hiso

isoiso

iso
m

kT
P





11

8
max

    

3
2

3

4
3

1

3

4

15

8
isoMG 










                                  (30)                                                                                                                                                                                                                                                    

 

C.  Calculus of the pressure at the interface between 

the envelope and the   core
iso

envP  

Integrating the equation of the hydrostatic equilibrium over 

the envelope and by taking the pressure null on the star 

surface, one obtains,  

 

 rdM
r

GM
P

M

isoM

iso

env 
44

                                 (31)                                                                                                                                                                                                    
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where 
iso

envP  is the pressure at the interface between the 

isothermal core and the envelope, M  is the whole mass of 

the star.  Approximately, one finds, 

iso

envP  22

48
isoMM

r

G



                            (32)                                                                                                                                                                                      

where, 

2

4
4 R

r                                                            (33)                                                                                                                                                                                                                                  

Since isoMM   the relation (32) becomes, 

4

2

4 R

MG
P iso

env


                                                    (34)                                                                                                                                                                                                                                

Using the state equation of a perfect gas, 

iso

env

iso

envHenviso

env
k

pm
T




                                            (35)                                                                                                                     

where
iso

envT , env  and 
iso

env  are respectively the 

temperature, the molecular weight in the envelope 

(supposed to be constant in the envelope), and the density at 

the interface between the isothermal core and the envelope. 

The density 
iso

env  is assumed to be approximately equal to, 

3

3

4
R

Miso

env 
                                                      (36)                                                                                                                                                                                                                             

where M and R are respectively the mass and the radius of 

the whole star. 

From the relations (34), (35), and (36) one can deduce the 

following expression of the radius of the star R , 

 

k

m

T

GM
R Henv

iso



3

1
                                           (37)                                                                                                                                                                                                        

This expression of R  is inserted into the relation (34) and 

one finds the expression of the pressure   
iso

envP   , 

 

4

23

1

4

81












Hinv

isoiso

env
m

kT

MG
P


                        (38)                                                                                           

Confronting now the two pressures 
iso

envP  and maxiso
P  to 

find the relation between the mass of the whole star M  and 

the mass of the isothermal core of the same star isoM which 

corresponds to the maximum of pressure maxiso
P in the 

core, we find, 

maxiso
P =

iso

envP
 


Hiso

isoiso

m

kT




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8
=

4

23

1

4

81











Henv
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m

kT

MG 
    (39)                                                                                   

 

From the relation (29) we deduce the expression of  

isoHiso GmkT   , 
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3
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Then from the relation (39), we obtain, 
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
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




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
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2
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










iso

env




                                        (40)                                                                                                                                                                                                                                      

Therefore the allowed values of isoM are given by, 

  MM
iso

env

iso

2

261.0 














                                (41)                                                                                                                                                                                                                  

which verify the condition maxiso
P 

iso

envP
.
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This is the result obtained in this present work. The calculus 

of this upper mass by L. R. Henrich and S. Chandrasekhar 

[2,3,4] and Schönberg & Chandrasekhar [6] gives the 

following result, 

  MM isoenviso

2
35.0   which is given by 

MM iso 35.0  for 1isoenv  . 

It appears that the two approaches to estimate the value of 

isoM don’t diverge and although they give different values 

the results aren’t very far from each other. 

 

D.  The calculus of the luminosity produced by the 

envelope   

Since the luminosity produced in the isothermal core is null

  00,  isoRrrL , we can assume the luminosity 

produced by such stars to be equal to, 

 drrrL iso

env

R

isoR

 24                                 (42)                                                                                                          

where  r  is the energy produced by a mass unit in the 

envelope, 
iso

env  is the density of the envelope assumed to be 

quasi constant as mentioned above, 

cteiso

env                                                              (43)                                                                                                                                 

R  and isoR are respectively the radius of the star and the 

radius of the isothermal core. 

If  r  can be supposed constant and approximated such 

that in [7], page 89, 

 
Rr

iso

env
dr

dL

R
r
















24

1
                       (44)                                                                                                  

Replacing the expression of  r  into (42), the luminosity 

of such stars is then given by, 

Rr

iso

dr

dLRR

R
L


























33

1
33

2
                        (45)                                                                                                 

isoR is related to the mass of the isothermal core isoM  by

  3
1

43 isoiso MR  . 

which can be approximated to be equal to, 

  3
1

43 isoiso MR   where   is the mean density of 

the star, it’s given by 3

3

4
RM    

Then, 

3
1

R

M

M
L iso











Rrdr

dL











                            (46)                                                                                                           

If the energy transport in the envelope is radiative, the 

luminosity  rL  is so that in [7], page 89, 

 
raddr

dT
r

acT
rL 








 2

3

4
3

4



                    (47)                                                                                           

 

where a  is the radiative constant, c is the light velocity, 

is the opacity, and  
rad

drdT is the radiative temperature 

gradient. From the relation (47), we can deduce the 

expression of  
Rr

drdL
  and replace its expression in the 

relation (46). Then, 

 

 











raddr

dT
rT

ac

dr

rdL 38
3

4



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
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

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
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






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








radrad dr

Td
T
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dT
Tr

ac
2

2
322 34

3

4



                                                                                                                                        

                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     

(48) 

we can rewrite  
rad

drdT in the form, 

 



























dr

dM

dM

dT

dr

dT

rad

 

 

and  
rad

drTd 22
in the form, 
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
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
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


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






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


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


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
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
2
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2

2
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Md
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Td
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Td

rad

 

 

From the relations (2) and (27), we find, 

raddr

dT








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3
4

3

4




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3
1
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(49)                                                                                      

and, 

 



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2
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3
1

1

3
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M

r

M

r 
                                      

(50)                                              

 

Replacing these two last relations into (48), we find, 

 
3
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(51)                                                                                                   

Then the expression of the luminosity given by (46) 

becomes: 

3
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M
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                                          (52)                                                                                                      

 

This relation provide us with an estimation of the luminosity 

produced by a star from the POST MS region with a mass 

 MM 2 in which the envelope is considered radiative.  

As expected, the luminosity of these stars is in function of 

isoM .  

E.  Choice of the parameters: 

The molecular weight    

To calculate the luminosity of  the  star given by the relation 

(52), we need to know the value of the molecular  weight 

 . To get the values of this parameter, we use the 

formulae given by [1], page 119: 

 

4
1

2

400309.0

1



































M

M



  

where M and M  are respectively the mass of the star and 

the mass of the sun.   is a constant relating between the 

total pressure TOTP , the radiative pressure 
RP  ,and the gas 

pressure GASP  of the star. They are defined by (see [1], page 

116), 

  TOTR PP  1  and TOTGAS PP   

The opacity  

For the calculus of the luminosity, we use the opacity 

formulae given by (see [1], page 119), 

 

 
L

MGc 





14
 

where   is the constant mentioned above, c  the light 

velocity , G  the gravitational constant, M is the mass of 

the star, and L  its luminosity. In this work  is calculated 

using the observational values of the  luminosity L . 
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III.   DISCUSSION OF THE RESULTS: 

 
On the Table 1 and the Table 2, it’s shown the results of the 

luminosity calculated for several stars from the POST MS 

zone which their masses exceed M2 . The  values of the 

luminosity L  of the present work aren’t far from those 

obtained from the bolometric measures. The differences 

between the observational and the calculated values of the 

luminosity are very reasonable with respect to the 

approximations done in this work. So this work can be 

considered as a very appreciable approach to find   the 

theoretical expression of the luminosity which fit the best 

the observation   and in the same time takes into account the 

upper limit of the mass of the isothermal core. 

IV.  CONCLUSION 

 
The present work is a contribution to the study of  the  

internal structure of the stars with  MM 2 . According 

to the results obtained in the frame of this work ,one can 

deduce that it consists a good approach to establish the most 

accurate theoretical expression for the luminosity  produced 

by this category of  stars taking into account the upper limit 

of the isothermal core mass isoM

Tableau 1:The calculated luminosities produced by stars with isothermal core and radiative envelope. 

 These results are obtained for enviso   so for MM iso 261.0 , Teff is the effective temperature 

References. (1) Eddington & Chandrasekhar 1988, page 145 [1];  (2) Eddington & Chandrasekhar 1988, page 182[1].

 
Stars      Mass             1        Radius        Temperature         Density       Molecular       Luminosity        Reference 

            M  g                         R   cm       Teff  c                             Mass           L  1serg     

                                                                                                 3cmg                                             

 

RR LYR.    
M70.3  0.260    

111032.4      7800               
210180.2       2.127             

3510793.4                     (2) 

CAPELLA 
M18.4   0.283    

111055.9     5200               
310270.2       2.110             

3610045.4                     (1) 

      B               

            
M10.5    0.330    

111052.1    19000               
110895.6         2.125              

3510053.1                     (2) 

Cephei                  

SU.CAS   
M30.5    0.330    

111020.9     6350              
310232.3          2.084            

3610194.7                     (2) 

 

SZ.TAU    
M60.6    0.380    

11105.13      5850              
310273.1       2.091            

3710076.3                       (2) 

SU.CYG   
M80.6    0.390    

11100.12      6450              
310868.1      2.107           

3710557.2                       (2)                    

RT.AUR    
M90.6   0.390    

11109.13       5950           
310219.1         2.092           

3710788.3                          (2) 

T.VUL      
M70.7   0.420    

11107.16      5750             
410850.7       2.121            

3710782.7                      (2)                

POLARIS 
M80.7   0.420     

11106.19      5250           
410919.4        2.108            

3810153.1                           (2) 

 

 

 

 

 


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Tableau 2:The comparison between the observational luminosities and those calculated in the present work.  

References. (1) Eddington & Chandrasekhar 1988, page 145[1]; (2) Eddington & Chandrasekhar 1988, page 182[1]

 
Stars           The Luminosity calculated                 Bolometric Luminosity 

                  using isoM of the present work          MEASUREDL   1serg               

MEASURED

CALCULATED

L

L
               Reference                                                                                  

                       CALCULATEDL   1serg  

 

RR LYR.                3510793.4                                3510030.5                              0.953                              (2) 

CAPELLA             3610045.4                               3510800.4                               8.427                               (1) 

      B                                           

                           
3510053.1                                

3610215.2                              0.047                                (2) 

 Cephei                         

SU.CAS                3610194.7                                3610012.1                               7.109                               (2) 

 

SZ.TAU                3710076.3                                3610561.1                             19.109                               (2)         

SU.CYG               3710557.2                                3610809.1                             14.135                               (2) 

 

RT.AUR              3710788.3                                 3610776.1                             20.329                               (2) 

 T.VUL               3710782.7                                3610215.2                             35.133                                (2)              

POLARIS          
3810153.1                                

3610096.2                             55.009                                 (2) 
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