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Abstract--According to the studies of (Schonberg &
Chandrasekhar 1942; Henrich & Chandrasekhar
1941)[6,4], it exists an upper limit to the mass of the
isothermal core for the stars situated on the post main
sequence MS on the HR diagram with a mass

M ZZM@. In the present work, and using another

approach that I find more rigorous than the calculus
done in the other works, I demonstrate the existence of
an other value to this upper limit and | establish in
function of this upper limit Misothe formulae of the

luminosity produced by these stars.

I INTRODUCTION

For stars of masses greater than ZM@ and classified

within the post main sequence on the HR diagram, the
interior region or the core is under the rule of the
gravitational contractions in the phase of hydrogen
rarefaction. Because of the lack of the hydrogen, the

luminosity produced by the core is null ( L =0) and therfore
the core is isothermal. In this phase, the gravitational energy
generated from these contractions in the core heats the
upper layers, and this increasing in temperature in these
layers allows the nuclear reactions to take place in the so

star and r is the radial coordinate.

The hydrostatic equilibrium of a spherical star of a quasi
constant density © and a mass M (r) is expressed as in

(5],

dP __GM(r)p

1
dr r? @

where M (r) = %n rgp
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called circum-nuclear shell situated above the core. This
shell feeds the core with the nuclear reaction products and
contribuate in increasing the mass of this core. Henrich &
Chandrasekhar (1941) [4]and Schénberg & Chandrasekhar

(1942) [6] calculated  the  greatest mass Miso

supported by this isothermal core. In the present work, | find
an other upper limit to this mass and in function of this mass
| establish the formulae of the luminosity produced by these
stars-in the frame of the following approach:

1. CALCULUS OF THE MAss M., wHIcH

CORRESPONDS TO THE MAXIMUM PRESSURE IN
THE CORE

In this calculus, the core is assumed to be a sphere of gas
with a quasi constant density. Using the equations of the
hydrostatic equilibrium and the equation of the mass in a
star, one can find the equation relating

between the quantities dP/dM (r), M (r) and r,

where P is the pressure, M (r) is the mass of the

and,

G=6.67x10%ergcm g is the gravitational
constant.

However,
a2 pdr = dM

Combining the relations (1) and (2), one finds:  (2)
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4y e 9P _ GM(r) 9
dM(r) r

One can rewrite 47 r® dP/dM (I’) in the following
form,

s dP d(4z r’P) 3P

dM (r) dM (r) Yo,

(4)

If one inserts this last relation in the relation (3) and

integrates over the whole isothermal core of mass Miso,
one obtains,

Misod4 3P M|so
[y - [ 5 s

dM(r) (5)

The right term of the relation (5) represents the gravitational

2 .
energy of the core, it’s equal to _BGM|30/5Riso if
M(r)=0 when r=0. Using the following state equation
relative to a perfect isothermal gas,

P/p =KkT/pm,, where T is the temperature,

T =Tiso=cte, £ is the molecular weight, m,, is the atomic

mass of the hydrogen, and K is the Boltzman constant, the
relation (5) becomes then,

2
47ZR|?;0 Plso - Wi kTiso = 3G Mi — ko (6)
HiseMy SR

iso iso
where Riso: P,SO, Miso, Higo and Tiso are respectively

the radius, the pressure, the mass, the molecular weight and
the temperature of the isothermal core. Then, the pressure of
this core is given by,

M, KT,
Piso 3 3 1SO IS
4R

IS0

l GM iso (7)
:uisomH 5 Riso

In order to find the maximum value of the pressure in the

core, one proceeds by the variation of the mass M iso - Since
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the density of the core Pjs, is considered quasi-constant,
the radius of the core Riso varies when Miso varies. Riso

and Miso are so that,

( M, Jy
Riso = (8)
47z'piso
4
and M. iso (R|so) 3 ﬂRISOpISO

For each mass Miso correspond RismTiso’ Piso and Ui,

which are being now functions of Miso- Piso can be
rewritten as,

KT G
Piso Isoplso - [ j plé |£ (9)
,ulso H 5 3

Hence the derivative of Piso with respect to Miso is given
by,

dPiso _ kTiso 4G( 3 j% %M% dpiso

dMiso - :uisomH 15 piSO = dMiso

kpiso dTiso kTsop|so d'uISO —

/uisomH dMiso H/uiso dMiso

%
ZG( j |s/o Yy 10)
15 3

Assuming that M, is quasi-constant in the core and
doesn’t vary appreciably with the small variation of the
mass M iso» ONe can neglect the derivative d,UiSO/dM iso and
the relation (10) becomes,

dM iso /uisom dM iso

%
dPiSO — k-riSO 4G( j pIZMlé deSO
15 3
%
Pis

I(IOiso dTiso _E( ] /
3 iso

luisomH dM iso 15 M

is
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(11)

To evaluatedpiso/dMiso, we need to calculate the

derivatives dpiso/dMiso and dTiso/ dMiso appearing in
the relation (11).

A. Calculus of the derivative dpiso/dMiso

d/)iso/dM iso can be rewritten under the following form,

dpiso _ dpiso dRiso
dM,, dR, dM

(12)
iso
! !
we set d,OiSO = Piso ~ Piso Where Pig, is the density of
the core after the variation of the mass Miso from Miso to
M iso T M iso» this leads to a radius variation from Riso

!
to Riso +dRiso (the density Pijg, is still considered quasi-
constant in the core which is supposed to conserve its

spherical form and has the new massMiso+dMiso).

Therefore pi'so is given by,

' M iso + dM iso
piso = 4 (13)
5 ﬂ-(Riso + dRiso )3

since Ry, )) dR, one can do the following

IS0 1

approximation,

' M iso + dM iso
Poo® g (14)
2R3
3 iso
i M iso + dM iso
iso ~ 15
g ﬂ ﬂRiio ﬂ ﬂRi?;o ( )
3 3
and since,
dM iso — 4ﬂRi§opisodRiso (16)

the relation (15) becomes,
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,0', ~ ,0 + 47ZRi§opisodRiso
iso iso 4
gﬂRiio
Where, Piso = =
4 s
gﬂRiso

30
then, dpiso = pi!so ~ Piso = %dRiso

iso

we obtain,
do. 3.
pISO ; IOISO (17)
dRiso Riso
The relation (12) becomes,
dpiso ~ 3:Diso dRiso (18)

- Riso

M dm

iso iso

From the relation (16), the derivative dRiso/dMiso is equal
to,

dR,, 1
d M iso 47ZR'§opiso

and the relation (18) becomes:

dpiso ~ 3piso 1
dM - Riso 4ﬂR'§opiso

1SO 1

we obtain,
dpiso ~ 3
dM._ ~ 47R3 49

as Riso is given by the relation (8), dpiso/dl\/l iso IS finally
given by,

d,O iso ~ ,0 iso

20
dM M 0

iso iso

we insert this expression of dpiso/dMiso in the relation
(11) and obtain the following relation for the derivative of
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the pressure,

dP,

dM iso /UisomH

4 Fiso kIOISO dTiso _@( j |/o
u,m, dM, 151\ 3 M 73

(21)

M;

is

B. Calculus of the derivative dTiso/dMiso
The relation (3) can be rewritten as,
_3 dF)iso dTiso - _ GM iso (r)
Iso
dTiso dM iso R

(22)

iso
therefore,

dT, _ GM,, dT;,

1SO — iso 23
dM AR’ dP,, #)

iso iso

From the state equation used above which
is given by P = okT/um,, , we can write,
oK
dl:)iso = pISO dTiso (24)
/UisomH

SO,

dTiso _ :uiso m
dPiso pisok

(25)

After replacing the expression of
dT,SO/ dP, iso in the relation (23), we find,

dTiso _ GMISO /uisom
dm

iso - 47ZR|§0 pisok

(26)

Since the radius Riso depends on Miso and it’s given by

Riso = (3M iso/47rpiSO )% , the relation (26) becomes,

&: G 477 / :uisomH plioé
M, 4z K mH

IS0

iso

1JERTV 315040168

SO

VB
iso _ kTiso 4G pz:MIé _[iso +
15 3
%
Pis

@7)
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we replace the expression of dTiSO/dMiSO in the relation
(21) and we obtain the following expression for the

derivative dPiso /dM is0

dPiso kTiso 4G [ J}/ }/ / piso
— 3 0

dMiso - :uisomH 15 . '50 M

%
7G 4 1
Bl A

(28)

iso

The value of Miso for which dPiso/dMiso =0 is given
by,

3 (15 1 KT,
Miso =l a4
4r\11 Gm, Ve

;uisopiso
3 %
1 V2 k1, |
~0.778 (29)
GmH :uisopiioé

The maximum value of pressure corresponding to this mass
is then given by,

8 lesoplso
Piso\
11 /ulso m H

8 (4r 5
:E(?] G ,03 M.Z (30)

C. Calculus of the pressure at the interface between

the envelope and the core Penv

Integrating the equation of the hydrostatic equilibrium over
the envelope and by taking the pressure null on the star
surface, one obtains,

M
P = | M am(r) &
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where Pei,f\(,) is the pressure at the interface between the w 81 1 ( k'|'iSO j4
= (38)

isothermal core and the envelope, M is the whole mass of 4 GIM 2| g, m

the star. Approximately, one finds,

iso G Confronting now the two pressures Pl and to
Penv = a1 (M -M éo) (32) J P e 50‘ max
7T<r > find the relation between the mass of the whole star M and
the mass of the isothermal core of the same star M iso Which
where,
. corresponds to the maximum of pressure Pso‘max in the
R .
4\ ~ core, we find
r)=7 @ v find
2 iso
|so\ = I:)env
Since M>>Miso the relation (32) becomes,
4
G M? = 8 Koy 511 [ iy j (39)
iso ~ 3 2
P o (34) 11 HisoMy, 4z G°M :uenvm

env — Ar R4

Using the state equation of a perfect gas, From the relation (29) we deduce the expression of

iso |so /GmH IUISO )
H H P
Telrf\(/J — en\l/< — env (35)
penv
i % N
where Te'ns\c,) , Mgy and ,0;?, are respectively the KTiso M iso_Pi '501
temperature, the molecular weight in the envelope Gm, .Uiso 15( 3 )3
(supposed to be constant in the envelope), and the density at — —
the interface between the isothermal core and the envelope. 11\ 4
The density ,Oe'i?, is assumed to be approximately equal to,
M Then from the relation (39), we obtain,
iso : 36)
env 472, R3 (
3 2
M R M iso 24 (15j (:uean
where IVl and R are respectively the mass and the radius of
the whole star. M 1215\11) \ pi
From the relations (34), (35), and (36) one can deduce the 2
following expression of the radius of the star R , ~0 26]{’“"""] (40)
;uiso
1GM ., m Therefore the allowed values of M iso are given by,
Rz-—~—v % (37)
3 Tiso k 2
/uenv
M. <026l —| M
This expression of R is inserted into the relation (34) and 0 Hiso “
one finds the expression of the pressure Pe'rf\‘,) ,
which verify the condition P, isol max < Pe',f\(,)
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This is the result obtained in this present work. The calculus
of this upper mass by L. R. Henrich and S. Chandrasekhar
[2,3,4] and Schonberg & Chandrasekhar [6] gives the
following result,

M, SO.BS(,uenV/,uiso)zM which is given by
M, <0.35M fOr:uenv/:uiso =1

IS0 —

It appears that the two approaches to estimate the value of

Miso don’t diverge and although they give different values
the results aren’t very far from each other.

D. The calculus of the luminosity produced by the
envelope
Since the luminosity produced in the isothermal core is null

(L(I’, 0<r< Ri50)= 0), we can assume the luminosity
produced by such stars to be equal to,

env

R
L= I47z r2ps g(r)dr (42)

R iso
where g(r) is the energy produced by a mass unit in the

iso . .
envelope, Qg is the density of the envelope assumed to be
quasi constant as mentioned above,
iso

Peny ~ C1E (43)

R and Riso are respectively the radius of the star and the
radius of the isothermal core.

If g(r) can be supposed constant and approximated such
that in [7], page 89,

e(r) rREZ #(d—l_} (44)
47ZR2,DISO dr .

env

Replacing the expression of g(r) into (42), the luminosity
of such stars is then given by,

3 3
L;iz R _Rw (%j (45)
R 3 3 \dr ),

Riso is related to the mass of the isothermal core Miso by
Riso = (3M iso /47Tp)% '

which can be approximated to be equal to,
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R, = (3M o/ 47:,5)% where p is the mean density of

the star, it’s given by p = M/;ﬂRs

Then,

M., R (dL
Le|1-——=|—| — 46
[ M js (drjr—R ( )

If the energy transport in the envelope is radiative, the
luminosity L(r) is so that in [7], page 89,

3
L(r)= _dact A rz(d—Tj (47)
3Kp dr rad

where @ is the radiative constant, c is the light velocity,

is the opacity, and (dT/dr)rad is the radiative temperature
gradient. From the relation (47), we can deduce the

expression of (dL/dI’)r:R and replace its expression in the
relation (46). Then,

we can rewrite (dT/dr)rad in the form,

o).l

and (d 2T/dr2 )rad in the form,

www.ijert.org 1896



International Journal of Engineering Research & Technology (IJERT)
ISSN: 2278-0181
Vol. 3 Issue4, April - 2014

dT (dfT (dM}_(de d’M
dr? rad drdM A\ dr dM A dr? This relation provide us with an estimation of the luminosity

produced by a star from the POST MS region with a mass

M > 2M® in which the envelope is considered radiative.

From the relations (2) and (27), we find, As expected, the luminosity of these stars is in function of
y Miso-
dT % um 3
(— =—G (4—7[j Hmy £ r? E. Choice of the parameters:
dr J g 3 k Mm% >The molecular weight £
(49)

To calculate the luminosity of the star given by the relation
(52), we need to know the value of the molecular weight
AL . To get the values of this parameter, we use the

formulae given by [1], page 119:

and,

d*T) G (4r %ﬂme%, I 1
dr? rad__E(?j k (1—ﬂ)
2 U=
87 rp (47z rzp) 1 M )
x - 0.00309ﬂ4 —
e B
(50) v )

where M and M o are respectively the mass of the star and

. L . the mass of the sun. /2 is a constant relating between the
Replacing these two last relations into (48), we find,

total pressure PTOT , the radiative pressure P, ,and the gas

dL(r) 4ac %
# = 3— E(ﬂj (ﬂjp% pressure PGAS of the star. They are defined by (see [1], page
r Kp 47\ 3 k 116),
y 327°r* T3 p+487°r ' T p+322°r°T 3 p P _(1 )P 5 _pp
M R =\1=B)Fror and Poxs =B Pror
64,°r T 3,02 > The opacity
3M 4% For the calt_:ulus of the luminosity, we use the opacity
(SI) formulae given by (see [1], page 119),
Then the expression of the luminosity given by (46)
becomes: o Ar c G M (1_13)
. =
L;(l_MiSOJEEXE(“_”jA[ﬂmH jp% L
M )3 3kp 4z 3 k where f3 is the constant mentioned above, C the light
" 27°r T p+487°r* T2 p+3272°r°T 3 p velocity , G the gravitational constant, M is the mass of
M u the star, and L its luminosity. In this work - is calculated
using the observational values of the luminosity L .
647°r°T*p?
— —4'0 (52)
VR
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1. DISCUSSION OF THE RESULTS: the observation and in the same time takes into account the
upper limit of the mass of the isothermal core.

On the Table 1 and the Table 2, it’s shown the results of the

luminosity calculated for several stars from the POST MS IV.  CONCLUSION
zone which their masses exceed 2M . The values of the The present work is a contribution to the study of the
luminosity L of the present work aren’t far from those internal structure of the stars with M > ZM@.According

obtained from the bolometric measures. The differences
between the observational and the calculated values of the
luminosity are very reasonable with respect to the
approximations done in this work. So this work can be
considered as a very appreciable approach to find the
theoretical expression of the luminosity which fit the best of the isothermal core mass |\/|iSO

to the results obtained in the frame of this work ,one can

deduce that it consists a good approach to establish the most
accurate theoretical expression for the luminosity produced
by this category of stars taking into account the upper limit

Tableau 1:The calculated luminosities produced by stars with isothermal core and radiative envelope.

These results are obtained for Higy = Henyso for M iso — 0.261M , Teff is the effective temperature

References. (1) Eddington & Chandrasekhar 1988, page 145 [1]; (2) Eddington & Chandrasekhar 1988, page 182[1].

Stars  Mass (1-p) Radius Temperature Density ~ Molecular Luminosity Reference
M (g) R (em)  Teff (°c) P Mass L (erg s’l)
[gon?®) 4

RRLYR. 3.70M, 0.260 4.32x10" 7800 2.180x10°  2.127 4.793x10% )
CAPELLA 4.18M, 0.283 9.55x10" 5200 2.270%x107°  2.110 4.045%10% (1)

B
Yz; 510M, 0.330 1.52x10" 19000 6.895x107"  2.125 1.053x10%* )
Cephei
SU.CAS 530M, 0.330 9.20x10" 6350 3.232x10°  2.084 7.194x10% @)
SZTAU 660M, 0.380 13.5x10" 5850 1.273x10°  2.091 3.076x10% )
SUCYG 6.80M, 0.390 12.0x10" 6450 1.868x107°  2.107 2.557x10% )
RT.AAUR 6.90M, 0390 13.9x10™ 5950 1.219x107°  2.092 3.788x10% 2)
TVUL 7.70Mm, 0420 16.7x10" 5750 7.850x107*  2.121 7.782x10°% @)
POLARIS 7.80M, 0420 19.6x10" 5250 4919107 2.108 1.153x10% @)
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Tableau 2:The comparison between the observational luminosities and those calculated in the present work.

References. (1) Eddington & Chandrasekhar 1988, page 145[1]; (2) Eddington & Chandrasekhar 1988, page 182[1]

Stars The Luminosity calculated Bolometric Luminosity
_ L
using M iso OF the present work LMEASURED (erg S 1) —CALCULATED. Reference
I‘MEASURED
-1
Leacuiaren (erg S )
RRLYR. 4.793x10% 5.030x10%* 0.953 (2)
CAPELLA 4.045%x10%° 4.800x10% 8.427 (1)
B
Yz; 1.053x10% 2.215x10% 0.047 )
Cephei
SU.CAS 7.194 x103¢ 1.012x10%¢ 7.109 (2)
SZ.TAU 3.076 x10% 1.561x10% 19.109 )
SU.CYG 2.557 x10%" 1.809 x10%° 14.135 )
RT.AUR 3.788x10% 1.776x10°% 20.329 )
T.VUL 7.782 x10%" 2.215x10% 35.133 (2)
POLARIS 1.153x10% 2.096 x10%° 55.009 2)
[6] Schatzman, E., & Praderie, F. 1990, les étoiles, (savoirs
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