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Abstract—Oil spills have proven to have detrimental effects 

on the marine-based environment and economy. Thus, it is 

necessary to identify oil spills and classify them in the sea to 

reduce oil-induced pollution in seas and oceans. Synthetic-

aperture radar (SAR) imaging is a good option for rapid oil 

detection, as it covers a wide area, collects data at short 

intervals, and allows taking images in all weather conditions 

throughout the day. The reason for using deep neural 

networks is that training several images enhances 

segmentation accuracy significantly. This article intended to 

separate the oil spills of SAR images using U-NET and 

DeeplabV3 neural net- works, separately with the lowest 

number of images and the highest accuracy possible. Each 

of these neural networks carries out image segmentation 

with different architectures independently and thus we 

could not combine these two networks for oil spill 

segmentation. We managed to find two accurate 

convolutional neural networks (CNNs) for oil spill 

segmentation because we did not have access to sufficient 

hardware facilities, such as GPU, to train dozens of neural 

networks. The two networks we used in the article are 

among the most well-known and widely used networks. Our 

purpose was to figure out which network was the best in 

SAR oil spill detection. Given the limited number of SAR oil 

spill images and as the input of CNNs needs many images 

for training, we increased the number of input images to 

9801 using the augmentation technique. Then, we carefully 

identified oil spills with 300 epoch and a batch size of 5 

using the Python programming language on the 

GoogleColab server. The oil spill detection accuracy was 

78.8% in the U-NET network and 54% in the DeepLabV3 

network. Accordingly, we conclude that the most accurate 

identification of SAR oil spills in images belong to the U-

NET network. 

Index Terms—Convolutional neural networks (CNNs), 

DEEPLABV3, feature extraction, oil spill, segmentation, 

syntheticaperture radar (SAR), U-NET. 

 

I. INTRODUCTION 

OIL spills near the coast can result from ship accidents, 

broken pipelines, explosion of oil rig platforms, and 

deliberate discharge of tank-cleaning wastewater from ships 

[1], [2], [3], [4], [5]. This is caused by the frequent tanker 

accidents and oil spills in waters as the main cause of oil leaks in 

oceans and seas. By the leakage of oil into water bodies, a thin 

layer is rapidly formed by spreading over the water surface, 

known as an oil spill. Due to several environmental factors, 

marine oil spills are hazardous and can rapidly spread over an 

extensive area. 

Oil spills caused by unintentional or intentional releases 

into coastal or oceanic waters present a primary threat to 

marine ecosystems. Hence, the adverse effects of oil spills on 

these ecosystems are the subject of significant environmental, 

political, and scientific concerns [6]. The NEREIDs program 

made the first serious attempt with the support of the European 

Commission to utilize metocean, shipping, and geological data 

to characterize oil spills in one of the key oil exploration areas 

in the world to hinder any major oil spill accidents. These data 

revealed that oil spill models were generated to simulate 

trajectories, develop oil spills, assess the susceptibility of the 

coastal zone, and find suitable measures to alleviate its 

environmental effects [7]. Hence, identifying and classifying oil 

spills are essential in preventing water contami- nation [8]. 

Nonetheless, some natural phenomena (e.g., waves, ocean 

currents, and human factors) can alter light intensity over the 

sea’s surface, which leads to non-uniform intensity or high 

noise from oil spills or lookalikes, sometimes making it very 

difficult to segment oil spills automatically. Hence, the accurate 

segmentation technique crucially contributes to oil spill control 

[9]. Synthetic- aperture radar (SAR) is a cohesive imaging 

technology capable of producing high-resolution, large-scale 

images of the earth and targets. SAR can function at both night 

and day and in adverse conditions to overcome the limitations 

of optical and infrared systems [10]. Thus, oil spills are 

detected as “dark” areas in SAR images [11]. Traditionally, 

SAR imaging is conducted by a moving aircraft or spacecraft 

[12]. Oil spills emerge in SAR images in form of dark patches, 

because they produce low-backscatter responses in comparison 

to nearby clean sea regions [13].  

An image of oil spills appears as dark gray pixels in SAR 

images. It is not simple to transfer image segmentation 

approaches to SAR images. These images comprise speckle 

arising with scatterers’ complex summation within a resolution 

cell from coherent signals. Through such noise, together with 

SAR sensor representation of geometry, it becomes 

challenging to consider edge information in the segmentation of 

the SAR image [14]. Nevertheless, SAR images are normally 

polluted by multiplication noise or speckle caused by the 

destructive and constructive interference scattered from coherent 

returns scattered by small reflectors within each resolution cell. 

Computer vision systems and human explainers encounter 

difficulties in interpretation and processing due to the presence 

of speckle noise in SAR images. Therefore, removing speckles 

from SAR images is essential to enhance the performance of 
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various computer vision algorithms, such as recognition, 

segmentation, and detection [2]. However, it has many 

ambiguities in separating dark spots. Indeed, there is a hybrid 

area in the feature space for oil spills and lookalikes. For 

instance, SAR image properties of biological oil layers are very 

similar to those of oil spills. Without other auxiliary information 

like environmental information and remote sensing images, 

even experts cannot make a clear judgment about samples in a 

hybrid area of a feature space [15]. Over the recent years, 

convolutional neural networks (CNNs) have been extensively 

developed in radar imaging and semantic segmentation [16]. A 

CNN is an in-depth learning method specifically designed for 

image recognition and classification. This network is de- signed 

to be similar to multi-layered neural networks. CNNs are the 

same as biological neural networks employed for speech 

recognition and visual and image processing. CNNs can extract 

spatial information effectively and share weights among nodes 

for reducing the number of parameters [17]. A CNN works well 

in recognizing two-dimensional shapes and learning structural 

features and presents a way to distinguish features from points 

automatically. Short training time makes it easier to use artificial 

neural networks and improves diagnostic accuracy [18]. A CNN 

also works well to automatically learn features from raw data, 

particularly for structural features [19]. CNN was successfully 

used in image classification and recognition, indicating the 

satisfactory results of CNN in hand-written recognition [20]. 

CNN is also used in image segmentation. A study in 2005 

reviewed oil spill classification and segmentation methods [21]. 

According to Solberg et al., there are three feature extraction 

steps for oil spill detection in SAR images, including oil 

pollution detection, dark spot detection, and look-alikes.  

The oil extraction location is affected by the accuracy of 

dark spot detection. In this article, different methods were 

reviewed for satellite-based oil spill detection in the marine 

environment. Manual and automatic methods were considered 

based on various satellite sensors and oil spills under different 

circumstances to differentiate between oil spills and look in 

terms of pattern recognition [21]. In another study, two neural 

networks were implemented by Duan et al. [19] for segmenting 

dark objects and separating oil spills from similar ones. The 

presented technique was very auspicious in detecting dark 

formations and oil spills from similar cases because dark 

formations are recognized with an overall accuracy of 94%. 

Moreover, 89% of the examined items were correctly 

recognized. The framework was used in different other 

assessments [6] , [22]. According to Krestenitis et al., semantic 

segmentation with deep CNN (DCNNS) deployment can be 

used success- fully in oil spill detection. The established DCNN 

segmentation model was trained and evaluated using a common 

database on a case-by-case basis. Generally, the best 

performance was re- ported by the DeepLabv3 model with the 

highest accuracy based on greater inference time. The mentioned 

study is advantageous since the complexity of the problem was 

extensively discussed, along with relative figures. 

Though, it is expected that this deficiency was caused by 

the small number of specimens for the small object size and the 

training method [23]. A super pixel segmentation method was 

introduced by Zhang et al., to hypersegmente SAR images. A 

statistical dissimilarity measurement technique was proposed in 

the super pixel integration section to transform soft super pixels 

into a self- connected weight graph. Moreover, phase 

integration and super pixel generation were run under a unified 

deep network. This method is advantageous since its shape is 

alternately adjusted based on the segmentation results and 

boundaries during training to achieve the desired segmentation 

results. The segmentation method is efficient computationally 

due to the simple network structure and includes advanced 

performance and good generalization [24]. A boundary 

clustering method was designed by Ma et al. to assess the 

specific tasks of super pixels. A soft graph convolutional 

network was proposed in the segmentation section taking the 

connectivity map as input and subdividing super pixels 

intelligently. 

The super pixel and graph complexity parts can be trained 

under a unified framework until obtaining optimal parameters of 

the two parts, which is the advantage of this technique. 

Furthermore, the super pixel shape can be adjusted by the 

network gradually in terms of segmentation. The results revealed 

that the boundary information could be preserved by the 

suggested super pixel generation model, which has good 

resistance to stains. This technique was efficient 

computationally and performed consistently with 

generalizability [25]. A benchmark solution was presented by 

Hang et al., by establishing a general framework for deep 

learning of multiple MDL components. Generally, the MDL 

framework is used to classify pixel tasks and model spatial 

information with artificial neural networks. A general 

framework was presented comprising two sub networks, i.e., ex-

framework and FU-net, to present a basic solution for 

classification tasks of pixel-level images using MULTIMODAL 

data. Various hybrid strategies have been presented in this regard. 

In networks, the three “what,” “how,” and “how” were focused 

along with two feature extraction approaches associated with 

FC-NET and CNN to classify pixels and spatiospectral classes, 

respectively [26]. The CNN network can record spatial-spectral 

properties to classify hyper spectral images. Recently, GCNNs 

have been used in data analysis and visualization despite the 

sampling restrictions. Hong et al., assessed the complete HS 

image arrangement with GCNN and CNN. MINIGCNN can 

infer the output data without altering the network and enhancing 

the classification performance. It also facilitates the training of 

large-scale graph networks through the MINIBATCH technique. 

MINIBATCH allows the joint use of GCNN and CNN to 

extract more distinct and diverse properties for the 

classification of HS images [27]. Usually, HS images are 

combined into a data cube using spatiospectral data. Generally, it 

can be considered a sequence of data along with the spectral 

dimension. 
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An inverter-based backbone network was proposed by 

Hong et al., by further focusing on the ex- traction of spectral 

information from classifying these images without using it. 

This method can be improved by investigating self-organizing 

learning and creating a weighted network in terms of 

transformers to reduce the network complexity while 

maintaining more performance [28]. 

In this article, we needed many images to train 

convolutional networks. For this case, we increased 99 images 

of oil spills received from the Sentinel-1 and EnviSat satellites 

from the desired sites to 9801 images using the augmentation 

technique. Thus, we removed the oil spill 2 from the image and 

placed it on the oil spill 1. Several images are required by the 

CNNs for training. Only 99 images were used in the article as 

the database. The method as the main creativity and innovation 

of the article was used to increase the number of images of each 

oil spill on the remaining 98 oil spills. Thus, the images with 

various oil spills were incremented to 9801. Furthermore, the 

method was used to train CNNs well and perform image 

segmentation with higher accuracy. The main background of 

the new image was the oil spill 1. By this innovation, CNNs are 

trained without over- fitting and perform segmentation with 

considerable accuracy. The remaining sections of the article 

were arranged as follows: The collection procedure for images 

required for training neural networks was introduced in Section 

II. Section III described the proposed method. Section IV 

explained the analysis results of segmented images of the oil 

spill output from CNNs in detail with their accuracy tables. 

Section V presented conclusions and implications. 

II. DATASETS 

This section deals with the way SAR radar oil spill images 

were collected for the database to train CNNs. SARs send 

information to Earth in Earth’s orbit in any weather conditions 

and at any time of day or night. Images sent by the Sentinel-1 

and EnviSat radars at alternating time periods per month can be 

downloaded from the relevant websites. This dataset shelters 

major types of oil spill candidates detected under various sea 

conditions [29]. In oil spill images, it is necessary to consider 

satellite type, frequency band, resolution, polarization, and SAR 

or POLSAR type. For instance, on the ESA SciHUB site, 

images sent from the Sentinel-1 radar can be received and 

converted to desired formats, like JPG, using SNAP software. 

A high resolu- tion (up to MB) SAR radar is needed to train the 

neural network of convulsive images of oil spills. In this article, 

about 99 original images of oil spills were collected from 

different SARs. SAR images are needed in addition to 

annotated images of oil spills to train CNNs for oil spill 

segmentation. An annotated image of an oil spill made using 

Supervisely software is presented in Fig. 1. The mask image 

shows all the borders of oil spills accurately. 

 

 

Fig. 1. Annotated sample of oil spill image from oil 

bank 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.  Image of oil spills dataset 

A. Creating a Database of SAR Oil Spills Images in 

Google Drive 

We put each of the oil spills images on the other oil spills to 

increase the images for training CNNs. An example of an oil 

spills shown on an oil spills is shown in Fig. 2. For instance, 

we removed the oil spill in the first image. To do so, we 

multiplied the mask in the same image, and the resulting matrix 

returned the image values in the spots and was zero in spots 

without oil spills. Using matrix techniques, we placed the spot 

image in Fig. 2. The oil spill of the first image may overlap 

with the second oil spill, which does not affect the output of 

our work in this case. Using this method, we can produce many 

new images. The block diagram of the image data augmentation 

technique is shown in Fig. 3. We put all the 9801 images of SAR 

oil spills along with annotated images in a folder in the Google 

drive to provide a better access and established the link for 

addressing the folder in the program code. Each folder in the 

Google drive had two original images and a mask. The original 

image was the image received from SARs, and the annotated 

image was the image obtained from the software for training 

CNNs. The database of the images is available here and online. 

The original and annotated images were preserved in two separate 

folders. 

III.PROPOSED ALGORITHM 

In this article, we first masked all the oil spill images 

with supervisely software. Deep learning models become 

hungry of data, particularly with large architectures comprising 

numerous trainable parameters. For learning general 

classification rules and features and not over fitting the training 
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data, the model must be exposed to numerous input-output pairs 

that are segmentation masks and SAR images for oil spill 

detection. Although unlabeled data are inexpensive and 

accessible in large degree, there are normally scarce labels 

expensive for achievement [30]. 

 
 

Fig. 3. Image data augmentation technique. 
 

By augmenting the dataset during training, over 

fitting the training data was avoided in the model, and the 

generalization ability of the model was enhanced over invisible 

instances. The generalization performance can be improved by 

randomized data augmentation in various computer vision 

tasks, such as applications on remote sensing [29]. Then, using 

the image data augmentation technique, we increased the SAR 

oil spill images to 9801 images. We needed many images to train 

convolutional networks to avoid over fitting. Next, we trained 

the images to U-NET [31] and DEEPLABV3 networks 

separately, and at the end, we gave some images to the network 

as a test sample. The oil spill segmentation images were also 

displayed. The block diagram of the proposed flowchart is 

shown in Fig. 4. The encoder-decoder networks have been 

applied success- fully to several computer vision tasks, such as 

human pose estimation [32], object detection [20], [33], [34], 

and semantic segmentation [35], [36], [37], [38], [39], [40], 

[41], [42]. Characteristically, encoder-decoder networks 

comprise: an encoder module gradually reducing feature maps 

and capturing higher semantic information and a decoder 

module gradually recovering spatial information. Hence, we 

proposed to utilize DeepLabv3 as the encoder module and 

added an effective yet simple decoder module to achieve 

sharper segmentations [43]. 

IV. EXPERIMENTAL RESULTS 

Although unlabeled data are inexpensive and accessible in 

large degree, there are normally scarce labels expensive 

for achievement [30]. By augmenting the dataset during 

training, overfitting the training data was avoided in the 

model, and the generalization ability of the model was 

enhanced over invisible instances.  

 

The generalization performance can be improved 

byrandomized data augmentation in various computer 

vision tasks, such as applications on remote sensing [29]. 

Then, using the image data augmentation technique, we 

increased the SAR oil spill images to 9801 images. We 

needed many images to train convolutional networks to 

avoid overfitting. Next, we trained the images to U-

NET [31] and DEEPLABV3 networks separately, and at the 

end, we gave some images to the network as a test sample. 

The oil spill segmentation images were also displayed. The 

block diagram of the proposedflowchart is shown in Fig. 4. 

The encoder-decoder networks have been applied success- 

fully to several computer vision tasks, such as human 

pose estimation [32], object detection [20], [33], [34], 

and semantic segmentation [35], [36], [37], [38], [39], 

[40], [41], [42]. Characteristically, encoder-decoder 

networks comprise: an encoder module gradually reducing 

feature maps and capturing higher semantic information 

and a decoder module gradually recovering spatial 

information. Hence, we proposed to utilize DeepLabv3 as 

the encoder module and added an effective yet simple 

decoder module to achieve sharper segmentations [43]. 

We considered the size of all the oil spill images at 

1024 1024 pixels. We programmed the database address 

as/ content/drive/My Drive/DataSets/OilSpillGen. The 

target image was developed at 723× 543 pixels on 

November 20 at ESRIN, Italy. As shown in Fig. 10, the 

scattering oil spill was not collected in one part, and the U-

NET network managed to identify areas containing oil and 

even narrow oil borders. 

In Fig. 11, the oil spill accumulated in one part and 

was not dispersed. The U-NET network identified oil spills 

well in the tested image and was marked in red with full 

details. Fig. 12 shows the detection on November 20 at 

ESRIN, Italy. As seen, the oil spill had a closed-loop 

shape, and there were clear areas inside the loop with no 

oil spill. The U-NET network recognized well around the 

thick borders of the spot, and the borders were well 

displayed. 
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A. SAR Oil Spill Detection Results Using U-NET 

Network 

Multiplying the original images by the annotated 

images gave us original fragmented images. As seen, 

an oil spill was augmented to the image, and in the 

annotated images, both parts of the mask oil spill were 

removed. This algorithm was used in the U-NET 

network application code. As observed in Fig. 5, the 

final oil spills had a black background and the spots 

were quite clear. The network was trained with 90% of 

the input images. Here, we considered 90% of the 

original images for training and 10% for testing. Then, 

after the image augmentation technique, we used 10% 

of this educational data for validation. Identifying oil 

spills means that areas containing oil spills 

surrounding the SAR image are entirely isolated. The 

U-NET network training results in Table I are given 

here. Then, images with 300 epoch and a batch size of 

5 were considered for network training. As observed, 

in the epoch i = 22, the values of the parameters were 

mean_iou = 0.9058 and val_mean_iou = 0.7888, 

which had the closest and highest values. The 

proximity of these two parameters’ values showed the 

good training of the network, and the value of 

val_mean_iou showed the oil spill detection accuracy 

by the network, which was among the highest values 

(0.788 or 78.8%). Furthermore, we saved weights 

obtained from the network training in the program 

algorithm so that no time was spent on re-testing the 

network training, and we could use the weights. In 

Table I, the loss showed the network error value, and 

val_loss showed the validation error value. Additionally, 

the mean_iou parameter indicated the oil spill 

detection accuracy, and the val_mean_iou grid showed 

the network accuracy for validation data. Diagrams of 

network training parameters are shown below. 

 
Fig. 4.  Proposed flowchart. 

 

Fig. 5. (a) Original oil spill image. (b) Oil spill 
annotated image. (c) Multi- plying 2 side images with 

original fragmented images and U-NET network. 

 

 

Fig. 6.  U-NET network Loss diagram. 

 

 

Fig. 7.  U-NET network Val_Loss diagram. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 8.  U_NET network Mean_iou diagram. 
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Fig. 9.  U-NET network Val_mean_iou diagram. 

 

 

Fig. 10.  (a) Original oil spill 1. (b) Oil spill detection 1 

with U-NET network. 

 

Multiplying the original images by the annotated 

images gave us original fragmented images. As shown, an 

oil spill was augmented to the image, and in the annotated 

images, both parts of the mask oil spill were removed. 

The same algorithm was used in the DeepLabV3 network 

application code. As shown in Fig. 13, the final oil spills 

had a black background, and the oil spills were quite 

clear. The network was trained with 90% of the overview 

images. Here, we considered 90% of the original images 

for training and 10% for testing. Then, after the 

augmentation technique, we used 10% of this educational 

data for validation. Identifying oil spills means that areas 

containing oil spills surrounding the SAR image are 

entirely isolated. 

As shown in Fig. 14, the Deeplabv3 network error 

value decreased with an increase in the number of epochs 

and reached a constant value. 

The Deeplabv3 network validation data error 

value reached a value between 0.5 and 1 after a series of 

fluctuations around the value of 1. There were more errors 

in this network compared to U-NET. The loss val diagram 

in the DeepLabV3 network is shown in Fig. 15. The 

mean_iou diagram in the Deeplabv3 network reached a 

fixed value of 0.5 after increasing epochs compared to 

that in the U-NET network. Accordingly, the network was 

weaker in the detecting oil spill segmentation.  

 

 

The mean_iou diagram in the DeepLabV3 network is shown 

in Fig. 16. As the diagram in Fig. 17 shows, with the increase 

of epochs, the mean_iou value in the validation data 

increased to 0.55, which was lower than the U-NET value, 

and segmentation in the validation data in Deeplabv3 had a 

more unsatisfactory performance. Network testing was 

performed on three images for which the network was not 

yet trained. Parts of the oil spills were highlighted in red. The 

target image was produced at 723× 543 pixels on November 

20 at ESRIN, Italy. As the image shows, the oil spill was 

diffused and did not shrink in one part, and the DeepLab3 

network had moderately identified areas with oil spills and 

narrow oil borders. As shown in Fig. 18, the left part of the 

image had marked parts with a pale red in addition to the oil 

spill, which was considered a problem. In Fig. 19, the oil 

spill accumulated in one part and was not dispersed. 

 

 
 

Fig. 11. (a) Original oil spill 2. (b) Identification of oil  

 

 

Fig. 12. (a) Original oil spill 3. (c) Oil spill 3 detection 

with U-NET network. 

spill 2 with U-NET network. 

 
Fig. 13. (a) Original oil spill image. (b) Oil spill annotated 

image. (c) Multi- plying 2 side images with original 

fragmented images and DeepLabv3 network. 
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Fig. 14. DeepLabV3 network Loss diagram. 

 

Fig. 15.  DeepLabV3 network Val_Loss diagram. 

 

Fig. 16.  DeepLabV3 network Mean_iou diagram. 

 
Fig. 17.  DeepLabV3 network Val_mean_iou diagram 

 

 

 

 

 

 

 

 

 

 

Fig. 18.  (a) Original oil spill 1. (b) Oil spill 1 detection 

with DeepLabV3. 

 

Fig. 19.  (a) Original oil spill 2. (c) Oil spill 2 detection 

with DeepLabV3. 

 

 

The target image was produced at 723× 543 

pixels on November 20 at ESRIN, Italy. As the image 

shows, the oil spill was diffused and did not shrink in 

one part, and the DeepLab3 network had moderately 
identified areas with oil spills and narrow oil borders. 

As shown in Fig. 18, the left part of the image had 

marked parts with a pale red in addition to the oil spill, 

which was considered a problem. In Fig. 19, the oil 

spill accumulated in one part and was not dispersed. 

 

Fig. 20 shows the detection on November 20 at 

ESRIN, Italy. As observed, the oil spill had a closed-

loop shape, and there were clear areas inside the loop 

without the oil spill. The U-NET network recognized 

well around the thick borders of the spot, and the 

borders were well shown. However, the network detected 

excess oil spills inside the loop, on the border, and 

outside the loop. 
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Fig. 20.  (a) Original oil spill 3. (d) Oil spill 3 detection 

with DeepLabV3. 

 

Fig. 21. Segmentation results of oil spill SAR images 
with noise. (a) Original SAR oil spil1-1. (b) 

Segmented oil spill-1 image with U-NET. (c) Original 

SAR oil spil1-2. (d) Segmented oil spill-2 image with U-
NET. (e) Original SAR oil spil1-3. (f) Segmented oil 

spill-3 image with U-NET. (g) Original SAR oil spil1-

4. (h) Segmented oil spill-4 image with U-NET. 

 

 
 

In this article, the following hyperparameters were 

used in U-NET and DeepLabv3 networks: optimizer; 

activation function; learning rate; epochs; and batch size. 

In DeepLabv3 and U-NET networks, the activation 

function parameter is equal to ReLU. In U-NET, the 

optimizer parameter is equal to RMSprop, and DeepLabv3 

networks are equal to Adam. The learning rate parameter 

in DeepLabv3 and U-NET is equal to 0.001. In U-NET, 

the batch size parameter is 5, while in DeepLabv3, it is 4. 

The epoch parameter in U-NET and DeepLabv3 equals 

300. In other words, during the test, the hyperparameters 

did not change. 

Considering a prominent feature of oil spill 

segmentation with this technique and networks, it can be 

concluded that the generality of this method was 

examined. Hence, noisy images, such as speckle noise, 

were tested, yielding accurate segmentation results, 

which are considerably displayed here. 

The types of the oil spill segmentation results of 
SAR radar are presented in Fig. 21, along with the 
speckle noise of the unit network. Remarkable accuracy 
was obtained for the segmentation results.  

 

Considering the future challenges and motivations, 

it is worth noting that oil spill segmentation was 

investigated in this article by using CNN networks. For 

the next ideas, the number of input images of the 

networks should increase; for instance, data transmission 

satellites should be checked, which comprise more 

images containing oil spills to increment the accuracy 

of the segmentation. The neural network architecture 

can be deepened at the same time to obtain better 

accuracy.  

Also, the neural network with optimal settings 

should be updated; for instance, the optimizer 

parameter or learning rate should be changed. There is a 

problem with spectral variability for hyperspectral 

images gathered from airborne or satellite sources, 

inevitably making it difficult to accurately estimate the 

spectral mixing. An advanced ALMM linear mixing 

model was introduced by Heng et al., to cope with 

spectral variability by using a data-based learning 

strategy for hyperspectral mixing inverse problems. 

Then, other spectral variables were modeled, such as 

temperature, local humidity, and atmospheric influence, 

as well as instrument settings such as noise and 

nonlinear effects. The ALMM model considered both 

the main scale factor and other spectral variables by 

introducing the spectral diversity dictionary to 

increment the end member dictionary scalability.  

More importantly, the presented technique can 

achieve more accurate frequency estimation than other 

advanced algorithms because it models spectral 

variables separately as scale and other spectral variables 

based on distinctive features [45]. Radar images are 

formed by the coherent interaction of transmitted 

microwaves with targets, unlike optical images. 

Therefore, the speckle noise effect is caused by the 

coherent summation of randomly scattered signals in 

each pixel. There is more noise in radar images than in 

optical images. SAR images are de- graded inherently 

due to the coherent nature of the scattering phenomena 

known as speckle. The utility of the SAR images is 

reduced by the presence of speckles by reducing the 

capability to discover ground objects, which has adverse 

effects on the image quality and hampers the 

observation of crucial information in the image.  

In this article, noise-free images of SAR radar oil 

spills were considered for the training and input of the 

network. The inclusion of noise in SAR radar oil spill 

images should be assessed as a new issue. Here, the test 

data for the U-NET and DeepLabv3 networks were the 

oil spill images of noisy radar. As seen, good results are 

obtained for oil spill segmentation with noise by using 

the U-NET network. 
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V. CONCLUSION 

Deep network training needs a significant sum of 

data and usually faces the overfitting issue with a small 

volume of data. In this article on SAR images, our data 

was limited, and it was shown that with this number of 

deep segmentation networks, the networks faced the 

overfitting issue and were not efficient. In overcoming 

this problem, one approach is to use augmentation 

techniques, although the desired number of several 

thousand images cannot be reached with these techniques. 

The innovative task carried out in this article was to 

combine the existing images to produce a large number of 

images.  

However, in addition to detecting oil spills, the 

DeepLabV3 network indicated additional areas as oil 

spills, which were network errors. The oil spill detection 

accuracy reached about 78.8% using the U-NET network. 

Regarding the remaining motivations and challenges, it 

should be said that this article investigated oil spill 

segmentation by using CNN networks. For the next ideas, 

it is better to increase the number of input images of the 

networks, for instance, to check data transmission 

satellites containing more images of oil spills and to 

increase the segmentation accuracy. At the same time, the 

neural network architecture can be deepened or updated 

by optimal settings (e.g., changing the optimizer parameter 

or learning rate) to achieve better accuracy. The following 

are some approaches to improve the accuracy of oil spill 

segmentation:  

In other words, increasing the input data will lead to 

more training of neural networks, and as a result, the 

accuracy of oil spot spill segmentation will be improved. 

Another idea can be mentioned to increase the number of 

epochs and further training. Again, more CNN training 

will lead to better accuracy. Here, it can be said that 

using a deeper and different neural network will definitely 

increase the accuracy of oil spill segmentation. Finally, 

updating and optimizing hyperparameters (such as the 

optimizer and learning rate) will contribute significantly to 

improving the accuracy of oil spill segmentation. 
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