

A new tree data structure to extract frequent pattern from transactional

database

Hemali Shah Prof. J.S.Dhobi

GEC,Modasa, GEC, Modasa

Gujarat, India Gujarat, India

Abstract

Frequent Pattern mining has attracted wide attention

in both research and application area recently. In

this paper, we propose a novel tree data structure to

extract all frequent patterns from transactional

database with single database scan. It is also

supports Interactive and Incremental mining without

rescan the original database. Experimental results

show that our new tree data structure is efficient for

frequent pattern mining, interactive, and incremental

mining with single database scan. It extracts frequent

patterns faster than most current one like CP-Tree.

Keyword: Data mining, frequent pattern,

Association rule, Incremental mining, Interactive

mining.

1. Introduction

Finding frequent patterns (or itemsets) plays an

essential role in data mining and knowledge

discovery techniques, such as association rules,

classification, clustering, etc. The Apriori algorithm

was the first attempt to mine association rules from a

large dataset. It has been presented in [6] for the first

time. Apriori-based, that is, they depend on a

generate-and-test paradigm. To improve efficiency of

the mining process, Han et al. [4, 5] proposed an

alternative framework, namely a tree-based

framework. The algorithm they proposed in this

framework constructs an extended prefix-tree

structure, called Frequent Pattern tree (FP-tree), to

capture the content of the transaction database.

Rather than employing the generate-and-test strategy

of Apriori-based algorithms, such a tree based

algorithm focuses on frequent pattern growth–which

is a restricted test-only approach. This FP-Growth

algorithm is useful for static frequent pattern mining.

So, Koh and Shieh [7] proposed the AFPIM

(Adjusting FP-Tree for Incremental Mining)

algorithm, for incremental frequent pattern mining.

Therefore, it requires two database scans. CATS tree

[8] is a single-pass solution but it still suffers from

complex tree construction process. The above two

limitations are well-addressed in CanTree [3] that

captures the complete information in a canonical

order of items from database into a prefix-tree

structure in order to facilitate it for incremental and

interactive mining using FP-growth mining

technique. Since the items in the CanTree are not

stored in frequency-descending order, it usually

yields poor compaction in tree size compared to

FPtree. CP-tree (Compact Pattern tree)[1], that

constructs a compact prefix-tree structure with one

database scan and provides the same mining

performance as the FP-growth technique by efficient

tree restructuring process. CP-tree keeps all the items

in the tree after restructuring phase.

In this paper, we introduce a new tree data

structure that takes advantage of both CP-tree, that

constructs a compact prefix-tree structure with one

database scan and FP-tree, that keeps only frequent

items in the tree.

2. Overview of Proposed data structure:

Construction of tree contains mainly two phases: 1)

Insertion phase and 2) Restructure phase

First, In Insertion phase it scans

transactions(s), inserts them into the tree according to

item appearance order. It also maintains I-list and

updates frequency count of respective items in I-list

when inserts transaction into the tree. So, after

insertion of all transactions, tree data structure has

total support count of all items in database in its I-list.

Second, In Restructure phase it rearranges

the I-list according to frequency descending order of

items and only kept only frequent item (whose

frequency count is greater than user specified

minimum support) and restructures the tree nodes

according to this newly rearranged I-list. In tree

restructuring it use Branch Sorting Method (BSM)

like used in CP-Tree[2] restructuring phase, but keep

only frequent items in tree after restructure phase. In

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 3, May - 2012
ISSN: 2278-0181

1www.ijert.org

this method if path is not sorted according to new I-

list order, it is removed from the tree, deleted non-

frequent items, sorted according to new I-list order

into a temporary array and then again inserted into

tree in order.

After construction of tree it mines frequent

pattern using FP-Growth algorithm like in case of all

other tree structures.

Let’s see one by one step for my proposed

data structure for given database.

Figure 1(see pg 4) shows I-list and tree after

Insertion phase for database DB given in following

table, it is same as Insertion phase in CP-Tree. For

simplicity of figures we do not show the node

traverse pointers in tree, however, they are

maintained in a fashion like FP-tree does.

Now, let’s see Restructure phase step by

step. Input of Restructure phase is tree and I-list after

insertion of all transaction of database. In our

example input of restructuring phase is tree shown in

Figure 1. Figure 2(see pg 4,5) shows overall

processing of Restructure phase by Branch Sorting

Method. In this I-list items are not arranged in

frequency-descending order. Therefore, to restructure

the tree using the BSM in such order, I is sorted first

to generate a new I-list, Isort as shown in Fig. 2a.

Tree restructuring, then, starts with the first branch,

which is, say the left most branch from the root of the

tree in Fig. 1. Since the first path

{f:1?a:1?c:1?d:1?g:1?i:1?m:1?p:1} of the branch is

an unsorted path, it is removed from the tree (Fig.

2b), sorted using the into a temporary array to the

order {f:1?c:1?a:1?m:1?p:1} by satisfying Isort order

(Fig. 2c), and then again inserted into T in sorted

order. Fig. 2d shows the tree structure after sorting

the first path. Fig 2e shows the final tree after

Restructure phase. Fig 2f shows CP-Tree for given

database. From figure 2e and 2f we can say that our

proposed data structure has compact tree structure

than CP-Tree (Number of nodes in our proposed tree

data structure are less than CP-Tree). We include

only frequent items in tree after restructuring phase.

Interactive mining:

Our proposed tree structure also supports Interactive

mining. In interactive mining user specified

minimum support can be changed for the same

database. In this case, we can save tree after insertion

of all transactions. Then we can restructure tree

according to user specified minimum support. So,

there is no need to rescan the database for interactive

mining in this tree structure like FP-Tree. We have

support of all the items in our I-list. So, we can keep

only frequent items according to different minimum

support without the need of rescan the database.

Incremental mining:

Our proposed tree structure also supports Incremental

mining. In incremental mining transaction(s) are

added and deleted in original database. In this case,

we can save tree after insertion of all transactions in

original database. When new transaction(s) are added

or some transaction(s) are deleted, at that time we can

add new transaction(s) and delete those transaction(s)

in that saved tree easily and restructure the tree

without the need of rescan the original database like

FP-Tree.

3. Experiment Results:

We have downloaded following datasets from

http://fimi.ua.ac.be/data/ website (Frequent Itemset

Mining Implementations).
Programs are written in Java (jdk 6) and

run on Windows 7 operating system on a 2.13 GHz

machine with 4 GB of main memory.
 Table-1 and Table-2 shows total execution

time required to extract all frequent patterns for

mushroom and chess dataset respectively by my

proposed data structure and CP-Tree for different

support and also shows total frequent patterns for

respective support.

Table-1:Execution time for Mushroom dataset for

different suppot

Support Total

frequent

pattern

CP-

Tree

(ms)

My proposed

tree

structure(ms)

0.35 1188 24710 1780

0.30 2734 24790 1870

0.25 5544 24842 2020

0.20 53662 25850 2550

0.15 98574 26068 2642

Table-2:Execution time for Chess dataset for

different support

Support Total

frequent

pattern

CP-

Tree

(ms)

My proposed

tree

structure(ms)
0.90 627 13670 1860

0.80 8281 13752 2260

0.70 48968 13982 2780

0.60 2,55,984 14642 3200

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 3, May - 2012
ISSN: 2278-0181

2www.ijert.org

Chart-1 and chart-2 shows performance study of CP-

Tree and my proposed tree structure for mushroom

dataset and chess dataset respectivel.

Chart-1: Mushroom dataset

Chart-2: Chess dataset

4. Conclusion:

Based on analysis of experiment results following

conclusions is made:

1) My new data structure reduces overall

processing time to extract frequent pattern

from database compared to CP-Tree.

2) It also supports Interactive mining like

CanTree and CP-Tree, means if user

specified minimum support is changed then

also it can extract frequent patterns without

the need to rescan the database.

3) It also supports Incremental mining like

CanTree and CP-Tree, means later if

transaction(s) are added or old transaction(s)

are deleted then also it can extract frequent

patterns without the need to rescan the

original database.

5. References:

[1] Syed Khairuzzaman Tanbeer, Chowdhury Farhan

Ahmed, Byeong-Soo Jeong, and Young-Koo Lee, “CP-

Tree: A Tree Structure for Single-Pass Frequent Pattern

Mining.” In: Springer-Verlag Berlin Heidelberg 2008,pp 1-

6

[2] Syed Khairuzzaman Tanbeer, Chowdhury Farhan

Ahmed, Byeong-Soo Jeong , Young-Koo Lee, “Efficient

single-pass frequent pattern mining using a prefix-tree” In:

Information Sciences 179 (2008) pp 559–583

[3] Leung, C.K., Khan, Q.I., Li, Z., Hoque, T., “CanTree:

A Canonical-Order Tree for Incremental Frequent-Pattern

Mining.” Knowledge and Information Systems

11(3),(2007) pp 287-311

[4] Han J, Pei J, Yin Y, “Mining frequent patterns without

candidate generation.” In: Chen W, Naughton JF, Bernstein

PA (eds) Proceedings of the SIGMOD 2000. ACM Press,

New York, pp 1–12

[5] Han J, Pei J, Yin Y, Mao R, Mining frequent patterns

without candidate generation: a frequent-pattern tree

approach.” Data Min Knowledge Dis 8(1) (2004) pp 53–87

[6] Agrawal, Rakesh; Srikant, Ramakrishnan: “Fast

Algorithms for Mining Association Rules.” Proc. 20th Int.

Conf. Very Large Data Bases, VLDB, 1994.

[7] Koh J-L, Shieh S-F (2004) “An efficient approach for

maintaining association rules based on adjusting FP-tree

structures.” In: Lee Y-J, Li J, Whang K-Y, Lee D (eds)

Proceedings of the DASFAA 2004. Springer-Verlag, Berlin

Heidelberg New York, pp 417–424

[8] Cheung, W., Zaïane, O.R., “Incremental Mining of

Frequent Patterns without Candidate Generation or Support

Constraint.” In: Seventh International Database

Engineering and Applications Symposium (IDEAS) (2003)

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 3, May - 2012
ISSN: 2278-0181

3www.ijert.org

 Figure 1: Tree and I-list after Insertion phase for Database DB (for my proposed data structure)

(a) Restructure I to construct Isort

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 3, May - 2012
ISSN: 2278-0181

4www.ijert.org

(e) Final tree after Restructure phase in (f) Tree for given Database for

 My proposed data structure CP-tree.

Figure 2: Total processing of Restructure phase of my proposed data structure

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 3, May - 2012
ISSN: 2278-0181

5www.ijert.org

