

A Novel Approach of Lossless Image Compression using Hashing and

Huffman Coding

Dr. T. Bhaskara Reddy

 1
 , Miss. Hema Suresh Yaragunti

2
 ,Dr. S. Kiran

3
 , Mrs. T. Anuradha

4

1Associate Professor in the Dept of Computer Science & Technology , S.K.U ., Anantapur

2 Scholar in the Dept of Computer Science & Technology , S.K.U ., Anantapur

3 Assistant Professor in the Dept of Computers Applications ,Y.V. University, Kadapa.

4 Dept. of Computer Science , SPMVU, Thirupati .A.P

“A complex idea can be conveyed in just single still image”.
Storage and transmission of digital image has become more
of a necessity than luxury these days, hence the importance
of Image compression. Image data files commonly contain
considerable amount of information that is redundant and
irrelevant leading to more disk space for storage. Image
compression [7][9] is minimizing the size in bytes of an image
file without degrading the quality of the image to an
unacceptable level. During a step called quantization, where
part of compression occurs, the less frequencies [1] are
discarded. This paper represent the lossless image
compression on still image, which is based on Hashing and
Huffman Coding technique to show the better compression.

Key words: Image compression, Hashing, Huffman Coding,

Frequency Table, Encoder, Decoder, Quantizer

1. Introduction

Image compression [7][9] is technique of reducing the size,
eliminating redundant or unnecessary information which is
present in an image file. The compression techniques exploit
inherent redundancy [1][12] and irrelevancy by transforming
the image file into a smaller size, from which the original
image file can be reconstructed exactly or approximately. The
reduction in file size saves the memory space and allows
faster transmission of images over a medium. It also reduces
the time required for images to be sent over the Internet or
downloaded from web pages.

1.1. Data Redundancy:

A commonly image contain redundant information i.e.
because of neighboring pixels which are correlated and
contain redundant information. The main objective of image
compression [7][1] is redundancy[7][1] and irrelevancy
reduction. It needs to represent an image by removing
redundancies as much as possible, while keeping the
resolution and visual quality of compressed image as close to
the original image. Decompression [3][7] is the inverse
processes of compression i.e. get back the original image
from compressed image. Compression ratio is defined as the
ratio of information units an original image and compressed
image which is shown in Fig 1

 Figure 1.1 Data Redundancy

 Let n1 and n2 denote the number of

information carrying units in two data sets that

represent the same information. The relative

redundancy [1] RD is defined as: RD = 1 – 1

 CR

Where CR commonly called the compression ratio[1],

 is CR = n1

 n2

 If n1 = n2, CR=1 and RD=0 no redundancy

 If n1 >> n2, CR >>1and RD >>0 high redundancy

 If n1 << n2, CR<<1 and RD <<0 undesirable

A compression ratio of 10 (10:1) means that the first

data set has 10 information carrying units (say, bits) for

every 1 unit in the second (compressed) data set. In

image compression [1][7] three basic redundancies can

be identified: Coding Redundancy, Interpixel

Redundancy and Psychovisual Redundancy. In Coding

redundancy some gray levels are more common than

others. The gray levels with more frequency can be

given code of smaller length to reduce the overall

space. e.g. Huffman Coding [5][6]. In Inter-pixel

redundancy, the value of any given pixel can be

reasonably predicted from the value of its neighbors.

The information carried by individual pixels is

relatively small. This is also spatial redundancy,

geometric redundancy or interframe redundancy e.g.

Differential Coding, Run Length coding. In Psycho-

visual Redundancy, as the human eye does not perceive

all the details, less relative information is eliminated.

The eye does not respond equally to all visual

information. Information of less relative importance is

psychovisually redundant. It can be eliminated without

significantly impairing visual “quality”. The

elimination of psycho-visually redundant data results in

loss of quantitative information; it is commonly

referred as quantization. The Fig. 1.2 shows is an

examples of simultaneous contrast. All the inner

Compression

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 3, March - 2013
ISSN: 2278-0181

1www.ijert.org

IJ
E
R
T

IJ
E
R
T

squares have the same intensity but the progressively

look darker as the background becomes lighter.

 Fig 1.2: Simultaneous contrast .All the inner squares have the same

intensity. But they appear progressively darker as the background

becomes higher.

1.1. Image compression and Decompression.

The image compression [7][9] system is composed of

two distinct functional components: encoder and

decoder Fig. 1.3. Encoder performs compression while

Decoder performs decompression [3][7]. Both

operations can be performed in software, as in case of

Web browsers and many commercial image editing

programs, or in a combination of hardware and

firmware, as in DVD players. A codec is a device

which performs coding and decoding [9]. Input image

f(x…) is fed into the encoder, which creates a

compressed representation of input. It is stored for later

use or transmitted for storage and use at a remote

location. When the compressed image is given to

decoder (Fig 1.3), is constructed output image f‟(x...) is

generated. In still image applications, the encoded input

and decoder output are f(x,y)& f‟(x,y) respectively. In

video applications, they are f(x, y, t) & f‟(x, y, t)

where„t‟ is time. If both functions are equal then the

system is called lossless and error free, lossy otherwise.

Input Image

output image

Figure 1.3 Block Diagram for Image compression

Encoding Process: Encoder is used to remove the

redundancies through a series of three independent

operations. Mapper: It transforms f(x…) into a format

designed to reduce spatial and temporal redundancies. It

is reversible. It may /may not reduce the amount of data

to represent image. E.g. Run length coding. In video

applications, mapper uses previous frames to remove

temporal redundancies. Quantizer [9]: It keeps

irrelevant information out of compressed

representations. This operation is irreversible. It must

be omitted whenever error free compression is desired.

In video applications, bit rate of encoded output is often

measured and used to adjust the operation of the

quantizer [9] so that a predetermined average output is

maintained. The visual quality of the output can vary

from frame to frame as a function of image content.

Symbol Encoder: Generates a fixed or variable length

code to represent the quantizer [9] output and maps the

output in accordance with the code. Shortest code

words are assigned to the most frequently occurring

quantizer output values, thus minimizing coding

redundancy[1][2]. It is reversible. Upon its completion,

the input image has been processed for the removal of

all three redundancies. Decoder or Decoding Process

[9]: Quantization [1][9] results in irreversible loss, an

inverse quantizer block is not included in the decoder

block.

1.3 Importance of Image Compression

The importance of image compression increases with

advancing communication technology. Limited

hardware and resources is also important in sending of

datafield.The number of images compressed and

decompressed daily is innumerable. Raw image can

occupy a large amount of memory both in RAM and in

storage. Compression reduces the storage space

required by an Image and the bandwidth needed while

streaming that image across a network. Image

compression is important for web designers who want

to create faster loading webpage‟s which in turn make

website more accessible to others. In a medical field,

image compression plays a key role as hospitals move

towards filmless imaging and go completely digital .

There are many applications which require image

compression, such as multimedia, internet, satellite

imaging, remote sensing etc.

1.4 Types of Compression: They are two types of

image compression [7][3] algorithm: lossy and lossless

1.4.1 Lossy Compression

In this technique, size of an image is reduced, with loss

of some data or information. The compressed image is

similar to the original image but not identical. Lossy

compression reduces file size by eliminating certain

information, especially redundant information. When a

file is decompressed, only part of the original

information is present (but user may not notice

it).Lossy compression is commonly used for photo

graphs (JPEG-Joint Photographic Expert Group) and

other complex still images on the web.

1.4.2 Lossless compression

In this technique, size of an image is reduced, without

loss of any data or information. The compressed image

is same as original image. With lossless compression,

every single bit of data that was originally in the file,

remains after the file is decompressed. All of the

information is completely restored. Lossless

compression is commonly used for GIF (Graphics

Interchange Format) file.

2. Huffman Coding

It was developed by David A. Huffman while he was a

PhD student at MIT. It was published in 1952 in the

paper “A method for construction of minimum-

Redundancy Codes“[1][2]. Huffman coding[5][12] is

an entropy encoding algorithm which is used for

lossless data compression to remove the redundancies.

The term refers to the use of a variable length code

table for encoding a source symbol (such as a character

Mapper Quantizer Encoder

InverseMapper Dequantization Decoder

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 3, March - 2013
ISSN: 2278-0181

2www.ijert.org

IJ
E
R
T

IJ
E
R
T

in file) where the variable length code table has been

derived in a particular way based on estimated

probability of occurrence for each possible value of

source symbol. It is based on the frequency of

occurrence of a data item i.e. pixels in an image. It

yields smallest possible code symbol per source

symbol.

2.1 Algorithm

The Huffman‟s approach is has two passes:-

a. Most frequently occurring symbols will have

shorter code words than symbols that occur

less frequently [1]. Create the series of

reductions by ordering the probabilities.

b. The two symbols that occur least frequently

will have the same length. Combine these

lowest two probabilities. Sort the probabilities

in descending order and repeat these steps till

we get two probabilities.

2.1.1 Procedure Huffman Coding

//Read the pixels from an input image

Call getFrequencies (inputFile); //Get the frequencies

of each pixel

Procedure getFrequencies (inputFile)

//Collect the frequencies of symbols in the stream that

we want to compress.

Call CanonicalCode (code, 257); //Build into the tree

with node and leaf

Call canonCode.toCodeTree (); // Replace code tree

with canonical one. For each symbol, the code value

may change but the code length stays the same.

Call AdaptiveHuffmanCompress (); //compress the file

using HCT

Call HuffmanEncoder (); //To encode the data

Call CodeTree () //To reorder the data after

adding two lowest frequencies

Call HuffmanDecoder(); //Call the decoder to get

back

2.1.2 Algorithm for Huffman Coding

Frequency table // A table of symbol frequencies.

 Collect the frequencies of symbols in the stream that

we want to compress.

 Build a code tree that is statically optimal for

the current frequencies.

 This implementation correctly builds an

optimal code tree for any legal number of

symbols (2 to Integer.MAX_VALUE), with

each symbol having a legal frequency (0 to

Integer.MAX_VALUE). It is designed not to

give error due to overflow.

CodeTree // A binary tree where each leaf codes a

 symbol, for representing Huffman codes

 The main uses of a CodeTree:

.Read the 'root' field and walk through the tree

 to extract the desired information.

.Call getCode () to get the code for a symbol, provided

 that the symbol has a code. The path to a leaf node

 determines the leaf's symbol's code. Starting from the

 root, going to the left child represents a 0, and going to

 the right child represents a 1.

.Constraints: The tree must be complete, i.e. every leaf

must have a symbol. No symbol occurs in two leaves.

But not every symbol needs to be in the tree. The root

must not be leaf node.

 Table.2.1 Code Tree

Canonical Huffman Code

 Code length 0 means no code. A canonical Huffman

code only describes the code length of each symbol.

The codes can be reconstructed from this information.

In this implementation, symbols with lower code

lengths, breaking ties by lower symbols, are assigned

lexicographically lower codes as shown in Table 2.2.

 Table 2.2 Canonical Huffman Code

Huffman Encoder: The code tree can be changed after

each symbol is encoded, as long as the encoder and

decoder have the same code tree at the same time.

Code lengths

canonical

code):

Huffman codes

(generated from

canonical code):

Symbol A: 1

Symbol B: 3

 Symbol C: 0
(no code)

Symbol D: 2

Symbol E: 3

 Symbol A: 0

 Symbol B: 110

 Symbol C: None
 Symbol D: 10

 Symbol E: 111

Huffman Code Code tree:

 0: Symbol A

 10: Symbol B

 110: Symbol C

 111: Symbol D

 .

 / \

 A .

 / \

 B .

 / \

 C D

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 3, March - 2013
ISSN: 2278-0181

3www.ijert.org

IJ
E
R
T

IJ
E
R
T

Huffman Compressor: Uses static Huffman

coding[5][6] to compress an input file to an output file.

Use Huffman Decompresser to decompress. Uses 257

symbols - 256 for byte values and 1 for EOF. The

compressed file format contains the code length of each

symbol under a canonical code, followed by the

Huffman-coded data.

Huffman Decoder: The code tree can be changed after

each symbol is decoded, as long as the encoder and

decoder have the same code tree at the same time.

2.2PROCEDURE HUFFMANCODE GENERATION

//Read the pixels from an input image

Call getFrequencies (inputFile);

 //Get the frequencies of each pixel

Call CodeTree () //To reorder the data after adding two

//lowest frequencies

Call canonCode.toCodeTree (); // Replace code tree

with canonical one. For each symbol, the code value

may change but the code length stays the same.

Call AdaptiveHuffmanCompress ();

//compress the file using HCT

Call HuffmanEncoder (); //To encode the data

Call HuffmanDecoder (); //Call the decoder to get back

2.2.1 PROCEDURE NODE ()

// A node in a code tree. This class has two & only two

subclasses: InternalNode, Leaf.

public abstract class Node

{

Node () {}//Package-private to prevent accidental

subclassing outside of this package

}

2.2.2 PROCEDURE LEAF()

// A leaf node in a code tree. It has a symbol value.

public final class Leaf extends Node

 { public Leaf(int symbol)

 {

if (symbol < 0)

//Is a illegal symbol

else

//add the symbol to leaf Assign

symbol to the current Leaf

 } }

2.2.3 PROCEDURE FREQUENCYTABLE ()

public FrequencyTable (int [] freqs)

{

 if (freqs == null)

 Not possible to create table

 if (freqs.length < 2)

 // Not possible to create a table it should contain

 at least 2 symbols.);

 Else

 frequencies = freqs. Clone (); // Defensive copy

 for (int x: frequencies)

 {

 if (x < 0)

 Is a Negative frequency

 }

 }

public void increment (int symbol)

{

 if (symbol < 0 || symbol >= frequencies. Length)

 Then Symbol out of range

 If (frequencies [symbol] == Integer.MAX_VALUE)

Arithmetic overflow

else

frequencies [symbol]++;

}

2.2.4 PROCEDURE CODETREE ()

// Pad with zero-frequency symbols until queue has at

least 2 items

for (int i= 0; i < frequencies. Length && pqueue.size () < 2; i++)

{ if (i >= frequencies. length || frequencies[i] == 0)

//add a node

pqueue.add (new Node Frequency (new Leaf (i), i, 0));

}

// Repeatedly tie together two nodes with the lowest

frequency

while (pqueue.size () > 1)

 {

 //remove the last two symbols from queue

 and store sum of that symbols into the pquee

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 3, March - 2013
ISSN: 2278-0181

4www.ijert.org

IJ
E
R
T

IJ
E
R
T

 and store sum of that two symbols into the pqueue

//Remove nf1

 pqueue.remove ();

// Remove nf2

 pqueue.remove ();

//now add another two symbols

pqueue.add(new NodeWithFrequency(new Internal

Node(nf1.node, nf2.node),

//find the minimum two frequencies and find sum

Math.min(nf1.lowestSymbol,nf2.lowestSymbol),

nf1.frequency + nf2.frequency));

}

// Return the remaining node and store into code tree

Return new CodeTree((Internal Node) pqueue.remove

().node, frequencies. length);

private void buildCodeList (Node node, List<Integer>

prefix)

{

 if (node instanceofInternalNode)

 {

 //get the internal node

 InternalNodeinternalNode=(InternalNode) node;

 //add prefix 0 to the leftchild node

 prefix. add (0);

 buildCodeList (internalNode.leftChild, prefix);

prefix.remove (prefix.size () - 1);

//add prefix 1 to the rightchild node

 prefix.add (1);

 buildCodeList(internalNode.rightChild, prefix);

 prefix.remove(prefix.size() - 1);

 }

}

2.2.5 PROCEDURE HUFFMANENCODER ()

public final class HuffmanEncoder

{

private BitOutputStream output;

// The code tree can be changed after each symbol

encoded, as long as the encoder and decoder have the

same code tree at //the same time.

public HuffmanEncoder (BitOutputStream out) {

if (out == null)

Not possible to encode

else

//Assign encode value

output = out;

List<Integer> bits = codeTree.getCode (symbol);

for (int b: bits)

output. write (b);

}

public CodeTree toCodeTree ()

 {

//create the ArrayList of nodes

 List<Node> nodes = new ArrayList<Node>();

//add the leaves for symbols in but symbols should

be in descending order

//move from max length code to min

for (int i = max (codeLengths); i >= 1; i--) { // Descend

through positive code lengths

// Add leaves for symbols with code length i

for (int j = 0; j < codeLengths.length; j++) {

if (codeLengths[j] == i)

//add the node i.e. leaf

newNodes.add(new Leaf (j));

}

// Merge nodes from the previous deeper layer

for (int j = 0; j < nodes.size(); j += 2)

newNodes.add(new InternalNode(nodes.get(j),

nodes.get(j + 1)));

nodes = newNodes;

//This canonical code does not represent a Huffman

code tree

}if (nodes.size() != 2)

//This canonical code does not represent a Huffman

code tree

if (nodes.size() % 2 != 0)

else

return new CodeTree (new InternalNode (nodes.get

(0), nodes.get(1)), codeLengths.length);

}

if (nodes.size() % 2 != 0)

//This canonical code does not represent a Huffman

code tree

}

if (nodes.size() != 2)

//This canonical code does not represent a Huffman

code tree

else

return new CodeTree (new InternalNode (nodes.get

(0), nodes.get(1)), codeLengths.length);

}

return new CodeTree (new InternalNode (nodes.get (0),

nodes.get(1)), codeLengths.length);

}

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 3, March - 2013
ISSN: 2278-0181

5www.ijert.org

IJ
E
R
T

IJ
E
R
T

3. Hashing

 Hashing [10] is the technique used for performing

almost constant time search in case of insertion,

deletion and search operation. Hashing[10][10] is used

to index and retrieve items in a database because it is

faster to find the item using the shorter hashed key than

to find it using the original value. It is also used in

many encryption algorithms. Hashing [10] is the

process of running data through a hash function [14]. A

hash function is a mapping between a set of input

values and a set of integers, known as hash values.

Hash Table [11] and Hash Map [11] are the data

structures which uses hash function to generate key

corresponding to the associated value.

PROCEDURE HASHING()
//read the input file converted into an array of pixels.
//store the array elements and repeated positions
using HashTable
//Data Items
 hm //hash map to hold pixels
img //input image
int w //width of the image
int h //height of the image
 comparator // method of Collections class used to sort
Read the image and get its height, width
Int [][] data = new int[h][w]; //store the pixels into a
matrix of w×h
 data[y][x] = raster.getSample(x, y, 0);
Convert the matrix into arraylist
myList.add (new Integer (data[x][y]));
// put these into Hash Map
 Increment j till it reaches array list size
 Add the values into hm
// to sort an ArrayList using comparator use,
 Sort the in reverseorder

In this,we have consider a image and converted the
pixels into an Array ,Store these pixels using Hashing
technique[10][1] ,sort the pixels and applied the
Huffman coding[5][6] to get the better lossless
compression. Fig 2 is explains it.

 SI

Figure 2:Block diagram of the proposed method

SI-Source Image
A-Pixel Array
HST-Hashing Technique
HT-Huffman Coding Technique
CI-Compressed Image

Huffman coding[5][6][12] is designed by merging the

two lowest symbols which are in Frequency Table and

this process is repeated until two probabilities are left

and thus Code Tree is generated and Huffman codes

are obtained from labeling of the code tree. The codes

can be reconstructed by Canonical Huffman code. This

is illustrated with example as shown below Table 2.8.

Consider the sample image of size 6×6 matrix Table2.3,

place these values into HashMap[11] using technique .

And sort this matrix Table 2.4 ,find the number of

occurrences of each pixel and create a frequency table

in descending order.

 Table2.3

 Sample matrix 6x6

 Table.2.4
 Sorted matrix

 Table 2.5
Frequency Table

Now reduce the source Table by combining the two
lowest probabilities i.e. 0.06 and 0.08 ,place the result
0.14 in a table and arrange the probabilities in
descending order, now combine the 0.11 and 0.11 to
get 0.22 and so on . Repeat this until we reach two

values i.e. 0.55 and 0.44.
 Table 2.6 Huffman Source Reduction

This table2.7 is showing all Huffman codes for all input

sources.

 Table 2.7

78 7E 78 80 B7 71

B1 71 B2 B1 44 57

B1 7E 80 80 7E 80

78 80 B7 B7 71 71

44 80 78 B2 7E 57

B7 44 B1 57 44 71

44 44 44 44 57 57

57 71 71 71 71 71

78 78 78 78 80 80

80 80 80 80 7E 7E

7E 7E B1 B1 B1 B1

B2 B2 B7 B7 B7 B7

S F P

80 6 0.166

71 5 0.14

B1 4 0.11

7E 4 0.11

78 4 0.11

B7 4 0.11

44 4 0.11

57 3 0.08

B2 2 0.056

Total 36

S F P 1 2 3 4 5 6 7

80 6 0.16 0.16 0.22 0.22 0.25 0.30 0.44 0.55

71 5 0.14 0.14 0.16 0.22 0.22 0.25 0.30 0.44

B1 4 0.11 0.14 0.14 0.16 0.22 0.22 0.25

7E 4 0.11 0.11 0.14 0.14 0.16 0.22

78 4 0.11 0.11 0.11 0.14 0.14

B7 4 0.11 0.11 0.11 0.11

44 4 0.11 0.11 0.11

57 3 0.08 0.11

B2 2 0.06

S 80 71 B1 7E 78 B7 44 57 B2

K 000 001 011 110 111 100 101 0100 0101

A HST HT

T

CI

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 3, March - 2013
ISSN: 2278-0181

6www.ijert.org

IJ
E
R
T

IJ
E
R
T

 After reducing the sources, generate the Huffman coding for sources as shown in table2.6

 Table2.8 Huffman Code Generation

4.Conclusion:

 Compression the images efficiently is one of the

major problem in image applications. So we have

tested the efficiency of image compression using

Hash table and Huffman code technique. The

Lossless algorithm is applied for image. This work

may be extended the better compression rate than

other compression Techniques. The performance of

the proposed compression technique using hashing

and human coding is performed on GIF, TIFF

formats. We took only medical images where HST

and HT are better. This technique can be applied on

luminance and chrominance of color images for

getting better compression.

5.Refrences:

[1] Dr.T.Bhaskar Reddy, S.Mahaboob Basha,

Dr.B.Sathyanarayana and “Image Compression

Using Binary Plane Technique” Library Progress,

vol1.27, no: 1, June-2007, pg.no:59-64.

[2] D.A.Huffman, A method for the construction of

Minimum-redundancy codes, Proc.IRE, vol.40,

no.10, pp.1098-1101, 1952

[3] Jagadish H. Pujar, Lohit M. Kadlaskar (2010) “A

new lossless method of image compression and

decompression using Huffman coding techniques”

Journal of Theoretical and Applied Information

Technology

[4] C. Saravanan, R. Ponalagusamy (2010) “Lossless
Grey-scale Image Compression using Source
Symbols Reduction and Huffman Coding”
International Journal of Image Processing (IJIP),
Volume (3): Issue (5)

[5] Mamata Sharma,”Compression Using Huffman

Coding”,IJCSNS International Journal of Computer

Science and Network Security ,VOL.10 No.5,May

2010,pp 133-141

[6] Sunil BhooshanShipra Sharma “An Efficient and

Selective Image Compression Scheme using

Huffman and Adaptive Interpolation” 2009 IEEE

[7] Rafael C.Gonzalez,Richard E.Woods “Digital

Image Processing “Second edition Pearson

Education,Printice Hall

[8] G.C Chang Y.D Lin (2010) “An Efficient Lossless

ECG Compression Method Using Delta Coding and

Optimal Selective Huffman Coding” IFMBE

proceedings 2010, Volume 31, Part 6, 1327-1330,

DOI: 10.1007/978-3-642-14515-5_338.

[9] The Scientist and Engineer’s Guide to Digital
Signal Processing by Steven W. Smith.Ph.D

[10] R. Pagh and F. F. Rodler, Cuckoo Hashing, in
9

th
 Annual European Symposium on Algorithms,

v.2161 of Lecture Notes in Computer Science, pp.
121-133, Springer-Verlag, 2001.

[11] Ulfar erlingsson,Mark Manasse,Frank Mcsherry

“A cool and Practical Alternative to Traditional
Hash Tables”

[12] http://www.Huffman coding-Wikipedia,the

free encyclopedia.htm

http:/en.wikipedia.org/wiki/Huffman coding

http://en.wikipedia.org/wiki/Adaptive Huffman

coding

[13] Hash table-Wikipedia,the free encyclopedia

http:/en.wikipedia.org/wiki/Hash_table.htm

[14]Hash
Functions:www.cs.hmc.edu/~geoff/classeshmc.cs070
.200101/…/hashfuncs.htm

S F P Key

80 6 0.16 000 0.16 000 0.22 10 0.22 10 0.25 01 0.30 00 0.44 1 0.55 0

71 5 0.14 001 0.14 001 0.16 000 0.22 11 0.22 10 0.25 01 0.30 00 0.44 1

B1 4 0.11 011 0.14 010 0.14 001 0.16 000 0.22 11 0.22 10 0.25 01

7E 4 0.11 110 0.11 011 0.14 010 0.14 001 0.16 000 0.22 11

78 4 0.11 111 0.11 110 0.11 011 0.14 010 0.14 001

B7 4 0.11 100 0.11 111 0.11 110 0.11 011

44 4 0.11 101 0.11 100 0.11 111

57 3 0.08 0100 0.11 101

B2 2 0.06 0101

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 3, March - 2013
ISSN: 2278-0181

7www.ijert.org

IJ
E
R
T

IJ
E
R
T

AUTHORS PROFILE

Dr.T.Bhaskara Reddy is an

Associate Professor in the

department of Computer

Science and Technology at S.K

University,Anantapur A.P. He

holds the post of Deputy

Director of Distance education

at S.K.University and He also the CSE Co-

coordinator of Engineering at S.K.University. He

has completed his M.Sc and Ph.D in computer

science from S.K.University. He has acquired

M.Tech from Nagarjuna University. He has been

continuously imparting his knowledge to several

students from the last 17 years. He has published 47

National and International publications. He has

completed major research project (UGC). Four

Ph.D and Three M.Phil have been awarded under his

guidance. His research interest are in the field of

image Processing, computer networks, data mining

and data ware house. E-Mail:bhaskarreddy

_sku@yahoo.co.in

Miss. Hema Suresh Yaragunti

is research scholar in the

department of Computer

Science Technology at

S.K.University. She acquired

M.Sc in Computer Science

from Karnataka University

Dharwad. She has 5 years of

experience in teaching and 2

years of experience in software field. Her research

interest is in the field of Image Processing.

E-Mail:hema.asadianil@gmail.com

Dr.S.Kiran is an Assistant Professor in the

department of Computer Science and Technology at

Yogivenama University , Kadapa, A.P. He has

completed his M.Sc and Ph.D in computer science

from S.K.University. He has acquired M.Tech from

Nagarjuna University. He has been continuously

imparting his knowledge to several students from the

last 5 years. He has published 4 National and

International publications.. His research interests are

in the field of image Processing, computer networks,

data mining and data ware house.

E-Mail:kirans123@gmail.com

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 3, March - 2013
ISSN: 2278-0181

8www.ijert.org

IJ
E
R
T

IJ
E
R
T

