
A Novel Cyclic-Lower-Upper-Rectangular

(CLUR) Cryptography Method

Suyash Kandele, Veena Anand
Department of Computer Science and Engineering

National Institute of Technology Raipur, India

Abstract— The proposed algorithm belongs to the category of

symmetric algorithm and hence the decryption process is just

the reverse of encryption process. This is a keyless technique of

concealing the data, thus reducing the overhead of maintaining

the key and its secured transmission. Unlike conventional

algorithms which break the message into square matrix, the

proposed algorithm partitions and rearranges the message in

horizontal rectangular matrix. Here, in the first step we apply

rotation pattern on the generated matrix. This step changes the

position of elements in addition to changing their relative

sequence. Our next step is to alter the number of repetitions and

value of characters, which has been implemented by using a part

of magic square matrix. We have performed distinct operations

at different places which does not form any recognizable pattern

for naïve guessing. The proposed algorithm has high

randomness and is, therefore, dynamically changing with the

varying length of string.

Keywords—Rectangular matrix; Rotation pattern; Upper

magic matrix; Lower magic matrix;

I. INTRODUCTION

Over a score of years, internet has found its applications in
education, research, medical science, defense, commerce and
many more besides mere communication. A significant
amount of data is available on internet. In some fields, secrecy
of data may not be important, but for some typical
applications security is a crucial aspect. The encryption and
decryption of data becomes too important while transmitting it
over a shared medium from being stolen away or manipulated
by any unauthorized user.

Let us assume a situation where a message has to be sent
from one army troop to another through a vulnerable medium.
Since the message is of high importance and should be
delivered only to its desired destination, the security of this
information transfer should be very high. It should not fall in
the hands of “Witty and Vigilant” intruder who may temper
this data or intercept it. The information is more vulnerable to
the attacker who is not interested in data but is passionate
about cryptanalysis. In this circumstance, we need to be
meticulous about the security measures.

In today’s world, where we are approaching digitization in
every possible sector, each user feels the need of a novel,
unique and reliable cryptography system; for his/her
personalized documents; that is unknown to others. So
cryptography exists to be an interminable division, where the
minutest and the mightiest algorithm; which is a remarkable
exploration of human mind; has its prominent contribution.

In the present work the author has used basic but
significantly important methodology to change the position of
elements, break the sequence of consecutive elements and
alter the number of repetitions & value of characters. Since the
mathematical computations involved in the proposed
algorithm are not sophisticated, thus it is also suitable for
mobile devices and devices with low computational power.

II. BASIC TERMINOLOGY

A. Horizontal Rectangular Matrix

Horizontal rectangular matrix is a 2-Dimensional array in
which the number of columns is twice the number of rows, i.e.
the size will be (n x 2n).

B. Rotation Pattern

Rotation pattern comprises of a sequence of steps to
modify the position of elements in the matrix.

C. Magic Square Matrix

Magic square matrix can be defined as a square matrix in
which the elements are arranged in such a way that the sum of
elements contained in a row, that in a column and that in the
diagonals are all equal. Here we have used the magic square
matrix of size 2n x 2n.

D. Upper Magic Matrix

The upper half of the magic square matrix is referred to, in
this context, as an upper magic matrix. This matrix is formed
by magic square matrix (2n x 2n) using its first half rows (1 to
n

th
 row) along with all its columns (1 to 2n

th
 column).

E. Lower Magic Matrix

The lower half of the magic square matrix is referred to, in
this context, as a lower magic matrix. This matrix is formed
by magic square matrix (2n x 2n) using its second half rows
((n+1)

th
 to 2n

th
 row) along with all its columns (1 to 2n

th

column).

F. XOR Operation

Here we have performed bitwise XOR operation upon two
numbers. When the two bits are identical, the result is
evaluated to zero, otherwise to one.

III. PROPOSED ENCRYPTION ALGORITHM WITH EXAMPLE

Step-1
First and foremost, convert each element of the input string
into its corresponding ASCII value and calculate its length.

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS110269

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 3 Issue 11, November-2014

329

Consider the entered input string is: “Presentation Layer is
responsible for Encryption & Decryption.”

Here, the ASCII equivalent of the string is: [80 114 101
115 101 110 116 97 116 105 111 110 32 76 97 121
101 114 32 105 115 32 114 101 115 112 111 110
115 105 98 108 101 32 102 111 114 32 69 110 99
114 121 112 116 105 111 110 32 38 32 68 101 99
114 121 112 116 105 111 110 46]

Length of string = 62

Step-2
We break the sequence of input string into rectangular
matrices of size n x 2n; such that n is assigned maximum
possible value; and place the remaining sequence into a
variable REMAINDER_STRING. Note the value of n in a
variable “matrix_size[]” that maintains the sequence of
division. This step is repeated using remainder
REMAINDER_STRING of this step as input string, till
REMAINDER_STRING contains 8 or more elements.

In this example, the matrices generated are:

REMAINDER_STRING = [105 111 110 46]

matrix_size = [5 2]

Step-3
Then we apply rotation pattern on all the generated
rectangular matrices. The sequence of steps in rotation pattern
is:

 (i) Apply single-up-shift to the even columns of the
matrix.

(ii) Rotate the outer-most frame of elements in the matrix
in anti-clock wise direction, its inner frame in clock-wise
direction, and so on. If the generated matrix has odd number
of rows, i.e. value of n is odd, then reverse the elements of
middle row which did not participate in either of the rotations
in this step.

The matrices after single-up-shift are:

The matrices after rotations are:

Since, the first matrix has odd number of rows, so reversing
the un-changed elements. After this step, the first matrix
becomes:

Step-4
We take a magic square matrix of size 2n x 2n. If the number
of rows in the rectangular matrix under consideration is odd
(value of n is odd) then we proceed to step-5, otherwise if the
number of rows in the rectangular matrix under consideration
is even (value of n is even) then we continue to step-6.

Step-5
We take the upper magic matrix of size n x 2n and perform
operation on the corresponding element of generated
rectangular matrix. If the value of element of upper magic
matrix is odd then means XOR, otherwise means
addition.

Using the upper magic matrix:

92 99 1 8 15 67 74 51 58 40
98 80 7 14 16 73 55 57 64 41
4 81 88 20 22 54 56 63 70 47

85 87 19 21 3 60 62 69 71 28
86 93 25 2 9 61 68 75 52 34

16 2 3 13
5 11 10 8
9 7 6 12
4 14 15 1

92 99 1 8 15 67 74 51 58 40
98 80 7 14 16 73 55 57 64 41
4 81 88 20 22 54 56 63 70 47

85 87 19 21 3 60 62 69 71 28
86 93 25 2 9 61 68 75 52 34
17 24 76 83 90 42 49 26 33 65
23 5 82 89 91 48 30 32 39 66
79 6 13 95 97 29 31 38 45 72
10 12 94 96 78 35 37 44 46 53
11 18 100 77 84 36 43 50 27 59

110 101 76 101 121 116 114 116 105 105
80 108 32 32 101 97 112 101 110 110

111 114 32 111 111 115 32 114 32 38
115 101 112 102 105 114 110 69 115 105
98 99 114 121 115 116 110 111 97 32

121 101 116 99
32 114 68 112

110 101 76 101 121 116 114 116 105 105
80 108 32 32 101 97 112 101 110 110

111 114 114 32 115 111 111 32 32 38
115 101 112 102 105 114 110 69 115 105
98 99 114 121 115 116 110 111 97 32

32 121 101 116

114 68 112 99

80 110 101 76 101 121 116 114 116 105
111 32 32 101 97 112 101 110 32 105
115 108 114 32 115 111 111 32 115 110
98 114 101 112 102 105 114 110 69 38
99 114 121 115 116 110 111 97 32 105

32 68 101 99

114 121 112 116

80 114 101 115 101 110 116 97 116 105
111 110 32 76 97 121 101 114 32 105
115 32 114 101 115 112 111 110 115 105
98 108 101 32 102 111 114 32 69 110
99 114 121 112 116 105 111 110 32 38

Upper

Magic

Matrix

Lower

Magic

Matrix

Upper

Magic

Matrix

Lower

Magic

Matrix

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS110269

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 3 Issue 11, November-2014

330

The 1
st
 matrix after this step is:

Step-6
We take the lower magic matrix of size n x 2n and perform
operation on the corresponding element of generated
rectangular matrix. If the value of element of lower magic
matrix is even then means XOR, otherwise means
addition.

Using the lower magic matrix:

The 2
nd

 matrix after this step is:

Step-7
Calculate the sum of row of magic square matrix of size same
as that of the value of each element in the variable
“matrix_size[]” and store the sum in variable
“sum_of_magic_matrix[]”.

Convert the magic square matrix of size 3 into a 1-
dimensional array “magic_array[]” and then square each term
in it.

Here, sum_of_magic_matrix = [65 5]

magic_array = [64 1 36 9 25 49 16 81 4]

Step-8
For all the elements in the variable REMAINDER_STRING,
perform XOR operation with the corresponding value of
element in “sum_of_magic_matrix[]” and then perform XOR
operation with corresponding elements in “magic_array[]”.

After this step, the content of REMAINDER_STRING is:

[104 107 11 34]

Step-9
In this last step, we merge all the rectangular matrices and the
variable REMAINDER_STRING, in the order they were
divided, to form the cipher text.

[202 6 77 109 118 55 188 71 163 145 178 188 39
46 117 40 71 92 174 71 115 35 120 131 133 169 88
77 102 9 38 50 99 115 106 174 172 0 52 133 184
62 107 123 122 73 178 36 149 66 130 108 114 111
36 124 83 113 104 107 11 34]

Cipher text is:

IV. PROPOSED DECRYPTION ALGORITHM WITH EXAMPLE

Step-1
First and foremost, convert each element of the input string
into its corresponding ASCII value and calculate its length.

Consider the entered input string is:

 “ÊMmv7¼G£²¼'.u(G\®Gs#x©XMf &2csj®¬
4¸>k{zI²$Blro$|Sqhk
"”

Here, the ASCII equivalent of the string is:

 [202 6 77 109 118 55 188 71 163 145 178 188 39
46 117 40 71 92 174 71 115 35 120 131 133 169 88
77 102 9 38 50 99 115 106 174 172 0 52 133 184
62 107 123 122 73 178 36 149 66 130 108 114 111
36 124 83 113 104 107 11 34]

Length of string = 62

Step-2
We break the sequence of input string into rectangular
matrices of size n x 2n; such that n is assigned maximum
possible value; and place the remaining sequence into a
variable REMAINDER_STRING. Note the value of n in a
variable “matrix_size[]” that maintains the sequence of
division. This step is repeated using remainder
REMAINDER_STRING of this step as input string, till
REMAINDER_STRING contains 8 or more elements.

In this example, the matrices generated are:

REMAINDER_STRING = [104 107 11 34]

matrix_size = [5 2]

Step-3
We take a magic square matrix of size 2n x 2n. If the number
of rows in the rectangular matrix under consideration is odd
(value of n is odd) then we proceed to step-4, otherwise if the
number of rows in the rectangular matrix under consideration
is even (value of n is even) then we continue to step-5.

130 108 114 111
36 124 83 113

202 6 77 109 118 55 188 71 163 145
178 188 39 46 117 40 71 92 174 71
115 35 120 131 133 169 88 77 102 9
38 50 99 115 106 174 172 0 52 133

184 62 107 123 122 73 178 36 149 66

ÊMmv7¼G£²¼'.u(G\®Gs#x©XMf &2csj®¬

4¸>k{zI²$Blro$|Sqhk

"

130 108 114 111
36 124 83 113

9 7 6 12
4 14 15 1

202 6 77 109 118 55 188 71 163 145
178 188 39 46 117 40 71 92 174 71
115 35 120 131 133 169 88 77 102 9
38 50 99 115 106 174 172 0 52 133

184 62 107 123 122 73 178 36 149 66

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS110269

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 3 Issue 11, November-2014

331

Step-4
We take the upper magic matrix of size n x 2n and perform
operation on the corresponding element of generated
rectangular matrix. If the value of element of upper magic
matrix is odd then means XOR, otherwise means
subtraction.

Using the upper magic matrix:

The 1
st
 matrix after this step is:

Now, continue to Step-6

Step-5
We take the lower magic matrix of size n x 2n and perform
operation on the corresponding element of generated
rectangular matrix. If the value of element of lower magic
matrix is even then means XOR, otherwise means
subtraction.

Using the lower magic matrix:

The 2
nd

 matrix after this step is:

Step-6
Then we apply rotation pattern on all the generated
rectangular matrices. The sequence of steps in rotation pattern
is:

(i) Rotate the outer-most frame of elements in the matrix
in clock-wise direction, its inner frame in anti-clock wise
direction, and so on. If the generated matrix has odd number
of rows, i.e. value of n is odd, then reverse the elements of
middle row which did not participate in either of the rotations
in this step.

(ii) Apply single-down-shift to the even columns of the
matrix.

The matrices after rotations are:

Since, the first matrix has odd number of rows, so reversing
the un-changed elements. After this step, the first matrix
becomes:

The matrices after single-down-shift are:

Step-7
Calculate the sum of row of magic square matrix of size same
as that of the value of each element in the variable
“matrix_size[]” and store the sum in variable
“sum_of_magic_matrix[]”.

Convert the magic square matrix of size 3 into a 1-
dimensional array “magic_array[]” and then square each term
in it.

Here, sum_of_magic_matrix = [65 5]

magic_array = [64 1 36 9 25 49 16 81 4]

Step-8
For all the elements in the variable REMAINDER_STRING,
perform XOR operation with the corresponding value of
element in “magic_array[]” and then perform XOR operation
with corresponding elements in “sum_of_magic_matrix[]”.

32 68 101 99

114 121 112 116

80 114 101 115 101 110 116 97 116 105
111 110 32 76 97 121 101 114 32 105
115 32 114 101 115 112 111 110 115 105
98 108 101 32 102 111 114 32 69 110
99 114 121 112 116 105 111 110 32 38

80 110 101 76 101 121 116 114 116 105
111 32 32 101 97 112 101 110 32 105
115 108 114 32 115 111 111 32 115 110
98 114 101 112 102 105 114 110 69 38
99 114 121 115 116 110 111 97 32 105

32 121 101 116

114 68 112 99

80 110 101 76 101 121 116 114 116 105
111 32 32 101 97 112 101 110 32 105
115 108 32 111 111 115 32 114 115 110
98 114 101 112 102 105 114 110 69 38
99 114 121 115 116 110 111 97 32 105

121 101 116 99
32 114 68 112

9 7 6 12
4 14 15 1

110 101 76 101 121 116 114 116 105 105
80 108 32 32 101 97 112 101 110 110

111 114 32 111 111 115 32 114 32 38
115 101 112 102 105 114 110 69 115 105
98 99 114 121 115 116 110 111 97 32

92 99 1 8 15 67 74 51 58 40
98 80 7 14 16 73 55 57 64 41
4 81 88 20 22 54 56 63 70 47

85 87 19 21 3 60 62 69 71 28
86 93 25 2 9 61 68 75 52 34

16 2 3 13
5 11 10 8
9 7 6 12
4 14 15 1

92 99 1 8 15 67 74 51 58 40
98 80 7 14 16 73 55 57 64 41
4 81 88 20 22 54 56 63 70 47

85 87 19 21 3 60 62 69 71 28
86 93 25 2 9 61 68 75 52 34
17 24 76 83 90 42 49 26 33 65
23 5 82 89 91 48 30 32 39 66
79 6 13 95 97 29 31 38 45 72
10 12 94 96 78 35 37 44 46 53
11 18 100 77 84 36 43 50 27 59

Upper

Magic

Matrix

Lower

Magic

Matrix

Upper

Magic

Matrix

Lower

Magic

Matrix

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS110269

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 3 Issue 11, November-2014

332

After this step, the content of REMAINDER_STRING is:

[105 111 110 46]

Step-9
In this last step, we merge all the rectangular matrices and the
variable REMAINDER_STRING, in the order they were
divided, to form the plain text.

[80 114 101 115 101 110 116 97 116 105 111 110
32 76 97 121 101 114 32 105 115 32 114 101 115
112 111 110 115 105 98 108 101 32 102 111 114
32 69 110 99 114 121 112 116 105 111 110 32 38
32 68 101 99 114 121 112 116 105 111 110 46]

Plain text is:

V. FLOWCHART OF ENCRYPTION ALGORITHM

The flow chart of encryption algorithm is:

Fig. 1. Flow Chart of Encryption Algorithm.

The flow chart of rotation pattern for encryption is:

Fig. 2. Flow Chart of Rotation Pattern for Encryption.

VI. FLOWCHART OF DECRYPTION ALGORITHM

The flow chart of decryption algorithm is:

Fig. 3. Flow Chart of Decryption Algorithm.

Presentation Layer is responsible for Encryption &

Decryption.

Start

Input Plain Text

Get length and ASCII value of Plain Text

Break the string into rectangular matrix till there are

more than 7 elements

Apply Rotation Pattern on Rectangular Matrices

No. of

rows is

Odd

Element of

Magic Matrix

is Odd

No. of

rows is

Even

Element of

Magic Matrix

is Even

Take Upper

Magic Matrix

Take Lower

Magic Matrix

Perform

Addition

Perform

XOR
Perform

Addition

Perform

XOR

Merge all the Rectangular Matrices & Remainder Elements

XOR with

sum_of_magi

c_matrix[]

XOR with

magic_array[]

No No

Yes Yes

Output Cipher Text

Stop

No Yes No Yes

Take Rectangular Matrix

Start

Perform single-up-shift on Even columns

Perform Cycling Operation (ACW-CW-ACW-CW…)

Reverse the unchanged

elements of middle row
No. of rows

is Odd

Stop

Yes

No

Start

Input Cipher Text

Get length and ASCII value of Cipher Text

Break the string into rectangular matrix till there are

more than 7 elements

Apply Rotation Pattern

No. of

rows is

Odd

Element of

Magic Matrix

is Odd

No. of

rows is

Even

Element of

Magic Matrix

is Even

Take Upper

Magic Matrix

Take Lower

Magic Matrix

Perform

Subtraction
Perform

XOR

Perform

Subtraction
Perform

XOR

Merge all the Rectangular Matrices & Remainder Elements

XOR with

sum_of_magi

c_matrix[]

XOR with

magic_array[]

No No

Yes Yes

Output Plain Text

Stop

No Yes No Yes

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS110269

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 3 Issue 11, November-2014

333

The flow chart of rotation pattern for decryption is:

Fig. 4. Flow Chart of Rotation Pattern for Decryption.

VII. RESULT

We have applied the proposed algorithm on string of
various lengths, and aroused with astonishing and remarkable
results. The structure of plain text is found to be entirely
changed. The following table enlists the sample plain text,
their length, encryption time and the corresponding cipher text
generated.

TABLE I. RESULTS OF CLUR ENCRYPTION ALGORITHM

Plain Text Length
Time (in

second)
Cipher Text

Password 8 0.093 xzb• Typs

aaaaaaaaaaaaa 13 0.095 jhgmeopb$e@m}

Money is 5000$

take it
22 0.107 Po;#NPs539v9q6~u*.Br

Network Security is
essential

29 0.120

ukf•M~F~kt{gl4nlr• w

}/o&eG

National Institute of

Technology Raipur,

C.G.

45 0.115

iVuG~w• sB2IQ/aR¤_~

T|YsmRh~h*e$~asBG(

K

Presentation Layer

is responsible for
Encryption &

Decryption.

62 0.127

ÊMmv7¼G£²¼'.u(G\®
Gs#x©XMf

 &2csj®¬

4¸>k{zI²$Blro$|Sqhk

"

Calculating

efficiency of the
algorithm to check

the success. It’s my

success too..
feeling

great…yahoooo…!!

!!

112 0.124

ØªtxréæùCÑ¬"úºj~~rëøI

Úl±§üþvQQÍ×

éÈv`ÔÂÌYG•²!~ÀÂÃR

•Zw&Qì¬(TÖLGpz

Yñù£[ÚÌÚWenáõñýË\

ximpfp•ª-

My name is Suyash

Kandele, and I am

not a terrorist, but I
am a student. I live

in my house and not

in the entire city
Bhilai. Studies are

my hobbies and I

have no time for
hobbies. I like

greenery, and

wherever I find it, I
remove it from

there. Don’t read

341 0.110

ˆ`y?NRÁ{¤ÙF>L©

kÈ|¬=T«*Û•_³;ÀG
á\:ÉU

õ)ÈEßüùlÓ¢°üƒ
äåæûÄ+ŸQæçÿ&;

Ý_óñúv4DÎÔìtq_Ì¿

ûó½osU-

³Äv1@\-ù

Plain Text Length
Time (in

second)
Cipher Text

the above passage,

just enjoy it and

bang your head
here….with lots of

jerks!!!!!!!

On enormously increasing the length of string, the time
required to encrypt it, is still changed by a negligible amount.
We have plotted a graph “Encryption Time Graph” to
represent the encryption time taken by the strings of various
lengths.

Fig. 5. Encryption Time Graph.

On the basis of above observations, we have calculated and
plotted the value of time required to encrypt a single character,
for each string, in Time per Character Graph, and found
drastic minimization in time.

Fig. 6. Time per Character Graph.

5836.3

3266.5

1279.34

288.32 177.415 132.497 75.69 73.536 55.615 43.41

0

1000

2000

3000

4000

5000

6000

7000

10 20 50 100 200 300 400 500 600 700 800 900 1000 1200 1500 1800 2000

T
im

e
(i

n
 m

ic
ro

se
co

n
d

)

Length of String

Time per Character Graph

58.363

65.33 65.628

57.664

71.434

70.966

79.498

60.552

79.532

73.536

83.422

65.776

86.819

0

10

20

30

40

50

60

70

80

90

100

10 20 50 100 200 300 400 500 600 700 800 900 1000 1200 1500 1800 2000

T
im

e
(i

n
 m

il
li

se
co

n
d

s)

Length of String

Encryption Time Graph

Take Rectangular Matrix

Start

Perform single-down-shift on Even columns

Perform Cycling Operation (CW-ACW-CW-ACW…)

Reverse the unchanged

elements of middle row
No. of rows

is Odd

Stop

No

Yes

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS110269

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 3 Issue 11, November-2014

334

VIII. CONCLUSION

In this proposed work, we have introduced a novel technique
of encrypting text without using any key. The plain text is
broken into rectangular matrices of varying sizes, with each
matrix encrypted separately and distinctly. To change the
number of times a character is repeated, we have employed
the modified form of magic matrix. The values in the applied
magic matrix directs the further encryption operation to be
performed, and hence provides dynamism to this work. The
basic and easy to implement mathematical and logical
operations are used in this algorithm which makes it highly
suitable for mobile devices and devices with low computation
power.

IX. FUTURE SCOPE

This algorithm, though small, introduces a novel, less time
consuming approach and is self sufficient for all kind of data
encryption where processor utilization is a constraint. This
algorithm provides a frame work and can be used for the
innovation of much more unpredictable algorithms.

REFERENCES

[1] Dripto Chatterjee, Suvadeep Dasgupta, Joyshree Nath, and Asoke Nath,
"A new Symmetric key Cryptography Algorithm using extended MSA
method: DJSA symmetric key algorithm", IEEE, 978-0-7695-4437-
3/11, DOI 10.1109/CSNT.2011.25, 2011.

[2] Neeraj Khanna, Joyshree Nath, Joel James, Amlan Chakrabarti,
Sayantan Chakraborty, and Asoke Nath, “New Symmetric Key
Cryptographic algorithm using combined bit manipulation and MSA
encryption algorithm: NJJSAA symmetric key algorithm”, IEEE
Computer Society, 978-0-7695-4437-3/11, DOI 10.1109/
CSNT.2011.33, 2011.

[3] D. Rajavel, and S. P. Shantharajah, “Cubical Key Generation and
Encryption Algorithm Based on Hybrid Cube’s Rotation”, IEEE, 978-
1-4673-1039-0/12, March 21- 23, 2012.

[4] Gaurav Bhadra, Tanya Bala, Samik Banik, Asoke Nath, and Joyshree
Nath,"Bit Level Encryption Standard (BLES): Version-II", IEEE, 978-
1-4673-4805-8/12, 2012.

[5] Rishav Ray, Jeeyan Sanyal, Debanjan Das, and Asoke Nath, “A new
Challenge of hiding any encrypted secret message inside any
Text/ASCII file or in MS word file: RJDA Algorithm”, IEEE, 978-0-
7695-4692-6/12, DOI 10.1109/CSNT.2012.191, 2012.

[6] Somdip Dey, "SD-C1BBR: SD-Count-1-Byte-Bit Randomization: A
New Advanced Cryptographic Randomization Technique", IEEE, 978-
1-4673-4805-8/12, 2012.

[7] Akanksha Mathur, “A Research paper: An ASCII value based data
encryption algorithm and its comparison with other symmetric data
encryption algorithms”, International Journal on Computer Science and
Engineering, ISSN: 0975-3397, vol. 4, no. 09, 2012, pp. 1650-1657.

[8] Sayak Guha, Tamodeep Das, Saima Ghosh, Joyshree Nath, Sankar Das,
and Asoke Nath, "A New Data Hiding Algorithm With Encrypted
Secret Message Using TTJSA Symmetric Key Crypto System", Journal
of Global Research in Computer Science,ISSN-2229-371X, vol. 3, no.
4, April 2012.

[9] Somdip Dey, "SD-AREE: An Advanced Modified Caesar Cipher
Method to Exclude Repetition from a Message", International Journal
of Information and Network Security, vol. 1, no. 2, ISSN: 2089-3299,
June 2012.

[10] Somdip Dey, Joyshree Nath, and Asoke Nath, "An Integrated
Symmetric Key Cryptographic Method-Amalgamation of TTJSA
Algorithm, Advanced Caesar Cipher Algorithm, Bit Rotation and
Reversal Method: SJA Algorithm", I. J. Modern Education and
Computer Science, DOI: 10.5815/ijmecs.2012.05.01, 2012.

[11] Somdip Dey, Kalyan Mondal, Joyshree Nath, and Asoke Nath,
"Advanced Steganography Algorithm Using Randomized Intermediate
QR Host Embedded With Any Encrypts Secret Message: ASA_QR

Algorithm", I. J. Modern Education and Computer Science,
DOI:10.5815/ijmecs.2012.06.08, 2012.

[12] Mr. Rangaswamy D. A., and Mr. Punithkumar M. B., "New Symmetric
Key Cryptographic Algorithm Using Combined Bit Manipulation and
MSA Encryption Algorithm: NJJSAA Symmetric Key Algorithm",
International Journal of Innovative Research and Development, vol. 2,
Issue 6, ISSN: 2278-0211, June 2013.

[13] Georgiana Mateescu, and Marius Vladescu, “A Hybrid Approach of
System Security for Small and Medium Enterprises: combining
different Cryptography Techniques”, IEEE, Proceedings of the 2013
Federated Conference on Computer Science and Information Systems
pp. 659–662, 978-1-4673-4471-5, 2013

[14] Nehal Kandele, and Shrikant Tiwari, “New Cryptography Method
Using Dynamic Base Trasformation: DBTC Symmetric Key
Algorithm”, International Journal of Computer Technology and
Electronics Engineering (IJCTEE) Volume 3, Issue 5, October 2013.

[15] Nehal Kandele, and Shrikant Tiwari, “New Cryptography Method
Using Relative Displacement: RDC Symmetric Key Algorithm”,
International Journal of Engineering Research & Technology (IJERT)
Vol. 2 Issue 10, October – 2013.

[16] Nehal Kandele, and Shrikant Tiwari, “A New Combined Symmetric
Key Cryptography CRDDBT Using – Relative Displacement (RDC)
and Dynamic Base Transformation (DBTC)”, International Journal of
Engineering Research & Technology (IJERT) Vol. 2 Issue 10, October
– 2013.

[17] Mohammad A. AlAhmad, Imad Fakhri Alshaikhli, and Bashayer Moh.
Jumaah, “Protection of the Digital Holy Quran Hash Digest by Using
Cryptography Algorithms”, IEEE, International Conference on
Advanced Computer Science Applications and Technologies, 978-1-
4799-2758-6/13 IEEE DOI 10.1109/ACSAT.2013.55, 2013.

[18] Rober Grimes, and Junhua Ding, “Development of a Novel
Cryptography Tool for Personal Communication”, IEEE, 978-1-4799-
3106-4114.

[19] Ankur Chaudhary, Khaleel Ahmad, and M.A. Rizvi, “E-commerce
Security Through Asymmetric Key Algorithm”, IEEE, Fourth
International Conference on Communication Systems and Network
Technologies, 978-1-4799-3070-8/14, DOI 10.1109/CSNT.2014.163,
2014.

[20] Naitik Shah, Nisarg Desai, and Viral Vashi, “Efficient Cryptography
for Data Security”, IEEE, 978-93-80544-12-0/14, 2014.

[21] Md. Palash Uddin, Md. Abu Marjan, Nahid Binte Sadia, and Md.
Rashedul Islam, “Developing a Cryptographic Algorithm Based on
ASCII Conversions and a Cyclic Mathematical Function”, IEEE, 3rd
INTERNATIONAL CONFERENCE ON INFORMATICS,
ELECTRONICS & VISION 2014, 978-1-4799-5180-2/14, 2014.

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS110269

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 3 Issue 11, November-2014

335

