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Abstract  
Over the last few decades pattern classification, 

pattern matching and mathematical function 

approximation were predominately performed using 

various neural networks (NNs). Compared to 

traditional NNs, higher order neural networks 

(HONNs) have several unique characteristics, 

including: 1) stronger approximation property; 2) 

faster convergence; 3) greater storage capacity; and 4) 

higher fault tolerance capability. In this paper, a novel 

evolutionary HONN especially the Pi-Sigma network 

(PSN) is used for pattern classification. The PSN is 

trained using a strictly greedy chemical reaction 

optimization algorithm. In contrast to basic CRO 

algorithms, in this CRO algorithm the reactant size 

(population size) is remained fixed throughout all the 

iteration, which makes it easier to implement. The 

performance of proposed methodology for pattern 

classification is evaluated through three well-known 

real world classification problems from UCI machine 

learning data library. The results obtained from the 

proposed method for classification is compared with 

results obtained by applying the two most popular 

variants of differential evolution algorithm 

(DE/rand/1/bin and DE/best/1/bin). It is observed that 

the proposed method provides better classification 

accuracy than that of other methods. 

 

1. Introduction  
Classification is the process of assigning an object 

into a predefined group or class of objects based on the 

number of attributes of that object. It is one of the most 

frequently encountered decision making tasks of human 

activity. Traditionally, statistical procedures such as 

discriminant analysis were widely used to perform 

pattern classification. However, the effectiveness of 

these methods depends to a large extent on the various 

assumptions or conditions under which the models are 

developed and thus, these procedures work well only 

when the underlying assumptions are satisfied. Users 

must have a good knowledge of both data properties 

and model capabilities before the models can be 

successfully applied. Considering the above pitfalls 

several classifiers using various data mining and 

computational intelligence methods have been 

developed.  

Out of various types of classifiers neural network 

based classifiers are most popular and predominantly 

found in the literature [1]. Despite of advantageous 

features of HONN models over traditional NN models, 

only few papers were found in the literature for pattern 

classification using HONN models [2-4]. Therefore, in 

this paper the class of HONNs and in particular Pi-

Sigma Networks (PSNs) has been studied. The PSNs 

were introduced by Shin and Ghosh [4]. The PSNs 

have addressed several difficult tasks such as zeroing 

polynomials [5] and polynomial factorization [6] more 

effectively than traditional feed-forward neural 

networks (FFNNs). Moreover, PSN employ less 

number of weights than other HONNs, but still manage 

to incorporate the capability of first order HONN 

indirectly. Therefore, in this paper Pi-Sigma Network is 

considered for pattern classification.  

The rest of this paper is organized as follows. 

Section-2 briefly describes the background related to 

architecture and mathematical model of PSN; chemical 

reaction optimization; and differential evolution. The 

method used for classification using an evolutionary 

PSN is explained in Section-3. Experimental results are 

presented in section-4. And finally conclusion are 

described in Section-5. 

 

2. Preliminaries 
2.1. Pi-Sigma Network 

Pi–Sigma Network (PSN) is a special type of feed 

forward higher order neural network that calculates the 

product of sum of the input components and passes it to 

a nonlinear function. The network architecture of PSN 

is shown in Figure 1. It consists of a single hidden layer 

with summing units and an output layer of product 

units. The weights connecting the input and hidden 

layer are adapted during the training process, while 

those connecting the neurons of the hidden layer to the 

output layer are fixed to one and they are not trainable. 

Such a network topology with only one layer of 

trainable weights drastically reduces the training time 

[2, 7]. Moreover, the product units of PSN gives higher 

order capabilities which increase its computational 

power. This is because; the product units enable to 

expand the input space into higher dimensional space, 

thus easily separates nonlinearly separable classes to 

linear separable. Thus, PSN provides nonlinear 
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decision boundaries offering a better classification 

capability than the linear neuron (Guler and Sahin, 

1994). In addition, Shin and Ghosh (1991) also 

suggested that PSNs not only offers better classification 

over a broad class of problems but also requires less 

memory and need at least two orders of magnitude less 

number of computations as compared to MLP for 

similar performance level. 

Consider a PSN with NOIN (number of input neurons), 

NOHN (number of hidden neurons) and one output 

neuron. The number of hidden neurons in the hidden 

layer defines the order of a PSN. For a NOHN
th

 order 

PSN the number of trainable weights is NOIN × 

NOHN considering each summing unit is associated 

with NOIN weights. The output of the PSN is 

computed by making product of the output of NOHN 

hidden units and passing it to a nonlinear function, 

which is defined as follows: 

)(
1





NOHN

j

jhY 

 
Where   is a nonlinear transfer function and hj is the 

output of j
th 

hidden unit which is computed by making 

sum of the products of each input (xi) with the 

corresponding weight (wij) between i
th

 input and j
th

 

hidden unit. The output of hidden unit is computed as 

follows: 
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Figure 1: Architecture of a Typical Pi-Sigma Network 

 

3. Proposed Method  
The efficiency of any supervised neural network 

depends on the algorithm used for its training. The 

objective of any supervised Pi-Sigma network training 

is to minimize the error between the approximation by 

the HONN and the target output. For this the optimal 

weight set of a HONN must be obtained. The optimal 

weight set of a HONN can be obtained by using either 

gradient or evolutionary learning algorithms. The 

objective function of HONN training is going to be a 

multimodal search problem, since it depends on 

number of parameters.  

 

Algorithm 1 (CRO-HONNT) 

Set the iteration-counter i=0 

/*Randomly Initialize the ReacNum of Reactants 

from a uniform distribution [U;L]: P
i
={R1

i
, R2

i
 , 

R3
i
…., RReacNum

i
}, with Rj

i
 ={ Wj,1

i
,…….,Wj,D

i
} for 

j=1,2,3..... ReacNum, D=length of each Reactant 

(NOIN×NOHN), Wj,k
i
=k

th
 atom of j

th
  reactant in i

th 

iteration representing a weight of PSN.   

for j=1 to ReacNum 

       Calculate the enthalpy e(Rj)  

end of for 

While (termination criteria is not satisfied) do    

    begin 

    for j=1 to ReacNum 

       // perform all reaction over the reactants of P
i
 

       Get rand1 randomly in an interval [0, 1] 

       if rand1 ≤ 0.5 

           Get rand2 randomly in an interval [0, 1] 

           if rand2 ≤ 0.5 

                Decomposition (Rj); 

           else 

                Redox1(Rj) 

           end of if 

       else 

           Get rand3 randomly in an interval [0, 1] 

           if  rand3 ≤ 0.33 

                Select the best reactant Rk(Rk≠ Rj) 

                Synthesis (Rj, Rk) 

           else if rand3 ≤ 0.66 

             Select another reactant Rk (Rk≠ Rj) randomly  

             Displacement(Rj, Rk); 

           else 

                Select another reactant Rk(Rk≠ Rj) randomly  

                Redox2(Rj, Rk) 

           end of if           

       end of if 

       Apply strictly greedy Reversible Reaction for  

       increased enthalpy to update reactants 

    end of for 
   Set the iteration counter i=i+1  

end of while 

Use the reactant having best enthalpy as the optimal 

weight set of PSN and perform classification. 

 

Therefore, the gradient based training algorithms often 

suffer from several shortcomings, including: 1) easily 

getting trapped to local minima; 2) have slow 

convergence properties; 3) training performance is 

sensitive to initial values of its parameters. Due to these 

disadvantages, research on different optimization 

techniques that are dedicated to HONN training is still 

required. There are many optimization techniques such 

as differential evolution (DE) [8], genetic algorithm 

(GA) [9], particle swarm optimization (PSO) [10], ant 
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colony optimization (ACO) [11], a bee colony 

optimization (BCO) [12], an evolutionary strategy (ES) 

[13], quantum inspired algorithms (QEA) [14], 

chemical reaction optimization (CRO) [15-17] etc. can 

be used for HONN training. Chemical reaction 

optimization (CRO) is a new optimization technique, 

inspired by the nature of chemical reactions. CRO has 

demonstrated excellent performance in solving many 

engineering problems such as the mining classification 

rules [18], quadratic assignment problem [15] etc. 

Therefore, in this paper a novel strictly greedy CRO 

algorithm has been used to train PSN and further used 

for classification. The algorithm is described as 

follows. 

The proposed training algorithm operates in three 

phases: initialization phase, iteration phase and final 

phase. The initial phase assigns the value to initial 

parameters like termination criterion, length of 

reactants/molecules, ReacNum and generates initial 

reactants. The iteration phase simulates the reaction 

processes. The reactions may be monomolecular or 

bimolecular. For monomolecular reaction, 

Decomposition and Redox1 reactions are considered; 

and for bimolecular reactions three types of reactions 

such as: Synthesis, Displacement and Redox2 are 

considered. The reaction types are chosen considering 

both intensification and diversification. Moreover, a 

strictly greedy reversible reaction is used to update the 

reactants. All the reactions have been elaborated in the 

following subsequent subsections. In final phase the 

reactant having best enthalpy is used as the optimal 

solution (i.e. optimal weight set of a PSN). The pseudo-

code of the proposed method is explained in Algorithm 

1. 

 

3.1 Reactant Encoding 

A set of real numbers are used to represent one 

reactant, with each reactant corresponding to a weight 

set of the PSN. The length of a reactant depends on the 

number of input and hidden neurons of the PSN (i.e. 

NOIN×NOHN). 

 

3.2 Enthalpy of A Reactant 

Each reactant is associated with some enthalpy. As 

each reactant represents a weight set of the PSN, the 

mean square error (MSE) on the train set is considered 

as enthalpy. The lower the value of enthalpy the better 

the reactant is. The MSE is defined as follows: 

NOP

)TY(
MSE

NOP

1i

2

ii 


  

Where Yi and Ti are the output of PSN and target for i
th

 

train pattern. 

 

3.3 Chemical Reactions 

3.3.1 Monomolecular reactions 

In monomolecular reactions only one reactant takes 

part in the reaction and one product is produced by 

modifying one atom of the reactant. These reactions 

assist in intensification of the solution by making local 

search. In our algorithm monomolecular reactions are 

performed with a probability of 50%, there by 

glorifying the chances to obtain a better solution around 

the current solution. Two monomolecular reactions are 

considered such as: Decomposition and Redox1. 

 

3.3.1.1 Decomposition Reaction 

In this reaction a randomly selected atom of the 

reactant takes a value from the range [U, L]. Consider a 

reactant Rj={Wj,1,Wj,2…….,Wj,D} with Wj,x (x[1,n]) 

be an atom of the reactant-j. The pseudo-code of the 

decomposition reaction is described in Algorithm-2. 

 

Algorithm 2 (Decomposition(Rj)) 

Input: A reactant Rj 

Duplicate Rj to produce R1 

Select an atom x (x  [1, n]) randomly. 

W1,x=L+ rand() × (U-L) 

Where rand() is a random number generated randomly 

from a range [0, 1].    

Output: A new reactant R1 

 

3.3.1.2 Redox1 Reaction 

It is similar to decomposition reaction except that the 

rate of reaction(λ)used in this algorithm is obtained in a 

self adaptive manner. The pseudo-code is described in 

Algorithm-3. 

 

Algorithm 3 (Redox1(Rj)) 

Input: A reactant Rj 

Duplicate Rj to produce R1 

Select a point x (x  [1:n]) randomly 

W1,x =L+ λt × (U-L) 

Where λt+1= 4 λt (1- λt) With λ0
[0,1]-{0, 0.25, 0.5, 

0.75, 1.0} 

Output: A new reactant R1   

 

3.3.2 Bimolecular reactions   

Here two reactants Rj={Wj,1,…….,Wj,D} and 

Rk={Wk,1,Wk,2 …….,Wk,D} will take part in the 

reaction. These reactions help in diversification of the 

solution by generating a new solution that is 

significantly different from the current solution. These 

reactions occur with a probability of 50%. Following 

types of bimolecular reactions are used. 
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3.3.2.1 Synthesis Reaction 

In this reaction one reactant is produced due to reaction 

between a reactant and the best reactant of the iteration.  

 

Algorithm 4 (Synthesis (Rj,Rk)) 

Input: Two reactants Rj, Rk 

R1=RJ+ λ× (Rk-RJ) 

Where λ is a random number between [-0.25;1.25]  

Output: A new reactant R1 

 

3.3.2.2 Displacement Reaction  

Two solutions R1 and R2 are obtained from reaction 

between two reactants Rj and Rk.  

Algorithm 5 (Displacement (Rj, Rk)) 

Input: Two reactants Rj, Rk 

R1=λt×Rj+λt × (1- Rk)  

R2=λt×Rk+λt × (1-Rj) 

Where λt is initialized to a random number [0,1]and is 

updated in the following manner every time this 

reaction reoccurs (t=number of time the reaction 

occurs). 

λt+1=2.3(λt)
2sin(л λt)

 

Output: Two reactants R1 and R2 

 

3.3.2.3 Redox2 Reaction 

 

Algorithm 6 (Redox2 (Rj,Rk)) 

Input: Two reactants Rj, Rk 

R1=Rj+ λ× (Rk- Rj) 

Where the rate of reaction λ=rand(0,1) random number 

between [0;1]. 

Output: A new reactant R1 

 

This reaction is similar to that of synthesis reaction, but 

here, the rate of reaction is obtained from a range of [0-

1]. 

 

3.3.3 Reactant update 

Every monomolecular or bimolecular reaction is 

followed by a strictly greedy reversible reaction to 

update the reactants. In the strictly greedy reversible 

reaction, for a monomolecular reaction the product 

produced replaces the worst reactant of the reactant set 

for better enthalpy; and for a bimolecular reaction if 

two products are produced, best product replace the 

worst reactant for better enthalpy. Thus the number of 

reactants of the population remains same throughout 

the reaction process. The pseudo-code of the strictly 

greedy reversible reaction is elaborated in algorithm 7. 

 

 

 

 

 

Algorithm 7 (Strictly greedy Reversible Reaction ()) 

For Monomolecular Reactions 

Let Rj under goes monomolecular reaction to produce 

R1 

    If enthalpy(R1)<enthalpy(worst(R))) 

Replace Rworst by R1 

    end of if 

For Bimolecular Reactions 

   If Rj and Rk under goes reaction to produce R1 and R2 

          If enthalpy (R1) < enthalpy(Rworst) 

Replace Rworst by R1 

          end of if 

   end of if 

   

4. Experimental Setup and Simulation 

Results 

The simulations in this paper were carried out on a 

system with Intel ® core(TM) 2Duo E7500 CPU, 2.93 

GHz  with 2GB RAM and implemented using 

SCILAB5.4.1. All ANNs are trained using proposed 

CRO, DE/rand/1/bin and DE/best/1/bin with population 

size (reactant size) 50 and initial value of each 

chromosome (representing a ANN weight-set) is 

initialized to uniform distributed random values drawn 

from a range [-1, 1]. 

 

4.1. Performance Measure 
Correct classification percentage is used as 

performance measure, which is computed as follows: 

Correct classification 

NOP

C
(%)tionClassificaCorrect

NOP

1i i   

Where NOP is number of test patterns (NOP/2); Ci- the 

coefficient representing the correctness of the 

classification of the i
th

 testing pattern which is 

determined as follows: 















Otherwise  0,

1T and 1Y  when 1,

1T and 1Y  when ,1

C ii

ii

i

 
Where Yi and Ti are the output of PSN and target for i

th
 

test pattern. 

 

4.1. Data Sets and Simulation Results 
For experimental analysis three binary classification 

problems (Sonar, Breast Cancer Wisconsin, 

Haberman’s Survival) are considered from the well 

known UCI machine learning data library.  

For the Sonar problem the task is to train a PSN to 

distinguish between sonar signals bounced off a metal 

cylinder (mine) and those bounced off a roughly 
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cylindrical rock. In this experiment the dataset contains 

208 samples obtained by bouncing sonar signals off a 

metal cylinder and a rock at various angles and under 

various conditions. There exist 111 samples obtained 

from mines and 97 samples obtained from rocks. Each 

pattern consists of 60 real numbers in the range [0.0, 

1.0]. Each number represents the energy within a 

particular frequency band, integrated over a certain 

period of time. The trained PSNs have one unit in the 

middle layer with 60–1–1 architecture. For comparative 

performance analysis, the results obtained from 100 

independent simulations using the proposed method 

(using proposed strictly greedy CRO algorithm), 

DE/rand/1/bin and DE/best/1/bin methods are shown in 

Table 1 where mean, St.Dev, Min and Max represents 

the mean, standard deviation, minimum and maximum 

classification accuracy of the 100 independent 

simulations. 

 

Table 1 Classification Accuracy (%) for Sonar 

problem. 

Method Mean St.Dev. Min Max 

Proposed 

Method 
77.88 3.64 56.67 84.13 

DE/rand 73.81 4.24 52.88 81.73 

DE/best 73.35 4.34 53.36 80.77 

  

For the breast cancer wisconsin problem the task is to 

train a PSN to discriminate between benign and 

malignant based on ten attributes. In the original 

dataset 2 represents benign (367 patterns) and 4 

represents malignant (332 patterns) which are 

converted to -1 and 1 respectively for our simulation. 

100 independent simulations were carried out and the 

mean, standard deviation, min and max values of the 

obtained results are shown in Table 2. Note that PSNs 

with 10-1-1 architectures are trained with 50% of total 

samples and tested with other 50%. 

 

Table 2 Classification Accuracy (%) for breast cancer 

wisconsin problem. 

Method Mean St.Dev. Min Max 

Proposed 

Method 
75.15 6.75 52.44 85.67 

DE/rand 71.46 8.06 52.15 83.38 

DE/best 73.59 7.94 49.86 84.53 

  

Haverman’s survival dataset contains cases from study 

conducted on the survival of patients who had 

undergone surgery for breast cancer. For the 

Haberman’s survival problem the task is to train a PSN 

to predict whether the patient will survive more than 5 

years or not based on three attributes. The dataset 

contains 306 patterns with three attributes each and a 

class level -1 for less than 5 years and 1 for more than 

five years of survival. 100 independent simulations 

were carried out and the mean, standard deviation, min 

and max values of the obtained results are shown in 

Table 3. Note that PSNs with 3-1-1 architectures are 

trained with 50% of total samples and tested with other 

50%. 

 

Table 3 Classification Accuracy (%) for Haverman’s 

survival problem. 

Method Mean St.Dev. Min Max 

Proposed 

Method 
70.66 4.51 43.14 73.20 

DE/rand 68.99 9.71 30.72 72.55 

DE/best 68.25 9.36 28.76 73.20 

  

It can be observed from the results that the proposed 

methodology provides better classification accuracy for 

the three problems considered. 

 

 

5. Conclusion 
 

In this paper, we have studied evolutionary HONN 

models especially; the Pi–Sigma network for pattern 

classification. A novel strictly greedy chemical reaction 

optimization algorithm is developed for its training. For 

comparative performance analysis of the proposed 

method three real world binary classification problems 

are considered. It is found that the strictly greedy CRO 

algorithm along with PSN provides better classification 

accuracy than the two most popular variants of 

differential evolution algorithm i.e. DE/rand/1/bin and 

DE/best/1/bin. In future more efficient training 

algorithm for PSN can be developed to improve the 

classification accuracy.  
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