
A Novel Information Model For Reusable Software

Components Management

José L. Barros J.

E.S.E.I.

Universidade de Vigo,

32004 Orense, Spain.

Abstract—Nowadays there is a variety of models for the

representation of reusable software elements. International

agencies, large manufacturers and academic researchers have

proposed models for the purpose of reaching a global

agreement and achieve a standard for representing these kind

of components. Such standard would facilitate the

intercommunication of different tools, both consuming and

producing reusable software elements and, certainly, would

provide a major boost to software development methodologies

based on reuse, both in its compositional side and the

generative one.Unfortunately, there is no such standard, and

the models proposed so far only apply locally, within

institutions that promote them, or in a very small domain. The

complexity and the incompatibility between standards have

proved to be the more restrictive factors towards a uniform

model accepted by most manufacturers and developers.This

article proposes a novel information model: configurable,

extensible, which can adapt to the specific needs of any

software development organization, large or small. The model

is based on the categorization of meta-information associated

with reusable software elements, expressed in the XML

standard and providing direct support to the processes of

representation, classification, storage, search and retrieval.

The model allows the representation of any information

relating to the software element, both the functional

characteristics and the non-functional or structural aspects

and the different relationships that may exist between them.

Keywords—software reuse, information models, software

components

I. INTRODUCTION

A model is a reduced representation of a system. Its purpose

is to help to understand a complex problem or its solution. In

this way a model helps us to communicate/analyse ideas

about the problem or the solution, and to guide the

implementation of the final system. A good model should be:

• Abstract: it emphasizes the important elements and

hides the irrelevant ones.

• Understandable: easy to understand by all observers.

• Accurate: faithfully represents the real system.

• Predictive: you can use it to draw conclusions about

reality.

• Cheap: much more cheap and easy to build than the

real system.

A good model should be useful to:

• Detect possible errors or omissions during the

design phase, before compromising resources to the

implementation.

• Analyse, experiment and compare various

alternative solutions.

• Minimize risks.

• Communicate with: customers, users, and

development staff.

• Adequately guide the implementation phase.

In summary, an information model is a tool that allows us to

describe a Reusable Software Element (RSE) using the set of

attributes that characterise it, abstracting from the real entity.

The reason for using a model is to reduce the complexity in

the management of the actual RSE, and associated: storage,

search and retrieval processes.

Existing models of component information can be classified

into three different categories according to their use:

• Models for the description/classification of the components:

they try to represent the component in an understandable way

for customers and users, facilitating the classification and

recovery processes. In essence these models are the data

models of the repositories, which describe all the information

needed to: find, understand, select and adapt the components.

There is a good amount of these models, among the most

representatives within the scope of software reuse we can

mention:

 SIB [1],

 REBOOT [2],

 RSHP [3] and

 RAS (Reusable Asset Specification) [4]

• Models for the specification/composition of the

components: these models try to specify the functionality of

the components. We can use these models to specify and

build components at the design level. Among the most

representatives we had:

 LILEANNA [5],

 Rapide [6] and

 CSCM [7]

Vol. 3 Issue 6, June - 2014

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS060707

International Journal of Engineering Research & Technology (IJERT)

395

• Models for the implementation of the components: they try

to help you in deciding how to deploy the components in a

given programming language. They are important for reuse

because at the end the reusable components should be

implemented in an executable system/application.

Commonly used ones are:

 COM/COM+/DCOM y .NET [8],

 CORBA [9] and

 Enterprise JavaBeans [10]

The importance of models in software development has

caused the emergence in recent years of model-driven

development (MDD). It is an approach to the software

development process in which the key artifacts are models

rather than programs. The code is generated automatically

from models, using specific tools for automatic generation

and modelling languages. Thus, the model becomes the

implementation.

Unfortunately, the proliferation of specifications of models,

technologies and development methods in recent times, has

caused great confusion among developers, and a big

difficulty to integrate and share data, due to the lack of a

standard for the exchange of information.

One of the proposed solutions to this problem consists in the

transformation of models, a process that is possible if models

derive from the same meta-model. Currently these attempts

at standardization of a meta-model are directed towards 11

[11]. On the other hand, the use of a standard language for

the exchange of data between applications, such as the

XML/XMI [12] language, would eliminate inconsistencies

between different tools.

Our proposal is based on the assumption that any by-product

of the process of software development, with potential for

reuse, can be described by a small set of properties that are

expressed in a Document describing the RSE (DRSE). The

DRSE document is stored in XML format in a repository,

from which can be: accessed, retrieved and shared with other

applications that are compatible with the XML standard.

II. THE INFORMATION MODEL

The DRSE is composed of three sections which group

together those features related with:

1. Non-functional aspects of the RSE: covers aspects

of administrative nature, such as: provider or author

of the RSE, quality standards, physical location,

access restrictions, hardware platform, phase of the

life cycle in which the RSE was built, RSE type

(see below the valid types of RSE), creation date,

last modified date, reuse potential, and, in general,

any other information that might be useful

according to the criteria of the organization.

2. Functional aspects: describing the functionality of

the RSE, its behavior, what it does. This section will

have the highest percentage of searches, since the

reusers (developers) often express their search as a

list of required functional features.

3. Relationships: it contains relationship links between

different RSE. Its purpose is to offer the possibility

of recovering a set of related RSE, for example:

once an RSE of type requirement, that satisfies the

query of the developer is found, we are also

interested in retrieving the RSE models, designs,

code, tests and documentation, related to this

requirement (first retrieved RSE).

For the purposes of determining the most appropriate

structure for the DRSE, and the most relevant content to be

included in each section, we have done an analysis of all the

possible RSE that may appear during the process of software

development. These potential RSE were grouped in

categories and a set of properties was established both: for

any type of RSE (general properties) and for specific types of

RSE (restricted properties). On the previous set a process of

factoring was applied and using the inheritance mechanism

the common properties were extracted to build abstract

classes of RSE. The resulting set of valid RSEfrom the

categorization process is shown in the following figure

(abstract classes).

Figure 1 Model of abstract classes representing all possible valid RSE

RSE

Document

Text Code Patterns

Diagram

UML
Models

Graphics

Other

Vol. 3 Issue 6, June - 2014

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS060707

International Journal of Engineering Research & Technology (IJERT)

396

The following figures show some of the possible valid types

of RSE in two well-known categories.

Figure 2 Valid RSE in Document category and the inheritance relationship

Figure 3 Valid RSE in Diagram category and the inheritance

relationship

Based on this information we build the structure of the three

sections of the document DRSE:

1. Administrative Description (AD): Non-functional

content (for management activities, including

control, quality assurance and so on).

2. Functional Description (FD): consisting of tuples of

the form <descriptor:importance>, where descriptor

is also a tuple<Term1;Term2>. Where:

Term1 refers to an actiónwhich is apply on

Term2; and

Importanceis a numeric value that

indicates the relevance of the descriptor

within the set of all descriptorsthat

comprise the FD.

3. Relationships Description (RD): consisting of tuples

with the syntax <TypeOfRelation;Related_RSE>

III. MAIN PROCESSES

Procedures for the semi-automatic extraction of information

from the RSE, in order to populate the properties specified

by the model in each of the “Description” sections were

designed. Such procedures facilitate the generation of the

documents DRSE and, in some cases, completely automate

it.

DRSE documents are stored in an XML native database in

which a mechanism for grouping based on the calculation of

similarity between documents, organizes them (together) in

clusters of similarity [13].

Queries can be constructed in different ways, offering greater

flexibility to developers:

1. Direct queries: using the query language of the database

management systems (DBMS) and the featuresin AD

and RD sections (which have been indexed in its

entirety).

2. Queries in the form of a Functional Description (FD

section): the reuser build up a new FD which is then

compared with stored FD’s. When a similar FD is

located the system returns the whole DRSE and all the

other RSE which have a relationship link with the one

located (the similarity cluster is retrieved).

3. An UML diagram: the reuser builds a diagram (UML)

that is exported to a file with XMI format (XML subset),

then the established procedures extract the needed

information to build a complete DRSE related to this

diagram, the FD section of this document is then

isolated and the technique described in step 2 is finally

applied.

Another additional process consists of the dynamic creation

of a controlled vocabulary, to which Term1 and Term2 in the

FD are added. This vocabulary represents the domain of the

application and is useful to the development organization for

the purpose of reducing the problems of communication

between members of the development team and final users.

IV. CONCLUSIONS

The research has shown, so far, that any by-product of

software development can be stored in a file in a computer

storage medium: HDD, database, Web server and so on; and

that the contents of these files can be fully described by a text

document using meta-information (a set of product

properties). In particular, the text document may be created

in XML format.

The developed information model allows representing any

RSE, no matter: size, granularity, stage of life cycle where it

was obtained, language, format or physical location. The

model is homogeneous; it means that the very same model is

used for any RSE (no special add-ons or changes).

The model is easily configurable to adapt to the specific

needs of an organization's software development

methodology. It is only necessary to redefine the content of

the different sections that make up the DRSE, by adding or

removing the required XML elements. This feature enables

the scalability of the model.

The model covers all aspects that may be relevant in a query

(requirements of the systems, developer’s queries), both the

RSE

Document

Report

Plan

Contract

Requirement

Functional

Non-
functional

Book

Chapter

Magazine

Article

Manual

User

Technician

Form

Input

Output

RSE

Diagram

Other Types

Drafts

Schemas

UML

Use Case

Classes

Sequence

Structured

DFD

E-R

Vol. 3 Issue 6, June - 2014

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS060707

International Journal of Engineering Research & Technology (IJERT)

397

functional and non-functional. In addition, the inclusion of a

section with information on relationships allows recover, at

the same time, a whole set of related RSE, expanding the

probability to reuse (find something useful).

The process of grouping allows factorizing a RSE group

common functionality, offering guides and recommendations

for future development of more complex (generic) RSE.

The developers can access the DRSE by means of: formal

queries, text queries, navigation, comparison of diagrams,

keywords and so on. This flexibility allows different types of

users, with varying degrees of expertise to be able to take

advantage of the repository of RSE.

In relation to technology, to implement the model,

repository, and processes of search and retrieval, all the

necessary tools are open source software, providing

independence from a manufacturer or a specific operational

platform.

REFERENCES

[1] Constantopoulos, P., Dörr, M.: “Component Classification in the
Software Information Base”, Object-Oriented Software

Composition. O. Nierstrasz and D. Tsichritzis (Eds), Prentice Hall,

pp 177-200, 1995.
[2] Karlsson, E.A.: “Software Reuse: A Holistic Approach”, John Wiley

& Sons, 1996.

[3] Lloréns, J., Morato, J., Genova, G., Fuentes, M., Quintana, V., Díaz,
I.: “RSHP: An information representation model based on

relationships”, In Ernesto Damiani, Lakhmi C. Jain, Mauro

Madravio (Eds.), Soft Computing in Software Engineering (Studies
in Fuzziness and Soft Computing Series, Vol. 159), Springer, pp.

221-253, 2004.

[4] http://www.omg.org/spec/RAS/
[5] Tracz, W.: “Lileanna: a parameterized programming language”, In

Proceedings, Second International Workshop on Software Reuse,

pages 66-78, March 1993. Lucca, Italy.
[6] Luckham, D.: “Rapide: A language and toolset for simulation of

distributed systems by partial orderings of events” In DIMACS

Partial Order Methods Workshop IV, July 1996.
[7] http://doi.ieeecomputersociety.org/10.1109/EURMIC.2004.1333358

[8] http://www.microsoft.com/com/default.mspx

[9] http://www.omg.org/technology/documents/formal/components.htm
[10] http://docs.oracle.com/javase/7/docs/api/java/beans/package-

summary.html
[11] http://www.omg.org/gettingstarted/overview.htm

[12] http://www.w3.org/TR/2000/REC-12-20001006

[13] Barros, J., Marques, J.: Conglomerados Multidimensionales: Un
mecanismo simple de organización de Elementos Software

Reutilizables. JISBD’02, Madrid, Noviembre, 2002. Pp.: 375-386.

AlltheInternet links werecheckedon9
th

 of June, 2014

Vol. 3 Issue 6, June - 2014

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS060707

International Journal of Engineering Research & Technology (IJERT)

398

