

A Novel Scheme for Cost Reduction and Data

Availability in Heterogeneous Multi-Cloud

Yogitha C Yasahaswini B M

M.Tech, CSE, VTU, Assistant Professor, VTU,

Don Bosco Institute of Technology, Don Bosco Institute of Technology,

 Bengaluru,India. Bengaluru,India

Abstract— These days, more endeavors and associations are

facilitating their information into the cloud, so as to decrease the

IT support cost and upgrade the information unwavering

quality. Be that as it may, confronting the various cloud

merchants and their heterogeneous valuing arrangements, clients

may well be astounded with which cloud(s) are suitable for

putting away their information and what facilitating system is

less expensive. The general business as usual is that clients for the

most part put their information into a solitary cloud (which is

liable to the seller lock-in danger) and afterward basically trust

to good fortune. In view of far reaching investigation of different

best in class cloud merchants, this paper proposes a novel

information facilitating plan (named CHARM) which

coordinates two key capacities wanted. The first is selecting a few

suitable mists and a proper excess procedure to store information

with minimized fiscal expense and ensured accessibility. The

second is setting off a move procedure to re-disperse information

as indicated by the varieties of information access example and

estimating of mists. We assess the execution of CHARM utilizing

both follow driven reproductions and model investigations. The

outcomes demonstrate that contrasted and the major existing

plans, CHARM spares around 20% of financial expense as well

as displays sound versatility to information and value

conformities.

Index Terms—Multi-cloud; data hosting; cloud storage.

I. INTRODUCTION

Late years have seen a “dash for unheard of wealth” of

online information facilitating benefits (or say distributed

storage administrations, for example, Amazon S3, Windows

Azure, Google Cloud Storage, Aliyun OSS, et cetera. These

administrations furnish clients with dependable, versatile, and

minimal effort information facilitating usefulness. More

ventures and associations are facilitating all or a portion of

their information into the cloud, to diminish the IT upkeep

cost (counting the equipment, programming, and operational

cost) and improve the information unwavering quality. For

instance, the United States Library of Congress had moved its

digitized substance to the cloud, trailed by the New York

Public Library and Biodiversity Heritage Library. Presently

they just need to pay for precisely the amount they have

utilized. Heterogeneous mists. Existing mists show awesome

heterogeneities as far as both working exhibitions and

estimating strategies. Distinctive cloud sellers manufacture

their individual bases and continue updating them with

recently rising apparatuses. They likewise plan diverse

framework designs and apply different procedures to make

their administrations aggressive. Such framework assorted

qualities prompts detectable execution varieties crosswise

over cloud merchants. In addition, estimating arrangements of

existing stockpiling administrations gave by various cloud

sellers are unmistakable in both valuing levels and charging

things. For example, Rack space does not charge for Web

operations (regularly by means of a progression of REST ful

APIs), Google Cloud Storage charges more for data transfer

capacity utilization, while Amazon S3 charges more for

storage room (allude to x II-A). Seller lock-in danger.

Confronting various cloud sellers and in addition their

heterogeneous exhibitions/arrangements, clients might be

confused with which cloud(s) are suitable for putting away

their information and what facilitating methodology is less

expensive. The general business as usual is that clients as a

rule put their information into a solitary cloud and afterward

just trust to good fortune. This is liable to the purported

"merchant lock-in danger", since clients would be gone up

against with a quandary on the off chance that they need to

change to other cloud sellers. The seller lock-in danger first

lies in that information relocation unavoidably creates

extensive cost. For instance, moving 100 TB of information

from Amazon S3 (California datacenter) to Aliyun OSS

(Beijing datacenter) would devour as much as 12,300 (US)

dollars. Also, the merchant lock-in danger makes clients

experience the ill effects of value changes of cloud sellers

which are not unprecedented. For instance, the variance of

power bills in a locale will influence the costs of cloud

administrations in this district. We see that goliath cloud

sellers like Windows Azure and Google Cloud Storage have

been changing their evaluating terms. Surprising liquidation of

cloud merchants further irritates the circumstance. Nirvanix,

which has a large number of clients including main 500

organizations, all of a sudden close down its distributed

storage administration in Sep. 2013 [9]. Ubuntu One, likewise

a well known player in the business sector of distributed

storage administration, got away in Apr. 2014 [10]. So

unmistakably, it is rash for an endeavor or an association to

host all information in a solitary cloud — "your most logical

option is likely not to put all your investments tied up on one

place. Finally, uncontrolled information accessibility is (it

could be said) another sort of seller lock-in danger. In spite of

the fact that the administration quality is formally ensured by

administration level assentions (SLA), disappointments and

blackouts do happen. Almost all the major cloud vendors

experienced service outages in recent years. Some outages

even lasted for several hours. Multi-cloud data hosting.

Recently, multi-cloud data hosting has received wide attention

from researchers, customers, and startups. The basic principle

of multi-cloud (data hosting) is to distribute data across

multiple clouds to gain enhanced redundancy and prevent the

vendor lock-in risk, as shown

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

ICACT - 2016 Conference Proceedings

Volume 4, Issue 22

Special Issue - 2016

1

Fig. 1. Basic principle of multi-cloud data hosting.

in Fig. 1. The “proxy” component plays a key role by

redirecting requests from client applications and coordinating

data distribution among multiple clouds. The potential

prevalence of multi-cloud is illustrated in three folds. First,

there have been a few researches conducted on multi-cloud.

DepSky guarantees data availability and security based on

multiple clouds, thus allowing critical data (e.g., medical and

financial data) to be trustingly stored. RACS deploys erasure

coding among different clouds in order to prevent vender

lock-in risk and reduce monetary cost. Second, new types of

cloud vendors (e.g., DuraCloud and Cloud Foundry) have

emerged and rapidly grown up to provide real services based

on multiple clouds. Third, new development tools like Apache

libcloud provide a unified interface above different clouds,

which facilitates migrating services among clouds.

Nevertheless, as for multi-cloud people still encounter the two

critical problems: (1) How to choose appropriate clouds to

minimize monetary cost in the presence of heterogenous

pricing policies? (2) How to meet the different availability

requirements of different services? As to monetary cost, it

mainly depends on the data-level usage, particularly storage

capacity consumption and network bandwidth consumption.

As to availability requirement, the major concern lies in which

redundancy mechanism (i.e., replication or erasure coding) is

more economical based on specific data access patterns. In

other words, here the fundamental challenge is: How to

combine the two mechanisms elegantly so as to greatly reduce

monetary cost and meanwhile guarantee required availability?

The proposed CHARM scheme. In this paper, we propose a

novel cost-efficient data hosting scheme with high availability

in heterogeneous multi-cloud, named “CHARM”. It

intelligently puts data into multiple clouds with minimized

monetary cost and guaranteed availability. Specifically, we

combine the two widely used redundancy mechanisms, i.e.,

replication and erasure coding, into a uniform model to meet

the required availability in the presence of different data

access patterns. Next, we design an efficient heuristic-based

algorithm to choose proper data storage modes (involving

both clouds and redundancy mechanisms). Moreover, we

implement the necessary procedure for storage mode

transition (for efficiently re-distributing data) by monitoring

the variations of data access patterns and pricing policies. We

evaluate the performance of CHARM using both trace driven

simulations and prototype experiments.

Summary of contribution. At last, our contributions in this

paper can be briefly summarized as follows:

1) We propose and implement CHARM, a novel, efficient,

and heuristic-based data hosting scheme for heterogeneous

multi-cloud environments. CHARM accommodates different

pricing strategies, availability requirements, and data access

patterns. It selects suitable clouds and an appropriate

redundancy strategy to store data with minimized monetary

cost and guaranteed availability.

2) We design and implement a flexible transition scheme for

CHARM. It keeps monitoring the variations of pricing

policies and data access patterns, and adaptively triggers the

transition process between different data storage modes. It

also starts a data migration process among different clouds if

necessary.

3) We evaluate the performance of CHARM using two typical

real-world traces and prototype experiments. Both trace driven

simulation and experiment results confirm the efficacy of

CHARM..

II. BACKGROUND

A. Pricing Models of Mainstream Clouds

In order to understand the pricing models of mainstream cloud

vendors, we select to study five most popular cloud storage

services across the world: Amazon S3, Windows Azure,

Google Cloud Storage, Rackspace, and Aliyun OSS (deployed

in China). Their latest pricing models (in 2014) are presented

in Table I (Storage and bandwidth pricing) and Table II

(Operation pricing). Basically for these clouds, customers are

charged in terms of storage, out-going (i.e., from cloud to

client) bandwidth 1, and operations (such as PUT, GET, and

LIST). However, each vendor’s pricing model has some

difference from the others. For instance, in Asia Amazon S3

has lower bandwidth price and higher storage price than

Google Cloud Storage. Aliyun OSS provides the lowest

bandwidth price, but its storage price is still higher than

Google Cloud Storage. Besides, prices of operations are also

different across different clouds.

B. Erasure Coding

Erasure coding has been widely applied in storage systems in

order to provide high availability and reliability while

introducing low storage overhead [4]. As we all know, the

storage mode of “three replicas” is putting replicas into three

different storage nodes. Then the data is lost only when the

three nodes all crash. However, it occupies 2x more storage

space. Erasure coding is proposed to reduce storage

consumption greatly while guaranteeing the same or higher

level of data reliability. A representative erasure-coding

scheme is the so-called “Reed-Solomon code”, which is a type

of Maximum Distance Separable erasure coding. Considering

a storage system with M nodes, we divide data into blocks of

equal size, and each block is further divided into m equal-

sized data chunks. After that, we encode the m chunks into n

� m parity chunks and put the total n chunks into different

nodes (n _ M). We use RS(m, n) to denote this coding scheme

and we call the n chunks a “segment”.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

ICACT - 2016 Conference Proceedings

Volume 4, Issue 22

Special Issue - 2016

2

III. A NEW OPPORTUNITY IN MULTI-CLOUD

STORAGE

In this section, from a quantitative perspective, we

demonstrate that there is still plenty of space for optimizing

the multi-cloud data hosting by combining the two widely

used redundancy mechanisms, i.e., replication and erasure

coding.

A. Combining Replication and Erasure Coding

In existing industrial data hosting systems, data

availability (and reliability) are usually guaranteed by

replication or erasure coding. In the multi-cloud scenario, we

also use them to meet different availability requirements, but

the implementation is different. For replication, replicas are

put into several clouds, and a read access is only served

(unless this cloud is unavailable then) by the “cheapest” cloud

that charges minimal for out-going bandwidth and GET

operation. For erasure coding, data is encoded into n blocks

including m data blocks and n�m coding blocks, and these

blocks are put into n different clouds. In this case, though data

availability can be guaranteed with lower storage space

(compared with replication), a read access has to be served by

multiple clouds that store the corresponding data blocks.

Consequently, erasure coding cannot make full use of the

cheapest cloud as what replication does. Still worse, this

shortcoming will be amplified in the multi-cloud scenario

where bandwidth is generally (much) more expensive than

storage space.

B.Comparison of Data Hosting Modes

The traditional view of replication and erasure coding

[5], [6] does not hold in the multi-cloud scenario. For

example, the biggest preponderance of erasure coding lies in

much less storage space for guaranteed high availability.

However, this preponderance shrinks because of the clouds’

pricing policies — bandwidth is (much) more expensive than

storage space. For the same reason, in the multi-cloud scenario

replication regains its competitiveness, though it is

traditionally regarded as inferior to erasure coding in terms of

storage saving. Therefore, it is difficult now to determine

which mechanism is better in the presence of complex

workload patterns and various pricing policies. Below we

compare the two mechanisms quantitatively to shed light on

this problem.

As shown in Figure 3, replication almost always

outperforms erasure coding in the multi-cloud scenario. When

the read count is 30, replication can save 32% monetary cost

compared with erasure coding. The advantage of replication

originates from the cloud with the lowest bandwidth price. In

general, when the read frequency is high, the bigger the gap

between the lowest bandwidth price and the average one is,

the greater the superiority of replication is

Fig.2. The architecture of CHARM. “R” represents replication and “E”

represents erasure coding.

effect of erasure coding to a similar level as that of

replication. On the other hand, significant monetary saving

can be achieved if we combine their advantages elegantly.

This is why we propose the novel data hosting scheme

CHARM which will be elaborated in the following sections.

IV. PROPOSED METHODOLOGY

A. CHARM Overview

In this section, we elaborate a cost-efficient data hosting

model with high availability in heterogeneous multi-cloud,

named “CHARM”. The architecture of CHARM is shown in

Figure 3. The whole model is located in the proxy in Figure 1.

There are four main components in CHARM: Data Hosting,

Storage Mode Switching (SMS), Workload Statistic, and

Predictor.

Workload Statistic: keeps collecting and tackling access logs

to guide the placement of data. It also sends statistic

information to Predictor which guides the action of SMS.

 Data Hosting: stores data using replication or erasure coding,

according to the size and access frequency of the data.

SMS decides whether the storage mode of certain data should

be changed from replication to erasure coding or in reverse,

according to the output of Predictor. The implementation of

changing storage mode runs in the background, in order not to

impact online service.

 Predictor
Is used to predict the future access frequency of files.

The time interval for prediction is one month, that is, we use

the former months to predict access frequency of files in the

next month.

However, we do not put emphasis on the design of

predictor, because there have been lots of good algorithms for

prediction. Moreover, a very simple predictor, which uses the

weighted moving average approach, works well in our data

hosting model. Data Hosting and SMS are two important

modules in CHARM. Data Hosting decides storage mode and

the clouds that the data should be stored in. This is a complex

integer programming problem demonstrated in the following

subsections. Then we illustrate how SMS works in detail in x

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

ICACT - 2016 Conference Proceedings

Volume 4, Issue 22

Special Issue - 2016

3

V, that is, when and how many times should the transition be

implemented.

B. Formal Definition of Data Hosting Model

We first formally define the mathematical model applied

in Data Hosting. When talking about erasure coding, we

usually mean m > 1 (not replication). However, replication is

a special case of erasure coding (i.e., m = 1). So we combine

the two storage mechanisms and define a unified model.

Assuming we have N clouds that meet performance

requirements. We choose n cloud to store a file, the file should

be encoded into n blocks of equal size (n _ N), including m

data blocks and n�m coding blocks. If m = 1, the n�m coding

blocks are the same with the data block, i.e., replication. Then

the n blocks are distributed into the n clouds. We call a (m; n)

pair with its corresponding clouds a storage mode. We first

formally define the availability of a (m; n) pair. For the n

clouds, which one stores data block, and which one stores

coding block do not impact the availability. It is only impacted

by the value of m.

C. Heuristic Solution

The key idea of this heuristic algorithm can be described

as follows: We first assign each cloud a value _i which is

calculated based on four factors (i.e., availability, storage,

bandwidth, and operation prices) to indicate the preference of

a cloud. We choose the most preferred n clouds, and then

heuristically exchange the cloud in the preferred set with the

cloud in the complementary set to search better solution. This

is similar to the idea of Kernighan-Lin heuristic algorithm

[30], which is applied to effectively partition graphs to

minimize the sum of the costs on all edges cut. The preference

of a cloud is impacted by the four factors, and they have

different weights. The availability is the higher the better, and

the price is the lower the better. So we use _i = _ai + _ Pi as

the preference of the ith cloud, where Pi is the synthetical

price of storage, bandwidth, and operation. Intuitively, if a file

has much read access, the cloud with lower bandwidth price is

more preferred. If a file is very small, operation price occupies

a big proportion. So we let Pi = SPsi +crSPbi +crPoi.

Specifically, ai and Pi are both normalized into (0; 1).

To find out optimal n and m, we first traverse n from 2 to _,

where _ is the upper limit of n and _ < N. We do not set _ to N

for two reasons: reality and complexity. For reality, n tends to

be small in practice, usually less than 10. It has much higher

probability for large n to induce degraded performance. More

specifically, if a cloud becomes unavailable, the proxy has to

get corresponding data from other m clouds (m is usually

close to n), which determines that n cannot be very large in

order to achieve good performance. For complexity,

calculating the availability of erasure coding (m; n) has very

high complexity. We have to check the availability for every

possible solution that is traversed. If we give an upper limit to

n, the availability can be calculated in polynomial running

time. Then we traverse m from 1 to n for each n. The

availability is calculated using Eq. 2. If the availability meets

the required value and the monetary cost is lower, we update

Csm and (i.e., the set of the selected clouds). If the

availability does not meet the required value, we exchange the

cloud in the current set Gs with the one in the complementary

set Gc, using a greedy method: Firstly, Gs is sorted by ai, and

Gc is sorted by Pi. Then we try to exchange the cloud in Gs

from the lowest ai, one by one, with the cloud which has the

lowest Pi in Gc but higher availability than that cloud in Gs,

until the availability meets the required value.

V. TRANSITION SCHEME

A. Transition of Storage Modes

Intuitively, when a file changes from “hot” to “cold”, we

should change its storage mode. More specifically, when the

read frequency of the file drops below or increases above a

certain value, changing storage mode can save more money.

The value is determined by the prices of clouds. Given the

available clouds including their prices and availability, we can

figure out the storage mode and the selected clouds with the

input of file’s size and read count, using Algorithm 1. We

calculate the storage modes for different file sizes and read

counts, in order to get a storage mode table (see Figure 4 in x

VII for an example). The table has two dimensions: file size

and read count. There is one corresponding storage mode for

each pair of file size and read count, but the storage modes are

the same for many different pairs. There are explicit

boundaries between different storage modes in the table.

However, it does not mean we should change the storage

mode once a file’s storage mode crosses the boundary,

because the transition of storage mode also generates cost,

which is definitely not negligible. Bandwidth is (much) more

expensive than storage space for online storage services. The

cost of one read access for a file can afford this file to be

stored for around 4 months with no read access. Thus, we

should be prudent to deal with storage mode transition. A

good transition scheme can actually save large amount of

money.

We first demonstrate the implementation of storage

mode transition: the proxy gets the data from the clouds where

the data is originally stored, and puts it into the newly selected

clouds using new storage mode. The implementation

consumes out-going bandwidth, in-going bandwidth, and

several operations (i.e., GET, DELETE, and PUT). Since

DELETE and ingoing bandwidth are free, the transition cost T

is composed of out-going bandwidth, GET, and PUT. Out-

going bandwidth is more expensive than storage, so we have

to make sure that the cost of transition can be earned back by

the new storage mode. That is, the following inequality has to

be met:

Mf > Mp + T (11)

where Mf and Mp are the monetary cost of the previous

storage mode and new storage mode respectively. They are

both calculated using the read frequency provided by

Predictor. Eq. 11 is impacted by the time period t. Since the

storage cost is storing a file of size S for a time period t and cr

is the read count during t, we should set t first in order to

calculate Mf and Mp. So, Eq. 11 means the new storage mode

will earn back the transition cost within the time period t (t

equals 30 days in our experiments). We implement the

transition for each one month, which also equals to the time

period t.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

ICACT - 2016 Conference Proceedings

Volume 4, Issue 22

Special Issue - 2016

4

We calculate the storage mode for each file using its

predicted read frequency in the time interval t. If the storage

mode is different from the previous one and it meets Eq. 11,

we change the storage mode of this file. The storage mode

table can be calculated in advance because it is only affected

by the available clouds, their pricing policies, and

availabilities. When deciding the storage mode for each file,

we use the read frequency and the size of the file to look up

the table for the corresponding storage mode. This table is re-

calculated through Algorithm 1, only when availabilities and

prices are modified, some clouds are kicked out due to

performance issue, or new available clouds emerge. And the

new table will be input into Algorithm 2 to accommodate

these situations. Algorithm 2 shows the detailed transition

process.

B. Complexity

Here we analyze the computational complexity of this

algorithm. The two loops in line 4 and 11 are used to look up

the table, the complexity of which can be approximately

considered constant, since the table is small and has only

limited number of values in each dimension. Specifically,

since the table is split into several pieces, we only need to find

out which piece the file belongs to. Transition cost in line 19

can also be calculated in constant time. Thus, the complexity

of this algorithm is mainly the first loop, and the worst case

complexity is O(Fn), where Fn is the number of files. In order

to reduce the complexity further, we can classify files with

similar access patterns into groups, and implement transition

in the unit of group. This is out of the scope of this paper.

VI. EVALUATION

We conduct extensive simulations to evaluate the

performance of our scheme. The simulations are driven by

two typical real-world traces. We first briefly introduce the

two collected traces and present the evaluating methodology,

then show the performance of our scheme. At last, to make the

results more convincing, we also implement the prototype

experiments on top of four mainstream commercial clouds, the

results of which prove the correctness of the simulations and

the efficacy of CHARM.

A. Datasets

The two traces are collected from AmazingStore [20] and

Corsair [21]. AmazingStore is a popular file storing and

sharing platform in China. It has been deployed and

maintained since April 2009, and has 10K log-in users

everyday. The files in this system are mainly music and video.

Corsair is a cloud storage system deployed at Tsinghua

University, China. There had been already 19,892 registered

users and 17.5 TB of data by September 2010. The files stored

in this system have diverse types. We collected the trace of

Amazing Store from January 1, 2012 to July 15, 2013 from

four main servers. For Corsair the trace is collected from

March to July 2010. Each line of the traces is a file access

record which includes timestamp, file name, file size, and

operation type (e.g., GET, PUT). The detailed properties of

the two traces are shown in Table IV. We use 15 clouds in the

experiments, and they all meet the requirement of

performance. The prices of these clouds are configured

referring to the prices of current famous clouds (e.g., Amazon

S3, Windows Azure) and their data centers. We set the clouds’

availability in the interval of [99:5%; 99:95%]

B. Storage Mode Table

We generate the storage mode table based on the 15 clouds

guaranteeing 99.9999% availability. We use different file

sizes varying from 1KB to 1GB and different read counts

varying from 0 to 100 with the step of 0.1 to calculate their

corresponding storage modes (using Algorithm 1). We get

four different storage modes as shown in Figure 4 with gray

levels from 1 to 4. We only plot the read count from 0 to 3,

because the storage modes are the same (i.e., gray level 4) for

the read count larger than 3 no matter how much the file’s size

is. When the file’s size is larger than 1MB, the storage modes

have explicit vertical boundaries with different read counts.

That means, for large files, read count is the key to impact the

storage mode. When the file’s size drops below 1MB, the

operation cost has more and more impact on the total cost.

High read frequency (generating high bandwidth cost) gives

advantages to replication mechanism (i.e., m = 1). So,

similarly, high operation cost also gives advantages to

replication mechanism when the file’s size is small. That is

why gray level 4 puts its feet into the region of lower read

count and smaller file size. This storage mode table only

depends on prices of the available clouds and required

availability. If the prices change, the table will change

accordingly, becoming a different one.

C. Monetary Cost

We set different availability levels from 99.99% to

99.99999%, and run the two traces applying the five schemes

respectively. The total cost of CHARM includes

storage/bandwidth/operation costs and transition cost. The

results of AmazingStore trace are shown in Table V. Since the

read count of files in AmazingStore trace is high (i.e., 39.9

onaverage in 575 days), RepGr is better than EraGr except the

highest availability case. In order to guarantee high

availability, RepGr has to store more replicas whose storage

cost exceeds the saving on bandwidth. The cost of EraGr for

99.99% is higher than that in higher availability, because

EraGr has to reduce m to get higher availability, and it

happens to exclude the cloud with higher bandwidth cost.

CHARM has the lowest cost, it reduces about 9.3%-23.1%

compared to RepGr, and reduces about 19.3%-24.3%

compared to EraGr. From the detailed monetary cost as shown

in Table VII, we can see that CHARM spends a little more

storage cost to achieve much lower bandwidth cost. The

detailed monetary cost of other availability levels shows

similar results. RepRa and EraRa select clouds randomly, so

the cost does not show strictly increase with the increase of

availability.

D. Applying to Complex Request Pattern

Clearly, RepGr usually performs better for AmazingStore

trace while EraGr performs better for Corsair trace. CHARM

combines the merits of the two schemes to achieve the best

performance, since it picks different storage modes for the

files with different access frequency, which determines great

adaptation. Cache is a commonly used technique to relieve the

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

ICACT - 2016 Conference Proceedings

Volume 4, Issue 22

Special Issue - 2016

5

burden of back-end storage, shaping the data access pattern

that is actually served by the back-end storage. Since Amazing

Store trace has higher read frequency, we use a cache to filter

the trace to show that CHARM well applies to various access

patterns. More specifically, we use LRU for this cache with

the cache size varying from 1GB to 2000GB. Figure 6(b)

shows the total number of requests received by the back-end

storage after filtered by the cache. With the increase of the

cache, read count drops quickly. Then we apply the five

schemes to the filtered traces with 99.99999% availability.

VII. CONCLUSION

Cloud services are experiencing rapid development and

the services based on multi-cloud also become prevailing. One

of the most concerns, when moving services into clouds, is

capital expenditure. So, in this paper, we design a novel

storage scheme CHARM, which guides customers to

distribute data among clouds cost-effectively. CHARM makes

fine-grained decisions about which storage mode to use and

which clouds to place data in. The evaluation proves the

efficiency of CHARM.

REFERENCES

[1] P. Wendell, J. W. Jiang, M. J. Freedman, and J. Rexford, “Donar:

Decentralized Server Selection for Cloud Services,” 2010.

[2] H. H. Liu, Y. Wang, Y. R. Yang, H. Wang, and C. Tian, “Optimizing
Cost and Performance for Content Multihoming,” 2012.

[3] T. G. Papaioannou, N. Bonvin, and K. Aberer, “Scalia: An Adaptive

Scheme for Efficient Multi-cloud Storage,” in SC. IEEE, 2012.
[4] J. S. Plank, “Erasure Codes for Storage Systems: A Brief Primer,”

The Usenix Magazine, vol. 38, no. 6, pp. 44–50, 2013.

[5] J. S. Plank, K. M. Greenan, and E. L. Miller, “Screaming Fast Galois
Field Arithmetic using Intel SIMD Instructions,” in FAST. ACM,

2013.

[6] H. Weatherspoon and J. D. Kubiatowicz, “Erasure Coding vs.
Replication: A Quantitative Comparison,” in IPTPS. Springer, 2002.

[7] R. Rodrigues and B. Liskov, “High Availability in DHTs: Erasure

Coding vs. Replication,” in IPTPS. Springer, 2005.
[8] I. M. Bomze, M. Budinich, P. M. Pardalos, and M. Pelillo, “The

maximum clique problem,” in Handbook of Combinatorial

Optimization. Springer, 1999, pp. 1–74.
[9] B. W. Kernighan and S. Lin, “An Efficient Heuristic Procedure for

Partitioning Graphs,” Bell System Technical Journal, vol. 49, no. 2,

pp. 291–307, 1970.
[10] M. A. Shah, M. Baker, J. C. Mogul, R. Swaminathan et al.,

“Auditing to Keep Online Storage Services Honest,” in HotOS.

ACM, 2007.
[11] E. Zhai, R. Chen, D. I. Wolinsky, and B. Ford, “Heading Off

Correlated Failures Through Independence-as-a-Service,” in OSDI.
ACM, 2014.

AUTHORS BIOGRAPHY

Yogitha C received the B.E degree in Computer Science from

VTU Karnataka in 2014, and currently she is a post graduate

student pursuing M.Tech in Computer Science and

Engineering from Don Bosco Institute of Technology

kumbalgodu, Bengaluru under Visvesvaraya Technological

University Karnataka.

 Her main research interests include cloud computing

and wireless sensor networks. she is currently doing her

project in Cloud Computing.

Yasahaswini B M received the B.E degree in Computer

Science from East West Institute of Technology ,VTU

Karnataka, and currently she is a working as assistant

professor in Don Bosco Institute of Technology Pursed

M.Tech in Computer Networks and Engineering from Alpha

college of engineering Bengaluru under Visvesvaraya

Technological University Karnataka.

 Her main research interests include computer

networks and wireless sensor network.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

ICACT - 2016 Conference Proceedings

Volume 4, Issue 22

Special Issue - 2016

6

