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Abstract— These days, more endeavors and associations are 

facilitating their information into the cloud, so as to decrease the 

IT support cost and upgrade the information unwavering 

quality. Be that as it may, confronting the various cloud 

merchants and their heterogeneous valuing arrangements, clients 

may well be astounded with which cloud(s) are suitable for 

putting away their information and what facilitating system is 

less expensive. The general business as usual is that clients for the 

most part put their information into a solitary cloud (which is 

liable to the seller lock-in danger) and afterward basically trust 

to good fortune. In view of far reaching investigation of different 

best in class cloud merchants, this paper proposes a novel 

information facilitating plan (named CHARM) which 

coordinates two key capacities wanted. The first is selecting a few 

suitable mists and a proper excess procedure to store information 

with minimized fiscal expense and ensured accessibility. The 

second is setting off a move procedure to re-disperse information 

as indicated by the varieties of information access example and 

estimating of mists. We assess the execution of CHARM utilizing 

both follow driven reproductions and model investigations. The 

outcomes demonstrate that contrasted and the major existing 

plans, CHARM spares around 20% of financial expense as well 

as displays sound versatility to information and value 

conformities. 

 

Index Terms—Multi-cloud; data hosting; cloud storage. 

I. INTRODUCTION 

Late years have seen a “dash for unheard of wealth” of 

online information facilitating benefits (or say distributed 

storage administrations, for example, Amazon S3, Windows 

Azure, Google Cloud Storage, Aliyun OSS, et cetera. These 

administrations furnish clients with dependable, versatile, and 

minimal effort information facilitating usefulness. More 

ventures and associations are facilitating all or a portion of 

their information into the cloud, to diminish the IT upkeep 

cost (counting the equipment, programming, and operational 

cost) and improve the information unwavering quality. For 

instance, the United States Library of Congress had moved its 

digitized substance to the cloud, trailed by the New York 

Public Library and Biodiversity Heritage Library. Presently 

they just need to pay for precisely the amount they have 

utilized. Heterogeneous mists. Existing mists show awesome 

heterogeneities as far as both working exhibitions and 

estimating strategies. Distinctive cloud sellers manufacture 

their individual bases and continue updating them with 

recently rising apparatuses. They likewise plan diverse 

framework designs and apply different procedures to make 

their administrations aggressive. Such framework assorted 

qualities prompts detectable execution varieties crosswise 

over cloud merchants. In addition, estimating arrangements of 

existing stockpiling administrations gave by various cloud 

sellers are unmistakable in both valuing levels and charging 

things. For example, Rack space does not charge for Web 

operations (regularly by means of a progression of REST ful 

APIs), Google Cloud Storage charges more for data transfer 

capacity utilization, while Amazon S3 charges more for 

storage room (allude to x II-A). Seller lock-in danger. 

Confronting various cloud sellers and in addition their 

heterogeneous exhibitions/arrangements, clients might be 

confused with which cloud(s) are suitable for putting away 

their information and what facilitating methodology is less 

expensive. The general business as usual is that clients as a 

rule put their information into a solitary cloud and afterward 

just trust to good fortune. This is liable to the purported 

"merchant lock-in danger", since clients would be gone up 

against with a quandary on the off chance that they need to 

change to other cloud sellers. The seller lock-in danger first 

lies in that information relocation unavoidably creates 

extensive cost. For instance, moving 100 TB of information 

from Amazon S3 (California datacenter) to Aliyun OSS 

(Beijing datacenter) would devour as much as 12,300 (US) 

dollars. Also, the merchant lock-in danger makes clients 

experience the ill effects of value changes of cloud sellers 

which are not unprecedented. For instance, the variance of 

power bills in a locale will influence the costs of cloud 

administrations in this district. We see that goliath cloud 

sellers like Windows Azure and Google Cloud Storage have 

been changing their evaluating terms. Surprising liquidation of 

cloud merchants further irritates the circumstance. Nirvanix, 

which has a large number of clients including main 500 

organizations, all of a sudden close down its distributed 

storage administration in Sep. 2013 [9]. Ubuntu One, likewise 

a well known player in the business sector of distributed 

storage administration, got away in Apr. 2014 [10]. So 

unmistakably, it is rash for an endeavor or an association to 

host all information in a solitary cloud — "your most logical 

option is likely not to put all your investments tied up on one 

place. Finally, uncontrolled information accessibility is (it 

could be said) another sort of seller lock-in danger. In spite of 

the fact that the administration quality is formally ensured by 

administration level assentions (SLA), disappointments and 

blackouts do happen. Almost all the major cloud vendors 

experienced service outages in recent years. Some outages 

even lasted for several hours. Multi-cloud data hosting. 

Recently, multi-cloud data hosting has received wide attention 

from researchers, customers, and startups. The basic principle 

of multi-cloud (data hosting) is to distribute data across 

multiple clouds to gain enhanced redundancy and prevent the 

vendor lock-in risk, as shown 
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Fig. 1. Basic principle of multi-cloud data hosting. 

 

in Fig. 1. The “proxy” component plays a key role by 

redirecting requests from client applications and coordinating 

data distribution among multiple clouds. The potential 

prevalence of multi-cloud is illustrated in three folds. First, 

there have been a few researches conducted on multi-cloud. 

DepSky guarantees data availability and security based on 

multiple clouds, thus allowing critical data (e.g., medical and 

financial data) to be trustingly stored. RACS deploys erasure 

coding among different clouds in order to prevent vender 

lock-in risk and reduce monetary cost. Second, new types of 

cloud vendors (e.g., DuraCloud and Cloud Foundry) have 

emerged and rapidly grown up to provide real services based 

on multiple clouds. Third, new development tools like Apache 

libcloud provide a unified interface above different clouds, 

which facilitates migrating services among clouds. 

Nevertheless, as for multi-cloud people still encounter the two 

critical problems: (1) How to choose appropriate clouds to 

minimize monetary cost in the presence of heterogenous 

pricing policies? (2) How to meet the different availability 

requirements of different services? As to monetary cost, it 

mainly depends on the data-level usage, particularly storage 

capacity consumption and network bandwidth consumption. 

As to availability requirement, the major concern lies in which 

redundancy mechanism (i.e., replication or erasure coding) is 

more economical based on specific data access patterns. In 

other words, here the fundamental challenge is: How to 

combine the two mechanisms elegantly so as to greatly reduce 

monetary cost and meanwhile guarantee required availability? 

The proposed CHARM scheme. In this paper, we propose a 

novel cost-efficient data hosting scheme with high availability 

in heterogeneous multi-cloud, named “CHARM”. It 

intelligently puts data into multiple clouds with minimized 

monetary cost and guaranteed availability. Specifically, we 

combine the two widely used redundancy mechanisms, i.e., 

replication and erasure coding, into a uniform model to meet 

the required availability in the presence of different data 

access patterns. Next, we design an efficient heuristic-based 

algorithm to choose proper data storage modes (involving 

both clouds and redundancy mechanisms). Moreover, we 

implement the necessary procedure for storage mode 

transition (for efficiently re-distributing data) by monitoring 

the variations of data access patterns and pricing policies. We 

evaluate the performance of CHARM using both trace driven 

simulations and prototype experiments.  

 

Summary of contribution. At last, our contributions in this 

paper can be briefly summarized as follows: 

 

1) We propose and implement CHARM, a novel, efficient, 

and heuristic-based data hosting scheme for heterogeneous 

multi-cloud environments. CHARM accommodates different 

pricing strategies, availability requirements, and data access 

patterns. It selects suitable clouds and an appropriate 

redundancy strategy to store data with minimized monetary 

cost and guaranteed availability. 

2) We design and implement a flexible transition scheme for 

CHARM. It keeps monitoring the variations of pricing 

policies and data access patterns, and adaptively triggers the 

transition process between different data storage modes. It 

also starts a data migration process among different clouds if 

necessary. 

3) We evaluate the performance of CHARM using two typical 

real-world traces and prototype experiments. Both trace driven 

simulation and experiment results confirm the efficacy of 

CHARM.. 

II. BACKGROUND 

A. Pricing Models of Mainstream Clouds 

In order to understand the pricing models of mainstream cloud 

vendors, we select to study five most popular cloud storage 

services across the world: Amazon S3, Windows Azure, 

Google Cloud Storage, Rackspace, and Aliyun OSS (deployed 

in China). Their latest pricing models (in 2014) are presented 

in Table I (Storage and bandwidth pricing) and Table II 

(Operation pricing). Basically for these clouds, customers are 

charged in terms of storage, out-going (i.e., from cloud to 

client) bandwidth 1, and operations (such as PUT, GET, and 

LIST). However, each vendor’s pricing model has some 

difference from the others. For instance, in Asia Amazon S3 

has lower bandwidth price and higher storage price than 

Google Cloud Storage. Aliyun OSS provides the lowest 

bandwidth price, but its storage price is still higher than 

Google Cloud Storage. Besides, prices of operations are also 

different across different clouds. 

B. Erasure Coding 

Erasure coding has been widely applied in storage systems in 

order to provide high availability and reliability while 

introducing low storage overhead [4]. As we all know, the 

storage mode of “three replicas” is putting replicas into three 

different storage nodes. Then the data is lost only when the 

three nodes all crash. However, it occupies 2x more storage 

space. Erasure coding is proposed to reduce storage 

consumption greatly while guaranteeing the same or higher 

level of data reliability. A representative erasure-coding 

scheme is the so-called “Reed-Solomon code”, which is a type 

of Maximum Distance Separable erasure coding. Considering 

a storage system with M nodes, we divide data into blocks of 

equal size, and each block is further divided into m equal-

sized data chunks. After that, we encode the m chunks into n 

� m parity chunks and put the total n chunks into different 

nodes (n _ M). We use RS(m, n) to denote this coding scheme 

and we call the n chunks a “segment”. 
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III. A  NEW OPPORTUNITY IN MULTI-CLOUD 

STORAGE 

In this section, from a quantitative perspective, we 

demonstrate that there is still plenty of space for optimizing 

the multi-cloud data hosting by combining the two widely 

used redundancy mechanisms, i.e., replication and erasure 

coding. 

A. Combining Replication and Erasure Coding 

In existing industrial data hosting systems, data 

availability (and reliability) are usually guaranteed by 

replication or erasure coding. In the multi-cloud scenario, we 

also use them to meet different availability requirements, but 

the implementation is different. For replication, replicas are 

put into several clouds, and a read access is only served 

(unless this cloud is unavailable then) by the “cheapest” cloud 

that charges minimal for out-going bandwidth and GET 

operation. For erasure coding, data is encoded into n blocks 

including m data blocks and n�m coding blocks, and these 

blocks are put into n different clouds. In this case, though data 

availability can be guaranteed with lower storage space 

(compared with replication), a read access has to be served by 

multiple clouds that store the corresponding data blocks. 

Consequently, erasure coding cannot make full use of the 

cheapest cloud as what replication does. Still worse, this 

shortcoming will be amplified in the multi-cloud scenario 

where bandwidth is generally (much) more expensive than 

storage space. 

 

B.Comparison of Data Hosting Modes 

The traditional view of replication and erasure coding 

[5], [6] does not hold in the multi-cloud scenario. For 

example, the biggest preponderance of erasure coding lies in 

much less storage space for guaranteed high availability. 

However, this preponderance shrinks because of the clouds’ 

pricing policies — bandwidth is (much) more expensive than 

storage space. For the same reason, in the multi-cloud scenario 

replication regains its competitiveness, though it is 

traditionally regarded as inferior to erasure coding in terms of 

storage saving. Therefore, it is difficult now to determine 

which mechanism is better in the presence of complex 

workload patterns and various pricing policies. Below we 

compare the two mechanisms quantitatively to shed light on 

this problem. 

As shown in Figure 3, replication almost always 

outperforms erasure coding in the multi-cloud scenario. When 

the read count is 30, replication can save 32% monetary cost 

compared with erasure coding. The advantage of replication 

originates from the cloud with the lowest bandwidth price. In 

general, when the read frequency is high, the bigger the gap 

between the lowest bandwidth price and the average one is, 

the greater the superiority of replication is  

 

 
 

Fig.2. The architecture of CHARM. “R” represents replication and “E” 

represents erasure coding. 

 

effect of erasure coding to a similar level as that of 

replication. On the other hand, significant monetary saving 

can be achieved if we combine their advantages elegantly. 

This is why we propose the novel data hosting scheme 

CHARM which will be elaborated in the following sections. 

IV. PROPOSED METHODOLOGY 

A. CHARM Overview 

In this section, we elaborate a cost-efficient data hosting 

model with high availability in heterogeneous multi-cloud, 

named “CHARM”. The architecture of CHARM is shown in 

Figure 3. The whole model is located in the proxy in Figure 1. 

There are four main components in CHARM: Data Hosting, 

Storage Mode Switching (SMS), Workload Statistic, and 

Predictor.  

Workload Statistic: keeps collecting and tackling access logs 

to guide the placement of data. It also sends statistic 

information to Predictor which guides the action of SMS. 

 

 Data Hosting: stores data using replication or erasure coding, 

according to the size and access frequency of the data.  

 

SMS decides whether the storage mode of certain data should 

be changed from replication to erasure coding or in reverse, 

according to the output of Predictor. The implementation of 

changing storage mode runs in the background, in order not to 

impact online service. 

 

 Predictor  
Is used to predict the future access frequency of files. 

The time interval for prediction is one month, that is, we use 

the former months to predict access frequency of files in the 

next month.  

However, we do not put emphasis on the design of 

predictor, because there have been lots of good algorithms for 

prediction. Moreover, a very simple predictor, which uses the 

weighted moving average approach, works well in our data 

hosting model. Data Hosting and SMS are two important 

modules in CHARM. Data Hosting decides storage mode and 

the clouds that the data should be stored in. This is a complex 

integer programming problem demonstrated in the following 

subsections. Then we illustrate how SMS works in detail in x 
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V, that is, when and how many times should the transition be 

implemented. 

 

B. Formal Definition of Data Hosting Model 

We first formally define the mathematical model applied 

in Data Hosting. When talking about erasure coding, we 

usually mean m > 1 (not replication). However, replication is 

a special case of erasure coding (i.e., m = 1). So we combine 

the two storage mechanisms and define a unified model. 

Assuming we have N clouds that meet performance 

requirements. We choose n cloud to store a file, the file should 

be encoded into n blocks of equal size (n _ N), including m 

data blocks and n�m coding blocks. If m = 1, the n�m coding 

blocks are the same with the data block, i.e., replication. Then 

the n blocks are distributed into the n clouds. We call a (m; n) 

pair with its corresponding clouds a storage mode. We first 

formally define the availability of a (m; n) pair. For the n 

clouds, which one stores data block, and which one stores 

coding block do not impact the availability. It is only impacted 

by the value of m. 

 

C. Heuristic Solution 

The key idea of this heuristic algorithm can be described 

as follows: We first assign each cloud a value _i which is 

calculated based on four factors (i.e., availability, storage, 

bandwidth, and operation prices) to indicate the preference of 

a cloud. We choose the most preferred n clouds, and then 

heuristically exchange the cloud in the preferred set with the 

cloud in the complementary set to search better solution. This 

is similar to the idea of Kernighan-Lin heuristic algorithm 

[30], which is applied to effectively partition graphs to 

minimize the sum of the costs on all edges cut. The preference 

of a cloud is impacted by the four factors, and they have 

different weights. The availability is the higher the better, and 

the price is the lower the better. So we use _i = _ai + _ Pi as 

the preference of the ith cloud, where Pi is the synthetical 

price of storage, bandwidth, and operation. Intuitively, if a file 

has much read access, the cloud with lower bandwidth price is 

more preferred. If a file is very small, operation price occupies 

a big proportion. So we let Pi = SPsi +crSPbi +crPoi. 

Specifically, ai and Pi are both normalized into (0; 1). 

 

To find out optimal n and m, we first traverse n from 2 to _, 

where _ is the upper limit of n and _ < N. We do not set _ to N 

for two reasons: reality and complexity. For reality, n tends to 

be small in practice, usually less than 10. It has much higher 

probability for large n to induce degraded performance. More 

specifically, if a cloud becomes unavailable, the proxy has to 

get corresponding data from other m clouds (m is usually 

close to n), which determines that n cannot be very large in 

order to achieve good performance. For complexity, 

calculating the availability of erasure coding (m; n) has very 

high complexity. We have to check the availability for every 

possible solution that is traversed. If we give an upper limit to 

n, the availability can be calculated in polynomial running 

time. Then we traverse m from 1 to n for each n. The 

availability is calculated using Eq. 2. If the availability meets 

the required value and the monetary cost is lower, we update 

Csm and   (i.e., the set of the selected clouds). If the 

availability does not meet the required value, we exchange the 

cloud in the current set Gs with the one in the complementary 

set Gc, using a greedy method: Firstly, Gs is sorted by ai, and 

Gc is sorted by Pi. Then we try to exchange the cloud in Gs 

from the lowest ai, one by one, with the cloud which has the 

lowest Pi in Gc but higher availability than that cloud in Gs, 

until the availability meets the required value.  

  

V. TRANSITION SCHEME 

A. Transition of Storage Modes 

Intuitively, when a file changes from “hot” to “cold”, we 

should change its storage mode. More specifically, when the 

read frequency of the file drops below or increases above a 

certain value, changing storage mode can save more money. 

The value is determined by the prices of clouds. Given the 

available clouds including their prices and availability, we can 

figure out the storage mode and the selected clouds with the 

input of file’s size and read count, using Algorithm 1. We 

calculate the storage modes for different file sizes and read 

counts, in order to get a storage mode table (see Figure 4 in x 

VII for an example). The table has two dimensions: file size 

and read count. There is one corresponding storage mode for 

each pair of file size and read count, but the storage modes are 

the same for many different pairs. There are explicit 

boundaries between different storage modes in the table. 

However, it does not mean we should change the storage 

mode once a file’s storage mode crosses the boundary, 

because the transition of storage mode also generates cost, 

which is definitely not negligible. Bandwidth is (much) more 

expensive than storage space for online storage services. The 

cost of one read access for a file can afford this file to be 

stored for around 4 months with no read access. Thus, we 

should be prudent to deal with storage mode transition. A 

good transition scheme can actually save large amount of 

money. 

We first demonstrate the implementation of storage 

mode transition: the proxy gets the data from the clouds where 

the data is originally stored, and puts it into the newly selected 

clouds using new storage mode. The implementation 

consumes out-going bandwidth, in-going bandwidth, and 

several operations (i.e., GET, DELETE, and PUT). Since 

DELETE and ingoing bandwidth are free, the transition cost T 

is composed of out-going bandwidth, GET, and PUT. Out-

going bandwidth is more expensive than storage, so we have 

to make sure that the cost of transition can be earned back by 

the new storage mode. That is, the following inequality has to 

be met: 

Mf > Mp + T            (11) 

where Mf and Mp are the monetary cost of the previous 

storage mode and new storage mode respectively. They are 

both calculated using the read frequency provided by 

Predictor. Eq. 11 is impacted by the time period t. Since the 

storage cost is storing a file of size S for a time period t and cr 

is the read count during t, we should set t first in order to 

calculate Mf and Mp. So, Eq. 11 means the new storage mode 

will earn back the transition cost within the time period t (t 

equals 30 days in our experiments). We implement the 

transition for each one month, which also equals to the time 

period t. 
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We calculate the storage mode for each file using its 

predicted read frequency in the time interval t. If the storage 

mode is different from the previous one and it meets Eq. 11, 

we change the storage mode of this file. The storage mode 

table can be calculated in advance because it is only affected 

by the available clouds, their pricing policies, and 

availabilities. When deciding the storage mode for each file, 

we use the read frequency and the size of the file to look up 

the table for the corresponding storage mode. This table is re-

calculated through Algorithm 1, only when availabilities and 

prices are modified, some clouds are kicked out due to 

performance issue, or new available clouds emerge. And the 

new table will be input into Algorithm 2 to accommodate 

these situations. Algorithm 2 shows the detailed transition 

process. 

 

B. Complexity 

Here we analyze the computational complexity of this 

algorithm. The two loops in line 4 and 11 are used to look up 

the table, the complexity of which can be approximately 

considered constant, since the table is small and has only 

limited number of values in each dimension. Specifically, 

since the table is split into several pieces, we only need to find 

out which piece the file belongs to. Transition cost in line 19 

can also be calculated in constant time. Thus, the complexity 

of this algorithm is mainly the first loop, and the worst case 

complexity is O(Fn), where Fn is the number of files. In order 

to reduce the complexity further, we can classify files with 

similar access patterns into groups, and implement transition 

in the unit of group. This is out of the scope of this paper. 

VI. EVALUATION 

We conduct extensive simulations to evaluate the 

performance of our scheme. The simulations are driven by 

two typical real-world traces. We first briefly introduce the 

two collected traces and present the evaluating methodology, 

then show the performance of our scheme. At last, to make the 

results more convincing, we also implement the prototype 

experiments on top of four mainstream commercial clouds, the 

results of which prove the correctness of the simulations and 

the efficacy of CHARM. 

 

A. Datasets 

The two traces are collected from AmazingStore [20] and 

Corsair [21]. AmazingStore is a popular file storing and 

sharing platform in China. It has been deployed and 

maintained since April 2009, and has 10K log-in users 

everyday. The files in this system are mainly music and video. 

Corsair is a cloud storage system deployed at Tsinghua 

University, China. There had been already 19,892 registered 

users and 17.5 TB of data by September 2010. The files stored 

in this system have diverse types. We collected the trace of 

Amazing Store from January 1, 2012 to July 15, 2013 from 

four main servers. For Corsair the trace is collected from 

March to July 2010. Each line of the traces is a file access 

record which includes timestamp, file name, file size, and 

operation type (e.g., GET, PUT). The detailed properties of 

the two traces are shown in Table IV. We use 15 clouds in the 

experiments, and they all meet the requirement of 

performance. The prices of these clouds are configured 

referring to the prices of current famous clouds (e.g., Amazon 

S3, Windows Azure) and their data centers. We set the clouds’ 

availability in the interval of [99:5%; 99:95%] 

 

B. Storage Mode Table 

We generate the storage mode table based on the 15 clouds 

guaranteeing 99.9999% availability. We use different file 

sizes varying from 1KB to 1GB and different read counts 

varying from 0 to 100 with the step of 0.1 to calculate their 

corresponding storage modes (using Algorithm 1). We get 

four different storage modes as shown in Figure 4 with gray 

levels from 1 to 4. We only plot the read count from 0 to 3, 

because the storage modes are the same (i.e., gray level 4) for 

the read count larger than 3 no matter how much the file’s size 

is. When the file’s size is larger than 1MB, the storage modes 

have explicit vertical boundaries with different read counts. 

That means, for large files, read count is the key to impact the 

storage mode. When the file’s size drops below 1MB, the 

operation cost has more and more impact on the total cost. 

High read frequency (generating high bandwidth cost) gives 

advantages to replication mechanism (i.e., m = 1). So, 

similarly, high operation cost also gives advantages to 

replication mechanism when the file’s size is small. That is 

why gray level 4 puts its feet into the region of lower read 

count and smaller file size. This storage mode table only 

depends on prices of the available clouds and required 

availability. If the prices change, the table will change 

accordingly, becoming a different one. 

 

C. Monetary Cost 

We set different availability levels from 99.99% to 

99.99999%, and run the two traces applying the five schemes 

respectively. The total cost of CHARM includes 

storage/bandwidth/operation costs and transition cost. The 

results of AmazingStore trace are shown in Table V. Since the 

read count of files in AmazingStore trace is high (i.e., 39.9 

onaverage in 575 days), RepGr is better than EraGr except the 

highest availability case. In order to guarantee high 

availability, RepGr has to store more replicas whose storage 

cost exceeds the saving on bandwidth. The cost of EraGr for 

99.99% is higher than that in higher availability, because 

EraGr has to reduce m to get higher availability, and it 

happens to exclude the cloud with higher bandwidth cost. 

CHARM has the lowest cost, it reduces about 9.3%-23.1% 

compared to RepGr, and reduces about 19.3%-24.3% 

compared to EraGr. From the detailed monetary cost as shown 

in Table VII, we can see that CHARM spends a little more 

storage cost to achieve much lower bandwidth cost. The 

detailed monetary cost of other availability levels shows 

similar results. RepRa and EraRa select clouds randomly, so 

the cost does not show strictly increase with the increase of 

availability. 

 

D. Applying to Complex Request Pattern 

Clearly, RepGr usually performs better for AmazingStore 

trace while EraGr performs better for Corsair trace. CHARM 

combines the merits of the two schemes to achieve the best 

performance, since it picks different storage modes for the 

files with different access frequency, which determines great 

adaptation. Cache is a commonly used technique to relieve the 
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burden of back-end storage, shaping the data access pattern 

that is actually served by the back-end storage. Since Amazing 

Store trace has higher read frequency, we use a cache to filter 

the trace to show that CHARM well applies to various access 

patterns. More specifically, we use LRU for this cache with 

the cache size varying from 1GB to 2000GB. Figure 6(b) 

shows the total number of requests received by the back-end 

storage after filtered by the cache. With the increase of the 

cache, read count drops quickly. Then we apply the five 

schemes to the filtered traces with 99.99999% availability. 

VII. CONCLUSION 

Cloud services are experiencing rapid development and 

the services based on multi-cloud also become prevailing. One 

of the most concerns, when moving services into clouds, is 

capital expenditure. So, in this paper, we design a novel 

storage scheme CHARM, which guides customers to 

distribute data among clouds cost-effectively. CHARM makes 

fine-grained decisions about which storage mode to use and 

which clouds to place data in. The evaluation proves the 

efficiency of CHARM. 
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