Special Issue- 2016

International Journal of Engineering Research & Technology (IJERT)

I SSN: 2278-0181
ICACT - 2016 Conference Proceedings

A Novel Scheme for Cost Reduction and Data
Availability in Heterogeneous Multi-Cloud

Yogitha C
M.Tech, CSE, VTU,
Don Bosco Institute of Technology,
Bengaluru,India.

Abstract— These days, more endeavors and associations are
facilitating their information into the cloud, so as to decrease the
IT support cost and upgrade the information unwavering
quality. Be that as it may, confronting the various cloud
merchants and their heterogeneous valuing arrangements, clients
may well be astounded with which cloud(s) are suitable for
putting away their information and what facilitating system is
less expensive. The general business as usual is that clients for the
most part put their information into a solitary cloud (which is
liable to the seller lock-in danger) and afterward basically trust
to good fortune. In view of far reaching investigation of different
best in class cloud merchants, this paper proposes a novel
information facilitating plan (named CHARM) which
coordinates two key capacities wanted. The first is selecting a few
suitable mists and a proper excess procedure to store information
with minimized fiscal expense and ensured accessibility. The
second is setting off a move procedure to re-disperse information
as indicated by the varieties of information access example and
estimating of mists. We assess the execution of CHARM utilizing
both follow driven reproductions and model investigations. The
outcomes demonstrate that contrasted and the major existing
plans, CHARM spares around 20% of financial expense as well
as displays sound versatility to information and value
conformities.

Index Terms—Multi-cloud; data hosting; cloud storage.

I. INTRODUCTION

Late years have seen a “dash for unheard of wealth” of
online information facilitating benefits (or say distributed
storage administrations, for example, Amazon S3, Windows
Azure, Google Cloud Storage, Aliyun OSS, et cetera. These
administrations furnish clients with dependable, versatile, and
minimal effort information facilitating usefulness. More
ventures and associations are facilitating all or a portion of
their information into the cloud, to diminish the IT upkeep
cost (counting the equipment, programming, and operational
cost) and improve the information unwavering quality. For
instance, the United States Library of Congress had moved its
digitized substance to the cloud, trailed by the New York
Public Library and Biodiversity Heritage Library. Presently
they just need to pay for precisely the amount they have
utilized. Heterogeneous mists. Existing mists show awesome
heterogeneities as far as both working exhibitions and
estimating strategies. Distinctive cloud sellers manufacture
their individual bases and continue updating them with
recently rising apparatuses. They likewise plan diverse
framework designs and apply different procedures to make
their administrations aggressive. Such framework assorted
qualities prompts detectable execution varieties crosswise
over cloud merchants. In addition, estimating arrangements of

Yasahaswini B M
Assistant Professor, VTU,
Don Bosco Institute of Technology,
Bengaluru,India

existing stockpiling administrations gave by various cloud
sellers are unmistakable in both valuing levels and charging
things. For example, Rack space does not charge for Web
operations (regularly by means of a progression of REST ful
APIs), Google Cloud Storage charges more for data transfer
capacity utilization, while Amazon S3 charges more for
storage room (allude to x II-A). Seller lock-in danger.
Confronting various cloud sellers and in addition their
heterogeneous exhibitions/arrangements, clients might be
confused with which cloud(s) are suitable for putting away
their information and what facilitating methodology is less
expensive. The general business as usual is that clients as a
rule put their information into a solitary cloud and afterward
just trust to good fortune. This is liable to the purported
"merchant lock-in danger"”, since clients would be gone up
against with a quandary on the off chance that they need to
change to other cloud sellers. The seller lock-in danger first
lies in that information relocation unavoidably creates
extensive cost. For instance, moving 100 TB of information
from Amazon S3 (California datacenter) to Aliyun OSS
(Beijing datacenter) would devour as much as 12,300 (US)
dollars. Also, the merchant lock-in danger makes clients
experience the ill effects of value changes of cloud sellers
which are not unprecedented. For instance, the variance of
power bills in a locale will influence the costs of cloud
administrations in this district. We see that goliath cloud
sellers like Windows Azure and Google Cloud Storage have
been changing their evaluating terms. Surprising liquidation of
cloud merchants further irritates the circumstance. Nirvanix,
which has a large number of clients including main 500
organizations, all of a sudden close down its distributed
storage administration in Sep. 2013 [9]. Ubuntu One, likewise
a well known player in the business sector of distributed
storage administration, got away in Apr. 2014 [10]. So
unmistakably, it is rash for an endeavor or an association to
host all information in a solitary cloud — "your most logical
option is likely not to put all your investments tied up on one
place. Finally, uncontrolled information accessibility is (it
could be said) another sort of seller lock-in danger. In spite of
the fact that the administration quality is formally ensured by
administration level assentions (SLA), disappointments and
blackouts do happen. Almost all the major cloud vendors
experienced service outages in recent years. Some outages
even lasted for several hours. Multi-cloud data hosting.
Recently, multi-cloud data hosting has received wide attention
from researchers, customers, and startups. The basic principle
of multi-cloud (data hosting) is to distribute data across
multiple clouds to gain enhanced redundancy and prevent the
vendor lock-in risk, as shown

Volume4, | ssue 22

Published by, www.ijert.org 1

Special Issue- 2016

International Journal of Engineering Research & Technology (IJERT)

I SSN: 2278-0181
ICACT - 2016 Conference Proceedings

ORI

L ™~
Proxy)
- (Proxy,
| / ' \
1
i .
- | Enterprise NF5 E-commercial Electronic
| Je"I3I3'|'G€“’°“| E {Metwork file system) Web sites Library ‘

Fig. 1. Basic principle of multi-cloud data hosting.

in Fig. 1. The “proxy” component plays a key role by
redirecting requests from client applications and coordinating
data distribution among multiple clouds. The potential
prevalence of multi-cloud is illustrated in three folds. First,
there have been a few researches conducted on multi-cloud.
DepSky guarantees data availability and security based on
multiple clouds, thus allowing critical data (e.g., medical and
financial data) to be trustingly stored. RACS deploys erasure
coding among different clouds in order to prevent vender
lock-in risk and reduce monetary cost. Second, new types of
cloud vendors (e.g., DuraCloud and Cloud Foundry) have
emerged and rapidly grown up to provide real services based
on multiple clouds. Third, new development tools like Apache
libcloud provide a unified interface above different clouds,
which facilitates migrating services among clouds.
Nevertheless, as for multi-cloud people still encounter the two
critical problems: (1) How to choose appropriate clouds to
minimize monetary cost in the presence of heterogenous
pricing policies? (2) How to meet the different availability
requirements of different services? As to monetary cost, it
mainly depends on the data-level usage, particularly storage
capacity consumption and network bandwidth consumption.
As to availability requirement, the major concern lies in which
redundancy mechanism (i.e., replication or erasure coding) is
more economical based on specific data access patterns. In
other words, here the fundamental challenge is: How to
combine the two mechanisms elegantly so as to greatly reduce
monetary cost and meanwhile guarantee required availability?
The proposed CHARM scheme. In this paper, we propose a
novel cost-efficient data hosting scheme with high availability
in heterogeneous multi-cloud, named “CHARM”. It
intelligently puts data into multiple clouds with minimized
monetary cost and guaranteed availability. Specifically, we
combine the two widely used redundancy mechanisms, i.e.,
replication and erasure coding, into a uniform model to meet
the required availability in the presence of different data
access patterns. Next, we design an efficient heuristic-based
algorithm to choose proper data storage modes (involving
both clouds and redundancy mechanisms). Moreover, we
implement the necessary procedure for storage mode
transition (for efficiently re-distributing data) by monitoring
the variations of data access patterns and pricing policies. We
evaluate the performance of CHARM using both trace driven
simulations and prototype experiments.

Summary of contribution. At last, our contributions in this
paper can be briefly summarized as follows:

1) We propose and implement CHARM, a novel, efficient,
and heuristic-based data hosting scheme for heterogeneous
multi-cloud environments. CHARM accommodates different
pricing strategies, availability requirements, and data access
patterns. It selects suitable clouds and an appropriate
redundancy strategy to store data with minimized monetary
cost and guaranteed availability.

2) We design and implement a flexible transition scheme for
CHARM. It keeps monitoring the variations of pricing
policies and data access patterns, and adaptively triggers the
transition process between different data storage modes. It
also starts a data migration process among different clouds if
necessary.

3) We evaluate the performance of CHARM using two typical
real-world traces and prototype experiments. Both trace driven
simulation and experiment results confirm the efficacy of
CHARM..

1. BACKGROUND

A. Pricing Models of Mainstream Clouds

In order to understand the pricing models of mainstream cloud
vendors, we select to study five most popular cloud storage
services across the world: Amazon S3, Windows Azure,
Google Cloud Storage, Rackspace, and Aliyun OSS (deployed
in China). Their latest pricing models (in 2014) are presented
in Table | (Storage and bandwidth pricing) and Table Il
(Operation pricing). Basically for these clouds, customers are
charged in terms of storage, out-going (i.e., from cloud to
client) bandwidth 1, and operations (such as PUT, GET, and
LIST). However, each vendor’s pricing model has some
difference from the others. For instance, in Asia Amazon S3
has lower bandwidth price and higher storage price than
Google Cloud Storage. Aliyun OSS provides the lowest
bandwidth price, but its storage price is still higher than
Google Cloud Storage. Besides, prices of operations are also
different across different clouds.

B. Erasure Coding

Erasure coding has been widely applied in storage systems in
order to provide high availability and reliability while
introducing low storage overhead [4]. As we all know, the
storage mode of “three replicas” is putting replicas into three
different storage nodes. Then the data is lost only when the
three nodes all crash. However, it occupies 2x more storage
space. Erasure coding is proposed to reduce storage
consumption greatly while guaranteeing the same or higher
level of data reliability. A representative erasure-coding
scheme is the so-called “Reed-Solomon code”, which is a type
of Maximum Distance Separable erasure coding. Considering
a storage system with M nodes, we divide data into blocks of
equal size, and each block is further divided into m equal-
sized data chunks. After that, we encode the m chunks into n
[1 m parity chunks and put the total n chunks into different
nodes (n _ M). We use RS(m, n) to denote this coding scheme
and we call the n chunks a “segment”.

Volume4, | ssue 22

Published by, www.ijert.org 2

Special Issue- 2016

International Journal of Engineering Research & Technology (IJERT)

I SSN: 2278-0181
ICACT - 2016 Conference Proceedings

I11. A NEW OPPORTUNITY IN MULTI-CLOUD
STORAGE

In this section, from a quantitative perspective, we
demonstrate that there is still plenty of space for optimizing
the multi-cloud data hosting by combining the two widely
used redundancy mechanisms, i.e., replication and erasure
coding.

A. Combining Replication and Erasure Coding

In existing industrial data hosting systems, data
availability (and reliability) are usually guaranteed by
replication or erasure coding. In the multi-cloud scenario, we
also use them to meet different availability requirements, but
the implementation is different. For replication, replicas are
put into several clouds, and a read access is only served
(unless this cloud is unavailable then) by the “cheapest” cloud
that charges minimal for out-going bandwidth and GET
operation. For erasure coding, data is encoded into n blocks
including m data blocks and nldm coding blocks, and these
blocks are put into n different clouds. In this case, though data
availability can be guaranteed with lower storage space
(compared with replication), a read access has to be served by
multiple clouds that store the corresponding data blocks.
Consequently, erasure coding cannot make full use of the
cheapest cloud as what replication does. Still worse, this
shortcoming will be amplified in the multi-cloud scenario
where bandwidth is generally (much) more expensive than
storage space.

B.Comparison of Data Hosting Modes

The traditional view of replication and erasure coding
[5], [6] does not hold in the multi-cloud scenario. For
example, the biggest preponderance of erasure coding lies in
much less storage space for guaranteed high availability.
However, this preponderance shrinks because of the clouds’
pricing policies — bandwidth is (much) more expensive than
storage space. For the same reason, in the multi-cloud scenario
replication regains its competitiveness, though it s
traditionally regarded as inferior to erasure coding in terms of
storage saving. Therefore, it is difficult now to determine
which mechanism is better in the presence of complex
workload patterns and various pricing policies. Below we
compare the two mechanisms quantitatively to shed light on
this problem.

As shown in Figure 3, replication almost always
outperforms erasure coding in the multi-cloud scenario. When
the read count is 30, replication can save 32% monetary cost
compared with erasure coding. The advantage of replication
originates from the cloud with the lowest bandwidth price. In
general, when the read frequency is high, the bigger the gap
between the lowest bandwidth price and the average one is,
the greater the superiority of replication is

Accesslog Workload

_ Accessiog | .
D ﬁ Statistic Predictor
Data Hosting J Stgﬁgshri:gde

/_‘ Replication | |Erasure code‘_.l R—=E H E—=R | -

D EDED

Legend: —» Control flow

== Data flow

Fig.2. The architecture of CHARM. “R” represents replication and “E”
represents erasure coding.

effect of erasure coding to a similar level as that of
replication. On the other hand, significant monetary saving
can be achieved if we combine their advantages elegantly.
This is why we propose the novel data hosting scheme
CHARM which will be elaborated in the following sections.

IV.PROPOSED METHODOLOGY

A. CHARM Overview

In this section, we elaborate a cost-efficient data hosting
model with high availability in heterogeneous multi-cloud,
named “CHARM?”. The architecture of CHARM is shown in
Figure 3. The whole model is located in the proxy in Figure 1.
There are four main components in CHARM: Data Hosting,
Storage Mode Switching (SMS), Workload Statistic, and
Predictor.
Workload Statistic: keeps collecting and tackling access logs
to guide the placement of data. It also sends statistic
information to Predictor which guides the action of SMS.

Data Hosting: stores data using replication or erasure coding,
according to the size and access frequency of the data.

SMS decides whether the storage mode of certain data should
be changed from replication to erasure coding or in reverse,
according to the output of Predictor. The implementation of
changing storage mode runs in the background, in order not to
impact online service.

Predictor

Is used to predict the future access frequency of files.
The time interval for prediction is one month, that is, we use
the former months to predict access frequency of files in the
next month.

However, we do not put emphasis on the design of
predictor, because there have been lots of good algorithms for
prediction. Moreover, a very simple predictor, which uses the
weighted moving average approach, works well in our data
hosting model. Data Hosting and SMS are two important
modules in CHARM. Data Hosting decides storage mode and
the clouds that the data should be stored in. This is a complex
integer programming problem demonstrated in the following
subsections. Then we illustrate how SMS works in detail in x

Volume4, | ssue 22

Published by, www.ijert.org 3

Special Issue- 2016

International Journal of Engineering Research & Technology (IJERT)

I SSN: 2278-0181
ICACT - 2016 Conference Proceedings

V, that is, when and how many times should the transition be
implemented.

B. Formal Definition of Data Hosting Model

We first formally define the mathematical model applied
in Data Hosting. When talking about erasure coding, we
usually mean m > 1 (not replication). However, replication is
a special case of erasure coding (i.e., m = 1). So we combine
the two storage mechanisms and define a unified model.
Assuming we have N clouds that meet performance
requirements. We choose n cloud to store a file, the file should
be encoded into n blocks of equal size (n _ N), including m
data blocks and nCJm coding blocks. If m = 1, the nCJm coding
blocks are the same with the data block, i.e., replication. Then
the n blocks are distributed into the n clouds. We call a (m; n)
pair with its corresponding clouds a storage mode. We first
formally define the availability of a (m; n) pair. For the n
clouds, which one stores data block, and which one stores
coding block do not impact the availability. It is only impacted
by the value of m.

C. Heuristic Solution

The key idea of this heuristic algorithm can be described
as follows: We first assign each cloud a value _i which is
calculated based on four factors (i.e., availability, storage,
bandwidth, and operation prices) to indicate the preference of
a cloud. We choose the most preferred n clouds, and then
heuristically exchange the cloud in the preferred set with the
cloud in the complementary set to search better solution. This
is similar to the idea of Kernighan-Lin heuristic algorithm
[30], which is applied to effectively partition graphs to
minimize the sum of the costs on all edges cut. The preference
of a cloud is impacted by the four factors, and they have
different weights. The availability is the higher the better, and
the price is the lower the better. So we use _i = ai + _Pias
the preference of the ith cloud, where Pi is the synthetical
price of storage, bandwidth, and operation. Intuitively, if a file
has much read access, the cloud with lower bandwidth price is
more preferred. If a file is very small, operation price occupies
a big proportion. So we let Pi = SPsi +crSPbi +crPoi.
Specifically, ai and Pi are both normalized into (0; 1).

To find out optimal n and m, we first traverse n from 2 to _,
where _is the upper limitofnand _<N.Wedonotset _toN
for two reasons: reality and complexity. For reality, n tends to
be small in practice, usually less than 10. It has much higher
probability for large n to induce degraded performance. More
specifically, if a cloud becomes unavailable, the proxy has to
get corresponding data from other m clouds (m is usually
close to n), which determines that n cannot be very large in
order to achieve good performance. For complexity,
calculating the availability of erasure coding (m; n) has very
high complexity. We have to check the availability for every
possible solution that is traversed. If we give an upper limit to
n, the availability can be calculated in polynomial running
time. Then we traverse m from 1 to n for each n. The
availability is calculated using Eq. 2. If the availability meets
the required value and the monetary cost is lower, we update
Csm and (i.e., the set of the selected clouds). If the
availability does not meet the required value, we exchange the

cloud in the current set Gs with the one in the complementary
set Gc, using a greedy method: Firstly, Gs is sorted by ai, and
Gc is sorted by Pi. Then we try to exchange the cloud in Gs
from the lowest ai, one by one, with the cloud which has the
lowest Pi in Gc but higher availability than that cloud in Gs,
until the availability meets the required value.

V. TRANSITION SCHEME

A. Transition of Storage Modes

Intuitively, when a file changes from “hot” to “cold”, we
should change its storage mode. More specifically, when the
read frequency of the file drops below or increases above a
certain value, changing storage mode can save more money.
The value is determined by the prices of clouds. Given the
available clouds including their prices and availability, we can
figure out the storage mode and the selected clouds with the
input of file’s size and read count, using Algorithm 1. We
calculate the storage modes for different file sizes and read
counts, in order to get a storage mode table (see Figure 4 in X
VII for an example). The table has two dimensions: file size
and read count. There is one corresponding storage mode for
each pair of file size and read count, but the storage modes are
the same for many different pairs. There are explicit
boundaries between different storage modes in the table.
However, it does not mean we should change the storage
mode once a file’s storage mode crosses the boundary,
because the transition of storage mode also generates cost,
which is definitely not negligible. Bandwidth is (much) more
expensive than storage space for online storage services. The
cost of one read access for a file can afford this file to be
stored for around 4 months with no read access. Thus, we
should be prudent to deal with storage mode transition. A
good transition scheme can actually save large amount of
money.

We first demonstrate the implementation of storage
mode transition: the proxy gets the data from the clouds where
the data is originally stored, and puts it into the newly selected
clouds using new storage mode. The implementation
consumes out-going bandwidth, in-going bandwidth, and
several operations (i.e., GET, DELETE, and PUT). Since
DELETE and ingoing bandwidth are free, the transition cost T
is composed of out-going bandwidth, GET, and PUT. Out-
going bandwidth is more expensive than storage, so we have
to make sure that the cost of transition can be earned back by
the new storage mode. That is, the following inequality has to
be met:

Mf>Mp+T (11)

where Mf and Mp are the monetary cost of the previous
storage mode and new storage mode respectively. They are
both calculated using the read frequency provided by
Predictor. Eq. 11 is impacted by the time period t. Since the
storage cost is storing a file of size S for a time period t and cr
is the read count during t, we should set t first in order to
calculate Mf and Mp. So, Eqg. 11 means the new storage mode
will earn back the transition cost within the time period t (t
equals 30 days in our experiments). We implement the
transition for each one month, which also equals to the time
period t.

Volume4, | ssue 22

Published by, www.ijert.org 4

Special Issue- 2016

International Journal of Engineering Research & Technology (IJERT)

I SSN: 2278-0181
ICACT - 2016 Conference Proceedings

We calculate the storage mode for each file using its
predicted read frequency in the time interval t. If the storage
mode is different from the previous one and it meets Eq. 11,
we change the storage mode of this file. The storage mode
table can be calculated in advance because it is only affected
by the available clouds, their pricing policies, and
availabilities. When deciding the storage mode for each file,
we use the read frequency and the size of the file to look up
the table for the corresponding storage mode. This table is re-
calculated through Algorithm 1, only when availabilities and
prices are modified, some clouds are kicked out due to
performance issue, or new available clouds emerge. And the
new table will be input into Algorithm 2 to accommodate
these situations. Algorithm 2 shows the detailed transition
process.

B. Complexity

Here we analyze the computational complexity of this
algorithm. The two loops in line 4 and 11 are used to look up
the table, the complexity of which can be approximately
considered constant, since the table is small and has only
limited number of values in each dimension. Specifically,
since the table is split into several pieces, we only need to find
out which piece the file belongs to. Transition cost in line 19
can also be calculated in constant time. Thus, the complexity
of this algorithm is mainly the first loop, and the worst case
complexity is O(Fn), where Fn is the number of files. In order
to reduce the complexity further, we can classify files with
similar access patterns into groups, and implement transition
in the unit of group. This is out of the scope of this paper.

VI.EVALUATION

We conduct extensive simulations to evaluate the
performance of our scheme. The simulations are driven by
two typical real-world traces. We first briefly introduce the
two collected traces and present the evaluating methodology,
then show the performance of our scheme. At last, to make the
results more convincing, we also implement the prototype
experiments on top of four mainstream commercial clouds, the
results of which prove the correctness of the simulations and
the efficacy of CHARM.

A. Datasets

The two traces are collected from AmazingStore [20] and
Corsair [21]. AmazingStore is a popular file storing and
sharing platform in China. It has been deployed and
maintained since April 2009, and has 10K log-in users
everyday. The files in this system are mainly music and video.
Corsair is a cloud storage system deployed at Tsinghua
University, China. There had been already 19,892 registered
users and 17.5 TB of data by September 2010. The files stored
in this system have diverse types. We collected the trace of
Amazing Store from January 1, 2012 to July 15, 2013 from
four main servers. For Corsair the trace is collected from
March to July 2010. Each line of the traces is a file access
record which includes timestamp, file name, file size, and
operation type (e.g., GET, PUT). The detailed properties of
the two traces are shown in Table V. We use 15 clouds in the
experiments, and they all meet the requirement of
performance. The prices of these clouds are configured

referring to the prices of current famous clouds (e.g., Amazon
S3, Windows Azure) and their data centers. We set the clouds’
availability in the interval of [99:5%; 99:95%]

B. Storage Mode Table

We generate the storage mode table based on the 15 clouds
guaranteeing 99.9999% availability. We use different file
sizes varying from 1KB to 1GB and different read counts
varying from 0 to 100 with the step of 0.1 to calculate their
corresponding storage modes (using Algorithm 1). We get
four different storage modes as shown in Figure 4 with gray
levels from 1 to 4. We only plot the read count from 0 to 3,
because the storage modes are the same (i.e., gray level 4) for
the read count larger than 3 no matter how much the file’s size
is. When the file’s size is larger than 1MB, the storage modes
have explicit vertical boundaries with different read counts.
That means, for large files, read count is the key to impact the
storage mode. When the file’s size drops below 1MB, the
operation cost has more and more impact on the total cost.
High read frequency (generating high bandwidth cost) gives
advantages to replication mechanism (i.e, m = 1). So,
similarly, high operation cost also gives advantages to
replication mechanism when the file’s size is small. That is
why gray level 4 puts its feet into the region of lower read
count and smaller file size. This storage mode table only
depends on prices of the available clouds and required
availability. If the prices change, the table will change
accordingly, becoming a different one.

C. Monetary Cost

We set different availability levels from 99.99% to
99.99999%, and run the two traces applying the five schemes
respectively. The total cost of CHARM includes
storage/bandwidth/operation costs and transition cost. The
results of AmazingStore trace are shown in Table V. Since the
read count of files in AmazingStore trace is high (i.e., 39.9
onaverage in 575 days), RepGr is better than EraGr except the
highest availability case. In order to guarantee high
availability, RepGr has to store more replicas whose storage
cost exceeds the saving on bandwidth. The cost of EraGr for
99.99% is higher than that in higher availability, because
EraGr has to reduce m to get higher availability, and it
happens to exclude the cloud with higher bandwidth cost.
CHARM has the lowest cost, it reduces about 9.3%-23.1%
compared to RepGr, and reduces about 19.3%-24.3%
compared to EraGr. From the detailed monetary cost as shown
in Table VII, we can see that CHARM spends a little more
storage cost to achieve much lower bandwidth cost. The
detailed monetary cost of other availability levels shows
similar results. RepRa and EraRa select clouds randomly, so
the cost does not show strictly increase with the increase of
availability.

D. Applying to Complex Request Pattern

Clearly, RepGr usually performs better for AmazingStore
trace while EraGr performs better for Corsair trace. CHARM
combines the merits of the two schemes to achieve the best
performance, since it picks different storage modes for the
files with different access frequency, which determines great
adaptation. Cache is a commonly used technique to relieve the

Volume4, | ssue 22

Published by, www.ijert.org 5

Special Issue- 2016

International Journal of Engineering Research & Technology (IJERT)

I SSN: 2278-0181
ICACT - 2016 Conference Proceedings

burden of back-end storage, shaping the data access pattern
that is actually served by the back-end storage. Since Amazing
Store trace has higher read frequency, we use a cache to filter
the trace to show that CHARM well applies to various access
patterns. More specifically, we use LRU for this cache with
the cache size varying from 1GB to 2000GB. Figure 6(b)
shows the total number of requests received by the back-end
storage after filtered by the cache. With the increase of the
cache, read count drops quickly. Then we apply the five
schemes to the filtered traces with 99.99999% availability.

VII. CONCLUSION

Cloud services are experiencing rapid development and
the services based on multi-cloud also become prevailing. One
of the most concerns, when moving services into clouds, is
capital expenditure. So, in this paper, we design a novel
storage scheme CHARM, which guides customers to
distribute data among clouds cost-effectively. CHARM makes
fine-grained decisions about which storage mode to use and
which clouds to place data in. The evaluation proves the
efficiency of CHARM.

REFERENCES

[1] P. Wendell, J. W. Jiang, M. J. Freedman, and J. Rexford, “Donar:
Decentralized Server Selection for Cloud Services,” 2010.

[2] H.H. Liu, Y. Wang, Y. R. Yang, H. Wang, and C. Tian, “Optimizing
Cost and Performance for Content Multihoming,” 2012.

[3] T. G. Papaioannou, N. Bonvin, and K. Aberer, “Scalia: An Adaptive
Scheme for Efficient Multi-cloud Storage,” in SC. IEEE, 2012.

[4] J. S. Plank, “Erasure Codes for Storage Systems: A Brief Primer,”
The Usenix Magazine, vol. 38, no. 6, pp. 44-50, 2013.

[5] J.S. Plank, K. M. Greenan, and E. L. Miller, “Screaming Fast Galois
Field Arithmetic using Intel SIMD Instructions,” in FAST. ACM,
2013.

[6] H. Weatherspoon and J. D. Kubiatowicz, “Erasure Coding vs.
Replication: A Quantitative Comparison,” in IPTPS. Springer, 2002.

[71 R. Rodrigues and B. Liskov, “High Availability in DHTs: Erasure
Coding vs. Replication,” in IPTPS. Springer, 2005.

[8] L M. Bomze, M. Budinich, P. M. Pardalos, and M. Pelillo, “The
maximum clique problem,” in Handbook of Combinatorial
Optimization. Springer, 1999, pp. 1-74.

[9] B. W. Kernighan and S. Lin, “An Efficient Heuristic Procedure for

Partitioning Graphs,” Bell System Technical Journal, vol. 49, no. 2,

pp. 291-307, 1970.

M. A. Shah, M. Baker, J. C. Mogul, R. Swaminathan et al.,

“Auditing to Keep Online Storage Services Honest,” in HotOS.

ACM, 2007.

[11] E. Zhai, R. Chen, D. 1. Wolinsky, and B. Ford, “Heading Off
Correlated Failures Through Independence-as-a-Service,” in OSDL
ACM, 2014.

[10]

AUTHORS BIOGRAPHY

Yogitha C received the B.E degree in Computer Science from
VTU Karnataka in 2014, and currently she is a post graduate
student pursuing M.Tech in Computer Science and
Engineering from Don Bosco Institute of Technology
kumbalgodu, Bengaluru under Visvesvaraya Technological
University Karnataka.

Her main research interests include cloud computing
and wireless sensor networks. she is currently doing her
project in Cloud Computing.

Yasahaswini B M received the B.E degree in Computer
Science from East West Institute of Technology ,VTU
Karnataka, and currently she is a working as assistant
professor in Don Bosco Institute of Technology Pursed
M.Tech in Computer Networks and Engineering from Alpha
college of engineering Bengaluru under Visvesvaraya
Technological University Karnataka.

Her main research interests
networks and wireless sensor network.

include computer

Volume4, | ssue 22

Published by, www.ijert.org 6

