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Abstract— This paper describes a method of speed and rotor 

position estimation of a brushless dc motor (BLDCM). The 

estimation of motor state variables is obtained by using an 

extended Kalman filter (EKF) technique by only using stator 

line voltages and currents. At first while estimation the voltage 

and current measuring signals are not filtered over here rather 

than other kinds of similar methods usually done. By combining 

measurements and calculations, the average value of voltage 

during sampling intervals is obtained owing to the application of 

predictive current controller which is based on the 

mathematical model of motor. The parameters considered for 

the estimation algorithm consist of two parts, one consist of 

speed and rotor position are estimated with constant motor 

parameters and other the stator resistance is estimated 

simultaneously with motor state variables. From the results it is 

seen that it’s quite possible for BLDCM to estimate speed and 

rotor position with sufficient accuracy in both steady state and 

dynamic operation. By the introducing of stator resistance 

estimation, the accuracy is increased especially working at low 

speeds.  

 

Keywords-Brushless dc motor, digital signal processor, 

extended Kalman filter, predictive current controller, speed and 

rotor position estimation. 

I.  INTRODUCTION  

The brushless dc motor (BLDCM) has trapezoidal 

electromotive force (EMF) and quasi-rectangular current 

waveforms. Three Hall sensors are usually used as position 

sensors to perform current commutations every 60 electrical 

degrees. In addition, for servo drive applications with high 

stationary accuracy of the speed and rotor position, the 

BLDCM requires a rotor position sensor, such as resolver or 

absolute encoder. All the sensors mentioned increase the cost 

and size of the motor and reduce its sturdiness. Because of 

these reasons, the BLDCM without position and speed 

sensors has attracted wide attention and many papers have 

reported on it. In most existing methods, the rotor position is 

detected every 60 electrical degrees, which is necessary to 

perform current commutations. These methods are based on: 

1) using the back EMF of the motor [1], [2]; 2) detection of 

the conducting state of freewheeling diodes in the unexcited 

phase [3]; and 3) the stator third harmonic voltage 

components [4]. Since these methods cannot provide 

continual rotor position estimation, they are not applicable for 

the sensorless drives in which high estimation accuracy of the 

speed and rotor position is required. In that case, it is 

necessary to estimate rotor position continually, not only 

every 60 electrical degrees. In [5], the rotor position of the 

BLDCM is estimated continually using measured motor 

voltages and currents with the aim of estimating flux linkage. 

At each time step, the motor current is estimated in two 

stages to correct the predicted rotor position and the 

estimated flux linkage. The estimation results have been 

obtained using offline- measured voltages and currents with a 

10- s sampling time. The accuracy of the rotor position 

estimation depends significantly on the motor parameter 

variation and accuracy of measured voltages and currents. In 

[6] and [7], the rotor position and speed of the permanent-

magnet (PM) motor have been estimated by the extended 

Kalman filter (EKF). This method is applied to the motor 

with trapezoidal EMF and sinusoidal waveform currents, and 

is not directly applicable to the motor with rectangular 

currents. In this paper, a method is presented by means of 

which the speed and rotor position of the BLDCM are 

continually estimated. This method is based on the 

application of the EKF, which is an optimal recursive 

estimation algorithm for nonlinear systems that are disturbed 

by random noise. The EKF approach appears to be a viable 

and computationally efficient candidate for the online 

estimation of the speed and rotor position of the PM motors 

[8]. This is possible since mathematical models of motors are 

sufficiently well known. As is different from most of the 

similar methods dealing with estimation of the electric 

machine variables, in which the measuring voltages and 

currents are filtered in order to eliminate high, harmonic 

components [6], [8], with this method, voltages and currents 

are measured without previous filtering. A special procedure 

is applied to obtain the line voltages average value combining 

measurements and calculations, which is made possible 

owing to the application of the predictive current controller. 

The experimental results of the speed and rotor position 

estimation are obtained using two variants of the estimation 

algorithm. In the first of them, the speed and rotor position 

are estimated with constant motor parameters and, in the 

second variant, the motor variables and stator resistance are 

estimated simultaneously. At the end of this paper, the 

characteristics of the sensorless drive are analyzed. 
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Sensorless control of a brushless dc motor drive essentially 

means vector control of the motor without any speed sensor. 

An incremental shaft mounted speed encoder usually a 

optical type is used here for the closed loop speed or position 

control in both vector and scalar controlled drives, a speed 

signal is also required in indirect vector control in the whole 

speed ranges, and in the direct vector control for low speed 

ranges, including zero speed start up operation, a speed 

encoder is undesirable in a drive because it adds cost and 

reliability problems, besides the need of shaft extensions and 

mounting arrangements. It is possible to estimate the speed 

signal from machine terminal voltages and currents with the 

help of DSP processors. 

 

II SPEED ESTIMATION METHODS USING AN 

EXTENDED KALMAN FILTER 

  

The extended Kalman filter is basically a full order 

stochastic observer for the recursive optimum state estimation 

of non linear dynamical systems in real time by using signals 

that are corrupted by noise; the EKF can also be used for 

unknown parameters estimation such as rotor 

resistance  Rr or joint state or parameter estimation. The 

luenberger observer is a deterministic observer without noise 

in comparison with EKF, and is applicable to linear time 

invariant systems. The noise source in EKF takes in to 

account measurement and modeling inaccuracies. Normally 

EKF are applicable to non linear systems. 

  

The augmented machine model is given by 

           
d(X) 

dt 
= AX + BVs                      (1)                          

 X = [idss iqss ψdrs ψqrs]T           (2)                                                           

 Vs = [vdss vqss 0 0]T                                   (3)     

   Where,  

 idss iqss       - Stator current 

 ψdrs ψqrs    - Rotor flux 

  vdss vqss    - Stator voltage 

 Vs                 - Input vector 

 ωr                - Rotor speed 
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III MACHINE MODEL OF EKF DEVELOPMENT 

The kalman filter algorithm uses the full machine 

dynamic model, where the speed ωr  is considered as 

parameter as well as a state. 
           Y = CX                                    (6)                                                                   

Where,        𝐴 =

[
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              X = [idse iqss ψdrs ψqrs ωr]
T                          (7)                                                

                                       

              B =

[
 
 
 
 
 

1

σLS
0

0
1

σLS

0 0
0 0
0 0 ]

 
 
 
 
 

                                                   (8)

                                                                          

               C = [
1 0 0 0 0
0 1 0 0 0

]                                      (9)                                                                    

          
               Y = [idss iqss]T = is                                        (10)  

 

        Here vs=[vdss vqss]T  is the input vector. Is of the fifth 

order, where speed ωr is a state as well as a parameter. If the 

speed variations is considered negligible, then dωr dt = 0⁄ . 

This is a valid consideration if the computational sampling 

time is small or load inertia is high. With speed ωr  as a 

constant parameter, the machine model used in EKF is linear. 

The block diagram of EKF algorithm,                                                                    

 
Figure 1 Show that Extended Kalman Filter for Estimation of Speed 

 

Vol. 5 Issue 05, May-2016

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV5IS050587

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

478



                                                                                        
 

 Where,  

  V, W - noise 

  K       - Kalman gain 

For digital implementation of the EKF the model must be 

discredited in the following form, 

 

X(k+1)= AdX(k) + BdU(k)  (11)                                       

Y(k)=Cd X(k)                        (12) 

The brushless dc motor with the noise sources, V and W, 

which correspondingly give the model equations in discrete 

forms as 

X(K+1)= AdX(k) + BdU(k) +  V(k)               (13)                       

Y(k)      = Cd X(k) +  W(k)               (14)                       

Where, 

          V(k), W(k) - Zero mean 

          X(k), Y(k)  - Gaussian noise vectors 

 

Both these parameters are independent each other. The 

statistics of noise and measurement are given by three 

covariance matrices. The sequence of EKF includes basic 

computational expressions. Basically it has two main stages 

prediction stage and filtering stage. In prediction stage, the 

next predicted values of states 𝑋∗(k+1) are calculated by the 

machine model and the previous values of the estimated 

states. In vector Q. in the filtering stage, the next estimated 

state 𝑋^(K+1) are obtained from the predicted state 𝑋∗(k+1) 

by adding the correction term eK (correction term) where e = 

Y(K+1) – 𝑌^(K+1)  and k = kalman gain. the kalman gain is 

optimized for state estimation errors. The EKF computations 

are done in recursive manner so that e approaches 0. The 

algorithm required for the design of the system is mentioned 

below consisting of six steps. 

A.Extended Kalman Filter Flow Diagram 
 

Step 1    Initialize state vector and covariance matrices 

X(0), Qo, R0, P0 

                                                             vdss vqss                                                    

Step 2    Predict the state vectors                 
     X*(k+1,k) = X*(k+1) = Ad𝑋

^(k) + BdU(k) 

 

Step 3   Estimate P(k+1) covariance matrix 

    P*(k+1) = f(k+1) P^(k)fT(k+1)+Q 

    Where 

            f(k+1) = 
𝛿

𝛿𝑋
[𝐴𝑑𝑋 + 𝐵𝑑𝑈] 

 

Step 4 Compute kalman filter gain                         K 

K(k+1) = P*(k+1) hT(k+1)[ h(k+1) P*(k+1)              

hT(k+1)+R ]-1 

            H(k+1) = 
δ

δX
[CdX]x=x

*
(k+1) 

                                                          idss iqss      
Step 5 Estimate state vectors                        

           X^(k+1) = X*(k+1) + K(k+1)[Y^(k+1)]        ωr    

 

Step 6 Update error covariance matrixes 

            P^(k+1) = P*(k+1) - K(k+1) h(k+1) P*(k+1) 

B. Block Diagram of Bldc Motor With Extended Kalman 

Filter Flow Diagram 

The block diagram representation of the experimental 

setup is shown in the figure.2 The blocks consist of a PID 

controller, non-linear controllers, switching table, inverter, 

extended kalman filter, digital to analog converter and of 

course brushless DC motor connected via hall sensors. 

 
Figure 2 Show that Block Diagram BLDC Motor with Extended Kalman 

Filter  

 

Here the brushless DC motor which is actually a 

synchronous motor is used. The motor is exited with a 

trapezoidal wave input in which it is obtained by a switching 

analogy which is made by proper switching made by the 

switching logic table. At first it is made worked by giving dc 

input to the system and then it is applied to the MOSFET 

control switch. Then to the inverter, BLDC is made run. The 

part of kalman filter is to generate estimated values of stator 

linkage flux, actual velocity of rotor and position and stator 

flux phasor using measured values of currents and voltage 

from motor terminals. From these estimated values it is feed 

backed to the PID controllers and then to the switching logic 

table. The PID controller makes reference of electromagnetic 

torque. From the Hall Effect sensors which are feed backed to 

the MOSFET switches is one which works on stator and rotor 

position of the BLDC motor. These sensors sense the position 

of the system by sensing the electromagnetic force obtained 

by the stator and rotor positions. Hence these positions are 

made in to zeros and one’s and fed back to the controllers via 

digital to analog converters. The non-linear system takes 

these references and then makes proper switching to the 

motor. The extended kalman filter in which it is a non-linear 

version of kalman filters which linearizes about an estimator 

of the current mean and covariance. In case of well-defined 

transition model EKF is used. It generates estimated values of 

stator linkage flux, actual velocity of rotor and position of 

stator flux phasor using measured values of current and 

voltage from motor terminals. From these values the torque 

ripple is controlled by the PID controller on the brushless DC 

motor and hence the ripple is minimized.  
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IV. SIMULATION MODEL OF PROPOSED BLDC 

MOTOR WITH AN EXTENDED KALMAN FILTER 

TECHNIQUE 

 
Figure 3 show that Simulation of BLDC Motor with an Extended 

Kalman Filter Technique. 

Simulink tool is used to obtain the model of brushless DC 

motor using an extended kalman Filter technique. Here apart 

from normal BLDC motor speed controls the stator flux and 

mechanical state estimated values are detected by the 

extended kalman filters. It generates estimated values of 

stator linkage flux, actual velocity of rotor and position of 

stator flux phasor using measured values of current and 

voltage from motor is taken and fed back to the switching 

logic gates. For well defined transition model extended 

kalman filter technique is used and in common they are used 

in non-linear systems. The stator current and rotor speed are 

taken and given to the linear random systems. These systems 

take the values randomly by analyzing the systems and fed to 

the kalman filters. These filters are state observers specially 

designed for non linear systems in which estimation of 

mechanical states, in order to achieve sensorless control of 

synchronous machines or DC machines with electromagnetic 

excitation and starting cage. In principle kalman filter is a 

state observer that establishes the best approximation by 

minimization of square error for the state variable of a 

system, subjected at its both input and output to the random 

disturbances. 

 
Figure 4 show the Input Voltage of the Proposed System 

 

A. Speed of the Motor without Extended Kalman Filter 

Technique 

The speed response of a brushless DC motor without an 

extended kalman filter technique is shown in the figure 5. 

Here the speed lies in (0 to 1000) rpm. But here steady speed 

is not maintained because of the torque ripple caused in the 

system. The speed Varies at each phase of time. 

 
Figure 5 shows the Motor Speed without Using Kalman Filter 

 

B.Torque Ripple Waveform of the Proposed BLDC Motor 

Torque ripple produced in the system is caused by many 

factors such as cogging torque, interaction between MMF and 

air gap flux harmonics of mechanical imbalance. Thus it 

leads to minimization of the motor rated speed. Torque ripple 

should be minimized in order to obtain rated speed. Here an 

extended kalman filter technique is used in order to obtain 

stator flux and mechanical state estimation. It generates 

estimated values of stator linkage flux, actual velocity of 

rotor and position of stator flux phasor using measured values 

of current and voltage from motor terminals. The extended 

kalman filter method is specially designed for sensorless 

control of direct torque controlled motor hence by these 

technique the ripple is controlled in the system and thus the 

speed also controlled by using the proposed technique as the 

speed is directly proportional to speed. 

Torque ripple produced in the system is caused by many 

factors such as cogging torque, interaction between MMF and 

air gap flux harmonics of mechanical imbalance. Thus it 

leads to minimization of the motor rated speed. Torque ripple 

should be minimized in order to obtain rated speed. The 

torque ripple is a major factor which affects the efficiency of 

the motor in means of its energy losses and in reduction of 

rated speed of the motor. The torque ripple of the system is 

obtained by different techniques like input voltage varying 

method, current control algorithm method and frequency 

control method, unipolar and bipolar control. Here an 

extended kalman filter technique is used to reduce the ripple 

in the system. 
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Figure 6 shows that Torque Ripple Obtained in a BLDC Motor 

C.Speed of the Motor With An Extended Kalman Filter 

Technique 

 
Figure7 shows that Speed of the Motor with An Extended Kalman Filter 
 

Here the torque ripple of the BLDC motor without using 

an extended kalman filter technique is obtained from the 

figure 8 where from the figure the ripple lies between (+2 to -

6) where the ripple is high. 

 

 
Figure 8 shows that Torque Ripple in Proposed System by Using 

Kalman Filter Technique 

 

 

 

 

 

V. HALL SENSOR AND ITS SWITCHING LOGICS 

FOR PROPOSED SYSTEMS 

 
Figure 9 shows that Hall Sensors Simulation 

 

Phases commutation depends on the hall sensor values. 

When motor coils are correctly supplied, a magnetic field is 

created and the rotor moves. The most elementary 

commutation driving method used for BLDC motors is an on-

off scheme: a coil is either conducting or not conducting. 

Only two windings are supplied at the same time and the 

third winding is floating. Connecting the coils to the power 

and neutral bus induces the current flow. This is referred to as 

trapezoidal commutation or block commutation. To 

command brushless DC motors, a power stage made of 3 half 

bridges is used. For motors with multiple poles the electrical 

rotation does not correspond to a mechanical rotation. A four 

pole BLDC motor uses four electrical rotation cycles to have 

one mechanical rotation. 
 

Table1. Switching States and Voltage Space Vectors 
VSV Sa Sb Sc 

U1 1 0 0 

U2 1 1 0 

U3 0 1 0 

U4 0 1 1 

U5 0 0 1 

U6 1 0 1 

U7 0 0 0 

U8 1 1 1 
       

The Hall Effect sensors are usually positioned so 

that the magnets change its values before the rotor is actually 

in the next commutation position. This allows for the next 

commutation to be made before the rotor actually becomes 

stuck at one position. With Hall effect sensors, a simple 

BLDC  control system needs  only 9 pins from a 

microcontroller; six pins to control the  H-bridge  and  three  

pins to sense the Hall effect switches. Software up to this 

point is also simple. A table in the  memory is  enough  for 

the  processor to  determine  the  next commutation with  the  

six-step process and the Hall effect sensor outputs. 

Table1.Shows the switching states of Hall Effect sensors. 
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VI CONCLUSION 
 

The paper develops the possibility of estimation of speed 

and rotor position of a BLDCM using an EKF, with sufficient 

accuracy in both steady state and dynamic modes of 

operations. The paper studies the interaction between closed 

loop and state observer. From the simulation results it is 

shown that the dynamic behavior of kalman filter based 

control system is quite good. Here the machine electrical and 

mechanical parameters are different from nominal values, 

which are used for the design of controllers and kalman filter 

and for initialization of incorrect estimated positions. 
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