
 A Protected Cloud Storage System with Safe Information Forwarding

C. Kavinilavu,
Computer Science and Engineering, PRIST University, Trichy.

Abstract

In cloud storage system provide several storage

services over the internet. Data’s are stored in third

party’s cloud storage system. It causes over data

confidentiality. Encryption schemes to protect the

data confidentiality but also the functionality to be

limited in storage system because few operations

only supported over encrypted data. In this paper,

propose a threshold proxy re-encryption scheme

and integrate a erasure code such that distributed

storage system. In this storage system not only

support secure and robust data it also support

forwarding data from one user to another user

without retrieving the data .In proposed system

support encoding operation as well as forwarding

over encoded and encrypted messages. In this

system support encryption, encoding and

ffpforwarding operations. .To analyzes and suggests

suitable parameters for the number of copies of a

message dispatched to storage servers and the

number of storage servers queried by a key server.

These parameters allow more flexible adjustment

between the number of storage servers and

robustness.

Index Terms—Decentralized erasure code, proxy

re-encryption, threshold cryptography, secure

storage system.

1. Introduction

 Data robustness is a major requirement for

storage systems. There have been many proposals of

storing data over storage servers. One way to provide

data robustness is to replicate a message such that

each storage server stores a copy of the message. It is

very robust because the message can be retrieved as

long as one storage server survives. Another way is

to encode a message of k symbols into a codeword of

n symbols by erasure coding. To store a message,

each of its codeword symbols is stored in a different

storage server. A storage server provides a tradeoff

between the storage size and the tolerance threshold

of failure servers. A decentralized erasure code is an

erasure code that independently computes each

codeword symbol for a message. A decentralized

erasure code is suitable for use in a distributed

storage system. After the message symbols are sent to

storage servers, each storage server independently

computes a codeword symbol for the received

message symbols and stores it. This finishes the

encoding and storing process. The recovery process

is the same. Storing data in a third party’s cloud

system causes serious concern on data

confidentiality. In order to provide strong

confidentiality for messages in storage servers, a user

can encrypt messages by a cryptographic method

before applying an erasure code method to encode

and store messages. When he wants to use a message,

he needs to retrieve the codeword symbols from

storage servers, decode them, and then decrypt them

by using cryptographic keys. There are three

problems in the above straightforward integration of

encryption and encoding. First, the user has to do

most computation and the communication traffic

between the user and storage servers is high. Second,

the user has to manage his cryptographic keys. If the

user’s device of storing the keys is lost or

compromised, the security is broken. Finally, besides

data storing and retrieving, it is hard for storage

servers to directly support other functions. For

example, storage servers cannot directly forward a

user’s messages to another one. The owner of

messages has to retrieve, decode, decrypt and then

forward them to another user. In this paper, address

the problem of forwarding data to another user by

storage servers directly under the command of the

data owner. With this consideration, to propose a new

threshold proxy re-encryption scheme and integrate it

with a secure decentralized code to form a secure

distributed storage system. The encryption scheme

supports encoding operations over encrypted

messages and forwarding operations over encrypted

and encoded messages. The tight integration of

encoding, encryption, and forwarding makes the

Storage system efficiently meet the requirements of

data robustness, data confidentiality, and data

forwarding. Accomplishing the integration with

consideration of a distributed structure is challenging.

Our system meets the requirements that storage

servers independently perform Encoding and re-

encryption and key servers independently perform

partial decryption. Moreover, we consider the system

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 1, January- 2013
ISSN: 2278-0181

1www.ijert.org

IJ
E
R
T

IJ
E
R
T

in a more general setting than previous works. This

setting allows more flexible adjustment between the

number of storage servers and robustness.

2. Related Work

 Briefly review distributed storage systems,

proxy re-encryption schemes, and integrity checking

mechanisms. [1] A decentralized architecture for

storage systems offers good scalability, because a

storage server can join or leave without control of a

central authority. To provide robustness against

server failures, a simple method is to make replicas

of each message and store them in different servers.

However, this method is expensive as z replicas

result in z times of expansion. The server does not

know the plaintext during transformation. Storage

server failure is modeled as an erasure error of the

stored codeword symbol. Random linear codes

support distributed encoding, that is, each codeword

symbol is independently computed. To store a

message of k blocks, each storage server linearly

combines the blocks with randomly chosen

coefficients and stores the codeword symbol and

coefficients. To retrieve the message, a user queries k

storage servers for the stored codeword symbols and

coefficients and solves the linear system. [2]

Proposed some proxy re-encryption schemes and

applied them to the sharing function of secure storage

systems. In their work, messages are first encrypted

by the owner and then stored in a storage server.

When a user wants to share his messages, he sends a

re-encryption key to the storage server. The storage

server re-encrypts the encrypted messages for the

authorized user. Thus, their system has data

confidentiality and supports the data forwarding

function. Our work further integrates encryption, re-

encryption, and encoding such that storage robustness

is strengthened. A user can decide which type of

messages and with whom he wants to share in this

kind of proxy re-encryption schemes. In a key-private

proxy re-encryption scheme, given a re-encryption

key, a proxy server cannot determine the identity of

the recipient. This kind of proxy re-encryption

schemes provides higher privacy guarantee against

proxy servers. Although most proxy re-encryption

schemes use pairing operations, there exist proxy re-

encryption schemes without pairing [4]. Another

important functionality about cloud storage is the

function of integrity checking. After a user stores

data into the storage system, he no longer possesses

the data at hand. The user may want to check whether

the data are properly stored in storage servers. The

concept of provable data possession [3], later, public

auditability of stored data is addressed in [5].

Nevertheless all of them consider the messages in the

clear text form.

3. System Model

 Figure 1. General system model

 As shown in Fig. 1,our system model

consists of users, n storage servers SS1 ; SS2 ;

. . . ; SSn , and m key servers KS1 ; KS2 ; . . . ;

KSm . Storage servers provide storage services

and key servers provide key management

services. They work independently. Our

distributed storage system consists of four

phases: system setup, data storage, data

forwarding, and data retrieval. These four

phases are described as follows.

3.1. System Setup

 In the system setup phase, the system manager

chooses system parameters and publishes them. Each

user A is assigned a public-secret key pair (PKA; SKA)

and ShareKeyGen (). User A distributes his secret key

SKA to key servers such that each key server KSi

holds a key share SKA; and the public key is kept by

user.

3.2. Data Storage

 In the data storage phase, user A encrypts

his message M and dispatches i t to storage

servers. A message M is decomposed i n t o k

blocks m1; m2; . . .; mk and has an identifier ID.

User A encrypts each block mi into a ciphertext

Ci and sends it to v randomly chosen storage

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 1, January- 2013
ISSN: 2278-0181

2www.ijert.org

IJ
E
R
T

IJ
E
R
T

servers. Upon receiving ciphertexts from a

user, each storage server linearly combines

them with randomly chosen coefficients into a

codeword symbol and stores it. Note that a

storage server may receive less than k message

blocks and assume that all storage servers know

the value k in advance.

3.3. Proxy Re-encryption Scheme

 The proxy re-encryption scheme supports

encoding, forwarding, and partial decryption

operations in a distributed way. By using the

threshold proxy re-encryption scheme, we present a

secure cloud storage system that provides secure data

storage and secure data forwarding functionality in a

decentralized structure. Messages are first encrypted

by the owner and then stored in a storage server.

When a user wants to share his messages, he sends a

re-encryption key to the storage server. The storage

server re-encrypts the encrypted messages for the

authorized user. Proxy re-encryption schemes can

significantly decrease communication and

computation cost of the owner. Proxy re-encryption

schemes significantly reduce the overhead of the data

forwarding function in a secure storage system.

3.4. Data Forwarding

 A secure cloud storage system that supports the

function of secure data forwarding by using a proxy

re-encryption scheme. In the data forwarding phase, a

user runs Key Recover() and Re Key Gen() send to

storage server, and each storage server performs Re

Enc().In the data forwarding phase, user A forwards

his encrypted message with an identifier ID stored in

storage servers to user B such that B can decrypt the

forwarded message by his secret key. To do so, A

uses his secret key SKA and B’s public key PKB to

compute a re-encryption key RK
ID

A→B and then sends

RK
ID

A→B to all storage servers. Each storage server

uses the re-encryption key to re-encrypt its codeword

symbol for later retrieval requests by B. The re-

encrypted codeword symbol is the combination of

cipher texts under B’s public key. In order to

distinguish re-encrypted codeword symbols from

intact ones, we call them original codeword symbols

and re-encrypted codeword symbols, respectively.

3.5. Data Retrieval

 In the data retrieval phase, user A requests to

retrieve a message from storage servers. The message

is either stored by him or forwarded to him. User A

sends a retrieval request to key servers. Upon

receiving the retrieval request and executing a proper

authentication process with user A, each key server

KSi requests u randomly chosen storage servers to get

codeword symbols and does partial decryption on the

received codeword symbols by using the key share

SKA; I. Finally, user A combines the partially

decrypted codeword symbols to obtain the original

message M.

4. Construction of Secure Cloud Storage

System

 Before presenting our storage system,

briefly introduce the algebraic setting, the

hardness assumption, an erasure code over

exponents, and our approach.

Bilinear map:

 Let G1 and G2 be cyclic multiplicative groups

with a prime order p and g ε G 1 be a generator. A

map is a bilinear map ẽ:G1xG1→G2 is efficiently

computable and has the properties of

bilinearity and Nondegeneracy: for any x,yεz*p ,

ẽ(g
x
,g

y
) = ẽ(g¸ g)

xy
and ẽ(g¸g) is not the identity

element in G 2. Let Gen (1
λ
) be an algorithm

generating (g,ẽ,G1,G2,p) where λ is the

length of p. Let xεR X denote that x is

randomly chosen from the set X.

Decisional bilinear Diffie-Hellman assumption:
 This assumption is that it is is

computationally infeasible to distinguish the

distributions (g, gx , gy , gz ,ẽ(g¸g)
xyz

 and (g, gx ,

gy, gzẽ(g¸g)
r
) ewhere x; y; z; rεRZ*p

 probabilistic

polynomial time algorithm A, the following is

negligible (in λ).

|pr[A(g,g
x
,g

y
,g

z,
,Qb)=b:x,y,z,rεRZ

*
p,Q0=ẽ(g,g)

xyz
;Q1=

ẽ(g,g)r;bεR{0,1}]-½|.

Erasure coding over exponents:

 Consider that the message domain is the cyclic

multiplicative group G2 described above. An encoder

generates a generator matrix G=[gi,j] for 1≤i≤k,1≤j≤n

as follows: for each row, the encoder randomly

selects an entry and randomly sets a value from Z
*

p to

the entry. The encoder repeats this step v times with

replacement for each row. An entry of a row can be

selected multiple times but only set to one value. The

values of the rest entries are set to 0. Let the message

be (m1,m2,...mk)εGk
2. The encoding process is to

generate(w1,w2...wn)εG
n
2. Where wj=m1

g1j
m2

g2j
...mk

gkj

for 1≤j≤n. The first step of the decoding process is to

compute the inverse of a kxk submatrix k of G. Let k

be [gi,ji] for 1≤i,ji≤k. Let k-1=[di,j]i≤1,j≤k. The final step

of the decoding process is to compute mi=wj1
d1,i

wj2
d2,i

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 1, January- 2013
ISSN: 2278-0181

3www.ijert.org

IJ
E
R
T

IJ
E
R
T

for 1≤i≤k.

Our approach:

 A threshold proxy re-encryption scheme with

multiplicative homomorphic property. An encryption

scheme is multiplicative homomorphic if it supports a

group operation Θ on encrypted plaintexts without

decryption

D(SK,E(PK,m1) ΘE(PK,m1)) = m1 · m2,

Where E is the encryption function, D is the

decryption function, and(Pk,Sk) is a pair of public key

and secret key. Given two coefficients g1 and g2, two

message symbols m1 and m2 can be encoded to a

codeword symbol m1
g1m2

g2 in the encrypted form

C=E(PK,m1)
g1

ΘE(PK,m2)
g2

=E(PK,m1
g1

·m2
g2

)

Thus, a multiplicative homomorphic encryption

scheme supports the encoding operation over

encrypted messages. To convert a proxy re-

encryption scheme with multiplicative homomorphic

property into a threshold version. A secret key is

shared to key servers with a threshold value t via the

Shamir secret sharing scheme [26], where t ≥ k. In

our system, to decrypt for a set of k message

symbols, each key server independently queries 2

storage servers and partially decrypts two encrypted

codeword symbols. As long as t key servers are

available, k codeword symbols are obtained from the

partially decrypted ciphertexts.

5. Secure Data Forwarding Algorithm

 The algorithm SetUp(1
λ
) generates the parameter

µ. First, the user locally stores the secret key.

SetUp(1
λ
): Run Gen(1

λ
) to obtain

(g,h,ẽ,G1,G2,p),where ẽ: G1x G1→ G2 is a bilinear

map, g and h are generators of G1.Both G1 and G2

have the prime order P.Set µ=(g,h,ẽ,G1,G2,p,f),

where f: Zp
*
x{0,1}

*
→Zp

*
 is a one way hash function.

 KeyGen(µ): For a user A, the algorithm selects

a1,a2,a3εRZp
*
 and sets

PKA = (ga1
, h

a2
)¸ SKA = (a1; a2; a3);

ShareKeyGen(SKA,t,m): This algorithm shares the

secret key SKA of a user A to a set m key servers by

using two polynomials fA,1(z) and fA,2(z) of degree (t-

1) over the finite field GF(p)

 fA,1(z)=a1+v1z+v2z
2
+...+vt-1z

t-1
(modp),

 fA,2(z)=a2
-1

+v1z+v2z
2
+...+vt-1z

t-1
(modp),

where v1, v2... vt-1εRZp
*
.The key share of the secret

key SKA to the key server KSi is SKA,i=(fA,1(i),

fA,2(i)),where 1≤i≤m. Next to compute the identity

token and performs the encryption algorithm Enc(·)

and encoding operation.

Enc(PKA,τ,m1,m2…mk): For 1≤i≤k, this algorithm

computes

 Ci=(0,αi,β,γi)=0,g
ri
,τ,mi,ẽ(g

α1
,τ

ri
)),

Where riεRZp
*
, 1≤i≤k and 0 is the leading bit

indicating an original cipertext.

Encode(C1, C2….,Ck): For each cipertext Ci, the

algorithm randomly selects a coefficient gi. If some

cipertext Ci is (0,1,τ,1),the coefficient gi is set to 0.

Let Ci=(0, αi,β,γi) the encoding process is to compute

an original codeword symbol C'.

C'= (0,∏
k

i=1(αi
gi

),β,∏
k
i=1(γi

gi
))

 = (0,gr1,τ,Wẽ(g,τ)a1r')

Where W=∏
k
i=1mi

gi
 and r'=Σ

k
i=1giri. The encoded

result is (C',g1,g2,…gk). If user A to forward a

message to another user to perform

KeyRecover(),ReKeyGen(), and ReEnc().

KeyRecover(SKA,i1,SKA,i2,….,SKA,it): Let

T={i1,i2,it}.This algorithm recovers a1 is lagrange

interpolation as follows.

a1 =ΣsεT(fA,1(s)∏s'εT/{s}-s'/s-s')mod p.

ReKeyGen(PKA, SKA,ID, PKB): This algorithm

selects eεRZp
*
 and computes

RKID
A→B=((hb2)a1(f(a3,ID)+e),ha1,e).

ReEnc(RK
ID

A→B,C'): In this algorithm to shares the

codeword symbol let C'=(0,α,β,γ)=(0,g
r'
,τ,Wẽ(g

a1
,τ

r'
))

for some r' and some W, and

RK
ID

A→B=((h
b2

)
a1(f(a3,ID)+e)

,h
a1,e

) for some e. The re-

encrypted codeword symbol is computed as follows:

C'=(1,α, hb2,a1(f(a3,ID)+e),γ.ẽ(α, ha1,e))

 =(1,g
r'
,h

b2,a1(f(a3,ID)+e)
,Wẽ(g,h)

a1r'(f(a3,ID)+e)
).

The leading bit indicates C' is a re-encrypted

cipertext. If user A retrieves his own Message to

perform ShareDec() and combine() operation.

ShareDec(SKj,Xi): Xi is a codeword symbol, where

Xi= (b,α,β,γ) and b is the indicator for original and re-

encrypted codeword symbols. SKj is a key share,

where SKj=(sk0,sk1). By using the key share SKj, the

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 1, January- 2013
ISSN: 2278-0181

4www.ijert.org

IJ
E
R
T

IJ
E
R
T

partially decrypted codeword symbol ζi,j of Xi is

generated as follows:

 ζi,j=(b,α,β,β
skb

,γ).

Combine(ζi1,j1,ζi2j2, . . . ζit,jt): Let a partially

decrypted codeword symbol ζi,j be (b, αi,j,βi,j,β'i,j,γi,j).

This algorithm combines t partially decrypted

codeword symbols, where βi1,j1=βi2,2=···=βit,jt=τ,

j1≠j2≠····≠jt and there are at least k distinct values in

{i1,i2,….it}. Let Sj={ j1, j2, ….jt} and

S={(i1,j1),(i2,j2)……(it,jt)} Without loss of generality,

let S1={i1,i2,….ik} be k distinct values in {i1,i2,….it}.

6. Analysis of Results

 In the data storage phase, a user runs the Enc(·)

algorithm and each storage server performs the

Encode(·) algorithm. In the Enc(·) algorithm,

generating each αi requires a Exp1, and generating

each γi requires a Exp1, a Pairing, and a Mult2.

Hence, for k blocks of a message, the cost is (k

Pairing + 2k Exp1 + k Mult2). For the Encode(·)

algorithm, each storage server encodes k ciphertexts

at most. The cost is k Exp1+(k-1) Mult1 for

computing α and k Exp2+ (k-1) Mult2 for computing

γ.

 In the data forwarding phase, a user runs

KeyRecover(·) and ReKeyGen(·) and each storage

server performs ReEnc(·). In the KeyRecover(·)

algorithm, the computation cost is O(t
2
) Fp. In the

ReKeyGen(·) algorithm, the computation cost is a

Exp1. In the ReEnc(·) algorithm, the computation cost

is a Pairing and a Mult1.

 In the data retrieval phase, each key server runs

the ShareDec(·) algorithm and the user performs the

Combine(·) algorithm. In the ShareDec(·) algorithm,

each key server performs a Exp1 to get β
skb

 for a

codeword symbol. For a successful retrieval, t key

servers would be sufficient; hence, for this step, the

total cost of t key servers is t Exp1. In the Combine(·)

algorithm, it needs the computation of the Lagrange

interpolation over exponents in G1, the computation

of the encoded blocks wj' from the partially decrypted

codeword symbols ζi,j',s, and the decoding

computation which needs to perform the matrix

inversion and recovery of blocks mi' from the

encoded blocks wj',s. The Lagrange interpolation

over exponents in G1 needs O(t2) Fp, t Exp1, and (t-1)

Mult1. Computing an encoded block wj needs one

Pairing and one modular division, which takes 2

Mult2. As for the decoding computation, the matrix

inversion takes O(k
3
) arithmetic operations over

GF(p), and the decoding for each block takes k Exp2

and (k-1) Mult2.

7. Conclusion

 In this paper, consider a cloud storage system

consists of storage servers and key servers. To

integrate a newly proposed threshold proxy re-

encryption scheme and erasure codes over exponents.

The threshold proxy re-encryption scheme supports

encoding, forwarding, and partial decryption

operations in a distributed way. To decrypt a message

of k blocks that are encrypted and encoded to n

codeword symbols, each key server only has to

partially decrypt two codeword symbols in our

system. By using the threshold proxy re-encryption

scheme, to present a secure cloud storage system that

provides secure data storage and secure data

forwarding functionality in a decentralized structure.

Our storage system and some newly proposed file

systems and storage system are highly compatible.

Our storage servers act as storage nodes in a content

addressable storage system for storing content

addressable blocks. Our key servers act as access

nodes for providing a front-end layer such as a

traditional file system interface.

8. References

[1] A. Adya, W.J. Bolosky, M. Castro, G. Cermak,

R. Chaiken, J.R. Douceur, J. Howell, J.R. Lorch, M.

Theimer, and R. Wattenhofer,“Farsite: Federated,

Available, and Reliable Storage for anIncompletely

Trusted Environment,” Proc. Fifth Symp. Operating

System Design and Implementation (OSDI), pp. 1-

14, 2002.

[2] G. Ateniese, K. Fu, M. Green, and S.

Hohenberger, “Improved Proxy Re-Encryption

Schemes with Applications to Secure Distributed

Storage,” ACM Trans. Information and System

Security, vol. 9, no. 1, pp. 1-30, 2006.

[3] G. Ateniese, R. Burns, R. Curtmola, J. Herring,

L.Kissner, Z. Peterson, and D. Song, “Provable Data

Possession at Untrusted Stores,” Proc. 14th ACM

Conf. Computer and Comm. Security (CCS), pp.

598-609, 2007.

 [4] J. Shao and Z. Cao, “CCA-Secure Proxy Re-

Encryption without Pairings,” Proc. 12th Int’l Conf.

Practice and Theory in Public Key Cryptography

(PKC), pp. 357-376, 2009.

[5] C. Wang, Q. Wang, K. Ren, and W. Lou,

“Privacy-Preserving Public Auditing for Data Storage

Security in Cloud Computing,”Proc. IEEE 29th Int’l

Conf. Computer Comm. (INFOCOM), pp. 525-533,

2010.

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 1, January- 2013
ISSN: 2278-0181

5www.ijert.org

IJ
E
R
T

IJ
E
R
T

