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Abstract 
 Object-Oriented metrics are more 

beneficial for the software engineers. 

Object-oriented design and development is 

becoming very popular in software 

development environment. Object oriented 

development requires not only a different 

approach to design and implementation, it 

requires a different approach to software 

metrics. In the current paper, we use 

logistic regression to investigate the 

threshold values against the bad smell for 

the Chidamber and Kemerer(CK) metrics 

at five different levels. Two versions of 

jfreechart were used as a dataset to 

validate the study. Only the significantly 

associated metrics were considered for 

finding the threshold values.  The results 

indicate that the CK metrics have threshold 

effects at various risk levels and some 

metrics have useful threshold value at 

different levels to identify the bad smell. 
 

Keywords 
Object-oriented metrics, Threshold values, 
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I.    INTRODUCTION 
 

Software quality has been a major 

challenge in various software projects 

since years. The quality of software can be 

evaluated using different types of software 

metrics. Although it has always been the 

major concern in software development 

but still lacks the outline of standards 

which can measure it [4]. As quality is 

effected by maintainability, in order to  

 

 

achieve it one needs to know what 

characteristics of a product actually affects 

it. In their work, has emphasized the 

factors that decrease maintenance effort. 

These are use of structured techniques, 

Use of modern software, Use of automated 

tools, Use of data-base techniques, Good 

data administration, and experienced 

maintainers. Modification of a software 

product after delivery to correct faults, to 

improve performance or other attributes, or 

to adapt the product to a modified 

environment. Basically, this means that 

any activity that modifies software product 

after its release is software maintenance. 

Adaptive maintenance is the modification 

of a software product performed after 

delivery to keep a computer program 

usable in a changed or changing 

environment. Corrective maintenance is 

the reactive modification of a software 

product performed after delivery to correct 

discovered faults. Perfective maintenance 

is the modification of a software product 

after delivery to improve performance or 

maintainability [11]. Fowler and Beck 

have informally described bad smells in 

code as bad or inconsistent parts of the 

design of an Object-oriented System. 

Flower has identified 22 code smells and 

associated each of them with the 

refactoring transformations that may be 

applied to improve the structure of code 

[7]. Refactoring increases the code 

readability and maintainability. 

Refactoring applied at any level depends 

on the type of design defect found in the 
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system and has a direct influence on the 

software maintenance cost [10]. 

 The process of refactoring is applied in 

three different stages which are 

identification of problematic area, choice 

of appropriate refactoring technique and 

application of refactoring techniques. The 

object-oriented software metrics were 

investigated and the most suitable metrics 

is evaluated. The metrics were selected on 

the basis of their ability to predict different 

aspects of object-oriented design. Then, 

tool was used to measure the metric 

quality. An adequate result means the code 

base must consist of both well and badly 

designed systems [2]. The logistic 

regression is used to investigate the 

threshold effects of the CK metrics suite, 

and then validate the thresholds to identify 

faulty classes. This model is used to find 

the threshold effects in Eclipse 2.0. [9]. In 

this research, the aim is to find the 

threshold values of object oriented metrics 

based on the bad smell. Then the 

validation of these metrics threshold 

values will be done. Only the significantly 

associated metrics were considered for 

finding the threshold values. The need is to 

find the threshold values of metrics using 

bad smell successfully and then validate 

this threshold values will be done. 

 

2. LITERATURE REVIEW 

 
In this section, we review the previous 

works that are related to the validation and 

threshold effects of Object-Oriented 

metrics. Shatnawi R[13 ]. In this paper, we 

use a statistical model, derived from the 

logistic regression, to identify threshold 

values for the Chidamber and Kemerer 

(CK) metrics. The methodology is 

validated empirically on a large open-

source system—the Eclipse project. The 

empirical results indicate that the CK 

metrics have threshold effects at various 

risk levels and validated the use of these 

thresholds on the next release of the 

Eclipse project—Version 2.1—using 

decision trees. In addition, the selected 

threshold values were more accurate than 

those were selected based on either 

intuitive perspectives or on data 

distribution parameters. Shatnawi [9]. Bad 

smells are used as a means to identify 

problematic classes in object-oriented 

systems for refactoring. Although there is 

a plethora of empirical studies linking 

software metrics to errors and error 

proneness of classes in object-oriented 

systems, the link between the bad smells 

and class error probability in the evolution 

of object-oriented systems after the 

systems are released has not been 

explored. There has been no empirical 

evidence linking the bad smells with class 

error probability so far. This paper 

presents the results from an empirical 

study that investigated the relationship 

between the bad smells and class error 

probability in three error-severity levels in 

an industrial-strength open source system. 

The research, which was conducted in the 

context of the post-release system 

evolution process, showed that some bad 

smells were positively associated with the 

class error probability in the three error-

severity levels. This finding supports the 

use of bad smells as a systematic method 

to identify and refactor problematic classes 

in this specific context. Rosenberg[8] 

Object oriented technology uses objects 

and not algorithms as its fundamental 

building blocks, the approach to software 

metrics for object oriented programs must 

be different from the standard metrics set. 

Some metrics, such as lines of code and 

cyclomatic complexity, have become 

accepted as "standard" for traditional 

functional/ procedural programs, but for 

object oriented, there are many proposed 

object oriented metrics in the literature. 

The question is, "Which object oriented 

metrics should a project use, and can any 

of the traditional metrics be adapted to the 

object oriented environment?" Basili et 

al.[21]. This paper presents the results of a 

study in which we empirically investigated 

the suite of object-oriented (OO) design 

metrics introduced. More specifically, our 

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 3, March - 2013

ISSN: 2278-0181

2www.ijert.org

IJ
E
R
T

IJ
E
R
T



 

goal is to assess these metrics as predictors 

of fault-prone classes and, therefore, 

determine whether they can be used as 

early quality indicators. This study is 

complementary to the work described 

where the same suite of metrics had been 

used to assess frequencies of maintenance 

changes to classes. To perform our 

validation accurately, we collected data on 

the development of eight medium-sized 

information management systems based on 

identical requirements. All eight projects 

were developed using a sequential life 

cycle model, a well-known OO 

analysis/design method and the C++ 

programming language. Based on 

empirical and quantitative analysis, the 

advantages and drawbacks of these OO 

metrics are discussed. Several of 

Chidamber and Kemerer's OO metrics 

appear to be useful to predict class fault-

proneness during the early phases of the 

life-cycle. Also, on the data set, they are 

better predictors than "traditional" code 

metrics, which can only be collected at a 

later phase of the software development 

processes. Bender[16] In this paper a 

method for quantitative risk assessment in 

epidemiological studies investigating 

threshold effects is proposed. The simple 

logistic regression model is used to 

describe the association between a binary 

response variable and a continuous risk 

factor. By defining acceptable levels for 

the absolute risk and the risk gradient the 

corresponding benchmark values of the 

risk factor can be calculated by means of 

nonlinear functions of the logistic 

regression coefficients. Standard errors 

and confidence intervals of the benchmark 

values are derived by means of the 

multivariate delta method. The proposed 

approach is compared with the threshold 

model of ULM (1991) for assessing 

threshold values in epidemiological 

studies. Gyimothy et al. found significant 

association between some of the CK 

metrics  and the fault-proneness of classes, 

expect for the NOC metrics.[19] 

Rosenberg suggested a set of threshold 

values for the CK metrics that can be used 

to select classes for inspection or 

redesign[8]. Bender [16] pointed out that 

the estimated threshold values should only 

be considered suitable if the assumption of 

the regression model, (i.e., a constant risk 

below the threshold) is plausible. Bender 

redefined the threshold effects as an 

acceptable risk level. Thus far, there is no 

consensus on the threshold values for 

software metrics, and perhaps not even for 

what are the best methods to use in the 

search for the threshold effects. In this 

research we assess the use of a quantitative 

methodology that was proposed to find the 

threshold effects, which are redefined as 

the acceptable risk level. 

 

3. RESEARCH METHOD 
 

In this section, we introduce the research 

methodology in which first, to find the 

threshold values of object-oriented metrics 

based on the bad smell.Two version (1.0.0 

pre1 and 1.0.1) of jfreechart were taken for 

anaylsis. First, we collected the CK 

metrics and badsmell databases of these 

two versions of jfreechart from Analyst4j 

tool. .The objective is to use the logistic 

regression to investigate the threshold 

effects of the CK metrics. Only the 

significantly associated metrics were 

considered for finding the threshold values 

using bad smell at various risk level. 

 

3.1 Software Measurements 
 

We have selected the CK metrics as 

evidenced by previous empirical studies. 

The CK metrics are defined as follows:- 

Coupling between Object (CBO) metric 

counts the number of classes to which it is 

coupled Line of Code (LOC) is calculated 

as the sum of no. of fields, the no. of nodes 

and the no. of instructions in a given class. 

Response for Class (RFC) is the count of 

set of all the methods that can be invoked 

in response to a message to an object of a 

class. Weighted Method Complexity 

(WMC) metric is the sum of all the 
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complexities of all the methods in a class. 

Lack of cohesion of methods (LCOM) 

measure the dissimilarity of methods in a 

class.  Depth of inheritance (DIT) is the 

maximum no. of steps from the class node 

to the root of the tree. 

 

3.2 Bad Smell Measurements 

 
Identify bad smells in code helps to 

refactor the code. Refactoring of software 

code is a very tedious problem and 

applying it manually is yet more difficult. 

A number of surveys have been done for 

refactoring and maintainability. There is a 

need of external attributes to refactor the 

code for better understandability. Metrics 

provide solid information regarding object 

oriented properties. Research results show 

the relationship between structural 

attributes and external quality metrics. In 

this paper we find five different bad smell 

categories in which different bad smells 

are identified and refractor to ensure 

maintainability. Table1 shows the different 

bad smell categorizations which contain 

various bad smells in it.  

 

4. ANALYSIS METHODS 
 

The method that we use to perform this 

analysis is based upon the Logistic 

regression model. The logistic regression 

is used to validate the metrics and to 

calculate the threshold values. 

 

4.1 Univariate Binary Logistic Regression    

      Analysis 

 

In the Univariate Binary Logistic 

Regression(UBR) Analysis significant 

metrics for predicting bad smell were 

selected. Analysis was done at the 95 

percent confidence level (P-value < 0.05). 

In the Univariate Binary Logistic 

Regression (UBR) Analysis significant 

metrics for predicting bad smell were 

selected.    

 

Table 1. Bad Smell Categorization 

SNo

. 

Bad Smell 

Category 

Bad Smells 

1. Blob Class  Large Objects 

 Large Attributes 

 Long Methods 

 Large Class 

 Long Parameter 

List 

2. Undocumen

ted Code 
 No proper 

Documentation 

 Comments 

3. Using 

Inheritance 
 Parallel Inheritance 

Hierarchies 

 Feature Envy 

4.  Procedure 

oriented 

Design 

 Switch Statements 

 Alternative classes 

with different 

interfaces 

5.  Complex 

Class 
 Duplicate Code 

 Data Class 

 

Analysis was done at the 95 percent 

confidence level(P-value < 0.05).If the 

metrics has p-value greater than 0.05 then 

it is neglected, it means that we can’t 

calculate the threshold values for the next 

step. Table 2.  shows the significance 

levels(p-values) for the Univariate Logistic 

Regression for the CK metrics of two 

versions of jfreechart. 

 

Table 2. Univariate Binary  Regression 

Analysis 

 

Metrics 

jfreechart(1.0.0 

pre1) 

jfreechart(1.0.1) 

 

B p-

value 

B p-value 

LOC .009 .000 0.008 .000 

WMC .034 .000 0.46 .000 

RFC .025 .000 0.027 .000 

LCOM N/A N/A N/A N/A 

CBO .249 .000 0.207 .000 

DIT 1.128 .000 0.703 .000 
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It was notice from the UBR analysis that the 

LOC, WMC, RFC, CBO and DIT metrics are 

significant predictors of the bad smell between 

classes at the 95 % confidence level (P < 

0.05). That’s why, we calculate the threshold 

values only for these metrics. Analyst4j data 

set does not allow identifying the threshold 

values for it. 

 

4.2 Threshold Effects Analysis 

 

The threshold values are calculated with the 

help of Value of Acceptable Risk Level 

(VARL) using equation (1).Only above 

mention metrics are calculated with this 

formula. Table 3 shows the threshold values 

of selected metrics at different five risk levels 

(0.5, 0.55, 0.6, 0.65, 0.7) of two different 

versions of jfreechart. 

 

 

 VARL= p ֿ  ¹ ﴾po ﴿= 1/β ﴾ log (po/1-po) –α ﴿.                      

                                                 Equation (1)                             

 

 

 

Table 3. VARL Threshold Values 

 

 

Table 4. VARL Threshold Values 

The Threshold values of selected metrics 

are given with the VARL formula, in 

which α and β are the coefficient estimates 

and the probability po is suggested with 

different five risk levels i.e. ( po = 0.5 to po 

= 0.7). Table 3 and Table 4 represent the 

Threshold values with equation 1 based on 

bad smell at different five risk levels. 

Result shows some metrics have effective 

threshold values for the metrics. 

 

CONCLUSION AND FUTURE WORK 

 
Object-Oriented metrics are more 

beneficial for the software engineers. 

Threshold values also provide the meaning 

to the OO metrics and to identify the 

various classes at risk. In this work, we 

find the threshold values of Object-

Oriented metrics based on bad smell by 

using Logistic Regression model. It was 

concluded that these threshold values also  

 

 

 

 

 

 

 

 

METRIC β α 

VARL VARL VARL VARL VARL 

(po =0.50) (po =0.55) (po =0.60) (po =0.65) (po=0.70) 

LOC 0.009 -0.003 0 23 45 69 94 

WMC 0.034 0.246 -7 -1 5 11 18 

RFC 0.025 0.036 -1 7 15 23 32 

DIT 1.128 -0.696 1 1 1 1 1 

CBO 0.249 -0.733 3 4 5 5 6 

METRIC β α 

VARL VARL VARL VARL VARL 

(po =0.50) (po =0.55) (po =0.60) (po =0.65) (po=0.70) 

LOC 0.008 -0.025 3 28 54 81 109 

WMC 0.047 0.177 -4 1 5 9 14 

RFC 0.027 0.018 -1 7 14 22 31 

DIT 0.72 -0.153 0 0 1 1 1 

CBO 0.208 -0.669 3 4 5 6 7 
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helps to improve the software quality 

because classes having more than 

threshold values will increase the testing 

efficiency. We found that there are 

effective threshold values for the selected 

metrics. At different risk level, we found 

different effects for the given metrics.  
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