

A Quantitative Investigation Of Software Metrics Threshold

Values At Acceptable Risk Level

Sarabjit Kaur Satwinder Singh Harshpreet Kaur

Assistant Professor Assistant Professor, Assistant Professor,

Dept. of CSE Dept. of CSE, Dept. of CSE,

RIEIT, Railmajra. B.B.S.B.E.C, Fatehgarh Sahib RIEIT, Railmajra.

Abstract
 Object-Oriented metrics are more

beneficial for the software engineers.

Object-oriented design and development is

becoming very popular in software

development environment. Object oriented

development requires not only a different

approach to design and implementation, it

requires a different approach to software

metrics. In the current paper, we use

logistic regression to investigate the

threshold values against the bad smell for

the Chidamber and Kemerer(CK) metrics

at five different levels. Two versions of

jfreechart were used as a dataset to

validate the study. Only the significantly

associated metrics were considered for

finding the threshold values. The results

indicate that the CK metrics have threshold

effects at various risk levels and some

metrics have useful threshold value at

different levels to identify the bad smell.

Keywords
Object-oriented metrics, Threshold values,

Risk levels, open source software.

I. INTRODUCTION

Software quality has been a major

challenge in various software projects

since years. The quality of software can be

evaluated using different types of software

metrics. Although it has always been the

major concern in software development

but still lacks the outline of standards

which can measure it [4]. As quality is

effected by maintainability, in order to

achieve it one needs to know what

characteristics of a product actually affects

it. In their work, has emphasized the

factors that decrease maintenance effort.

These are use of structured techniques,

Use of modern software, Use of automated

tools, Use of data-base techniques, Good

data administration, and experienced

maintainers. Modification of a software

product after delivery to correct faults, to

improve performance or other attributes, or

to adapt the product to a modified

environment. Basically, this means that

any activity that modifies software product

after its release is software maintenance.

Adaptive maintenance is the modification

of a software product performed after

delivery to keep a computer program

usable in a changed or changing

environment. Corrective maintenance is

the reactive modification of a software

product performed after delivery to correct

discovered faults. Perfective maintenance

is the modification of a software product

after delivery to improve performance or

maintainability [11]. Fowler and Beck

have informally described bad smells in

code as bad or inconsistent parts of the

design of an Object-oriented System.

Flower has identified 22 code smells and

associated each of them with the

refactoring transformations that may be

applied to improve the structure of code

[7]. Refactoring increases the code

readability and maintainability.

Refactoring applied at any level depends

on the type of design defect found in the

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 3, March - 2013

ISSN: 2278-0181

1www.ijert.org

IJ
E
R
T

IJ
E
R
T

system and has a direct influence on the

software maintenance cost [10].

 The process of refactoring is applied in

three different stages which are

identification of problematic area, choice

of appropriate refactoring technique and

application of refactoring techniques. The

object-oriented software metrics were

investigated and the most suitable metrics

is evaluated. The metrics were selected on

the basis of their ability to predict different

aspects of object-oriented design. Then,

tool was used to measure the metric

quality. An adequate result means the code

base must consist of both well and badly

designed systems [2]. The logistic

regression is used to investigate the

threshold effects of the CK metrics suite,

and then validate the thresholds to identify

faulty classes. This model is used to find

the threshold effects in Eclipse 2.0. [9]. In

this research, the aim is to find the

threshold values of object oriented metrics

based on the bad smell. Then the

validation of these metrics threshold

values will be done. Only the significantly

associated metrics were considered for

finding the threshold values. The need is to

find the threshold values of metrics using

bad smell successfully and then validate

this threshold values will be done.

2. LITERATURE REVIEW

In this section, we review the previous

works that are related to the validation and

threshold effects of Object-Oriented

metrics. Shatnawi R[13]. In this paper, we

use a statistical model, derived from the

logistic regression, to identify threshold

values for the Chidamber and Kemerer

(CK) metrics. The methodology is

validated empirically on a large open-

source system—the Eclipse project. The

empirical results indicate that the CK

metrics have threshold effects at various

risk levels and validated the use of these

thresholds on the next release of the

Eclipse project—Version 2.1—using

decision trees. In addition, the selected

threshold values were more accurate than

those were selected based on either

intuitive perspectives or on data

distribution parameters. Shatnawi [9]. Bad

smells are used as a means to identify

problematic classes in object-oriented

systems for refactoring. Although there is

a plethora of empirical studies linking

software metrics to errors and error

proneness of classes in object-oriented

systems, the link between the bad smells

and class error probability in the evolution

of object-oriented systems after the

systems are released has not been

explored. There has been no empirical

evidence linking the bad smells with class

error probability so far. This paper

presents the results from an empirical

study that investigated the relationship

between the bad smells and class error

probability in three error-severity levels in

an industrial-strength open source system.

The research, which was conducted in the

context of the post-release system

evolution process, showed that some bad

smells were positively associated with the

class error probability in the three error-

severity levels. This finding supports the

use of bad smells as a systematic method

to identify and refactor problematic classes

in this specific context. Rosenberg[8]

Object oriented technology uses objects

and not algorithms as its fundamental

building blocks, the approach to software

metrics for object oriented programs must

be different from the standard metrics set.

Some metrics, such as lines of code and

cyclomatic complexity, have become

accepted as "standard" for traditional

functional/ procedural programs, but for

object oriented, there are many proposed

object oriented metrics in the literature.

The question is, "Which object oriented

metrics should a project use, and can any

of the traditional metrics be adapted to the

object oriented environment?" Basili et

al.[21]. This paper presents the results of a

study in which we empirically investigated

the suite of object-oriented (OO) design

metrics introduced. More specifically, our

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 3, March - 2013

ISSN: 2278-0181

2www.ijert.org

IJ
E
R
T

IJ
E
R
T

goal is to assess these metrics as predictors

of fault-prone classes and, therefore,

determine whether they can be used as

early quality indicators. This study is

complementary to the work described

where the same suite of metrics had been

used to assess frequencies of maintenance

changes to classes. To perform our

validation accurately, we collected data on

the development of eight medium-sized

information management systems based on

identical requirements. All eight projects

were developed using a sequential life

cycle model, a well-known OO

analysis/design method and the C++

programming language. Based on

empirical and quantitative analysis, the

advantages and drawbacks of these OO

metrics are discussed. Several of

Chidamber and Kemerer's OO metrics

appear to be useful to predict class fault-

proneness during the early phases of the

life-cycle. Also, on the data set, they are

better predictors than "traditional" code

metrics, which can only be collected at a

later phase of the software development

processes. Bender[16] In this paper a

method for quantitative risk assessment in

epidemiological studies investigating

threshold effects is proposed. The simple

logistic regression model is used to

describe the association between a binary

response variable and a continuous risk

factor. By defining acceptable levels for

the absolute risk and the risk gradient the

corresponding benchmark values of the

risk factor can be calculated by means of

nonlinear functions of the logistic

regression coefficients. Standard errors

and confidence intervals of the benchmark

values are derived by means of the

multivariate delta method. The proposed

approach is compared with the threshold

model of ULM (1991) for assessing

threshold values in epidemiological

studies. Gyimothy et al. found significant

association between some of the CK

metrics and the fault-proneness of classes,

expect for the NOC metrics.[19]

Rosenberg suggested a set of threshold

values for the CK metrics that can be used

to select classes for inspection or

redesign[8]. Bender [16] pointed out that

the estimated threshold values should only

be considered suitable if the assumption of

the regression model, (i.e., a constant risk

below the threshold) is plausible. Bender

redefined the threshold effects as an

acceptable risk level. Thus far, there is no

consensus on the threshold values for

software metrics, and perhaps not even for

what are the best methods to use in the

search for the threshold effects. In this

research we assess the use of a quantitative

methodology that was proposed to find the

threshold effects, which are redefined as

the acceptable risk level.

3. RESEARCH METHOD

In this section, we introduce the research

methodology in which first, to find the

threshold values of object-oriented metrics

based on the bad smell.Two version (1.0.0

pre1 and 1.0.1) of jfreechart were taken for

anaylsis. First, we collected the CK

metrics and badsmell databases of these

two versions of jfreechart from Analyst4j

tool. .The objective is to use the logistic

regression to investigate the threshold

effects of the CK metrics. Only the

significantly associated metrics were

considered for finding the threshold values

using bad smell at various risk level.

3.1 Software Measurements

We have selected the CK metrics as

evidenced by previous empirical studies.

The CK metrics are defined as follows:-

Coupling between Object (CBO) metric

counts the number of classes to which it is

coupled Line of Code (LOC) is calculated

as the sum of no. of fields, the no. of nodes

and the no. of instructions in a given class.

Response for Class (RFC) is the count of

set of all the methods that can be invoked

in response to a message to an object of a

class. Weighted Method Complexity

(WMC) metric is the sum of all the

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 3, March - 2013

ISSN: 2278-0181

3www.ijert.org

IJ
E
R
T

IJ
E
R
T

complexities of all the methods in a class.

Lack of cohesion of methods (LCOM)

measure the dissimilarity of methods in a

class. Depth of inheritance (DIT) is the

maximum no. of steps from the class node

to the root of the tree.

3.2 Bad Smell Measurements

Identify bad smells in code helps to

refactor the code. Refactoring of software

code is a very tedious problem and

applying it manually is yet more difficult.

A number of surveys have been done for

refactoring and maintainability. There is a

need of external attributes to refactor the

code for better understandability. Metrics

provide solid information regarding object

oriented properties. Research results show

the relationship between structural

attributes and external quality metrics. In

this paper we find five different bad smell

categories in which different bad smells

are identified and refractor to ensure

maintainability. Table1 shows the different

bad smell categorizations which contain

various bad smells in it.

4. ANALYSIS METHODS

The method that we use to perform this

analysis is based upon the Logistic

regression model. The logistic regression

is used to validate the metrics and to

calculate the threshold values.

4.1 Univariate Binary Logistic Regression

 Analysis

In the Univariate Binary Logistic

Regression(UBR) Analysis significant

metrics for predicting bad smell were

selected. Analysis was done at the 95

percent confidence level (P-value < 0.05).

In the Univariate Binary Logistic

Regression (UBR) Analysis significant

metrics for predicting bad smell were

selected.

Table 1. Bad Smell Categorization

SNo

.

Bad Smell

Category

Bad Smells

1. Blob Class  Large Objects

 Large Attributes

 Long Methods

 Large Class

 Long Parameter

List

2. Undocumen

ted Code
 No proper

Documentation

 Comments

3. Using

Inheritance
 Parallel Inheritance

Hierarchies

 Feature Envy

4. Procedure

oriented

Design

 Switch Statements

 Alternative classes

with different

interfaces

5. Complex

Class
 Duplicate Code

 Data Class

Analysis was done at the 95 percent

confidence level(P-value < 0.05).If the

metrics has p-value greater than 0.05 then

it is neglected, it means that we can’t

calculate the threshold values for the next

step. Table 2. shows the significance

levels(p-values) for the Univariate Logistic

Regression for the CK metrics of two

versions of jfreechart.

Table 2. Univariate Binary Regression

Analysis

Metrics

jfreechart(1.0.0

pre1)

jfreechart(1.0.1)

B p-

value

B p-value

LOC .009 .000 0.008 .000

WMC .034 .000 0.46 .000

RFC .025 .000 0.027 .000

LCOM N/A N/A N/A N/A

CBO .249 .000 0.207 .000

DIT 1.128 .000 0.703 .000

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 3, March - 2013

ISSN: 2278-0181

4www.ijert.org

IJ
E
R
T

IJ
E
R
T

It was notice from the UBR analysis that the

LOC, WMC, RFC, CBO and DIT metrics are

significant predictors of the bad smell between

classes at the 95 % confidence level (P <

0.05). That’s why, we calculate the threshold

values only for these metrics. Analyst4j data

set does not allow identifying the threshold

values for it.

4.2 Threshold Effects Analysis

The threshold values are calculated with the

help of Value of Acceptable Risk Level

(VARL) using equation (1).Only above

mention metrics are calculated with this

formula. Table 3 shows the threshold values

of selected metrics at different five risk levels

(0.5, 0.55, 0.6, 0.65, 0.7) of two different

versions of jfreechart.

 VARL= p ֿ ¹ ﴾po ﴿= 1/β ﴾ log (po/1-po) –α ﴿.

 Equation (1)

Table 3. VARL Threshold Values

Table 4. VARL Threshold Values

The Threshold values of selected metrics

are given with the VARL formula, in

which α and β are the coefficient estimates

and the probability po is suggested with

different five risk levels i.e. (po = 0.5 to po

= 0.7). Table 3 and Table 4 represent the

Threshold values with equation 1 based on

bad smell at different five risk levels.

Result shows some metrics have effective

threshold values for the metrics.

CONCLUSION AND FUTURE WORK

Object-Oriented metrics are more

beneficial for the software engineers.

Threshold values also provide the meaning

to the OO metrics and to identify the

various classes at risk. In this work, we

find the threshold values of Object-

Oriented metrics based on bad smell by

using Logistic Regression model. It was

concluded that these threshold values also

METRIC β α

VARL VARL VARL VARL VARL

(po =0.50) (po =0.55) (po =0.60) (po =0.65) (po=0.70)

LOC 0.009 -0.003 0 23 45 69 94

WMC 0.034 0.246 -7 -1 5 11 18

RFC 0.025 0.036 -1 7 15 23 32

DIT 1.128 -0.696 1 1 1 1 1

CBO 0.249 -0.733 3 4 5 5 6

METRIC β α

VARL VARL VARL VARL VARL

(po =0.50) (po =0.55) (po =0.60) (po =0.65) (po=0.70)

LOC 0.008 -0.025 3 28 54 81 109

WMC 0.047 0.177 -4 1 5 9 14

RFC 0.027 0.018 -1 7 14 22 31

DIT 0.72 -0.153 0 0 1 1 1

CBO 0.208 -0.669 3 4 5 6 7

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 3, March - 2013

ISSN: 2278-0181

5www.ijert.org

IJ
E
R
T

IJ
E
R
T

helps to improve the software quality

because classes having more than

threshold values will increase the testing

efficiency. We found that there are

effective threshold values for the selected

metrics. At different risk level, we found

different effects for the given metrics.

References

[1] F.B. Abreau and Melo, ―Evaluating the

impact of object oriented design on

software quality,‖ Proc. 3
rd

 International

Software metrics Symposium (Metrics96),

IEEE, Berlin, Germany, March 1996.

[2] A. Shaik, C.R.K. Reddy, and A.

Damodaram, ―Object Oriented Software

Metrics and Quality Assessment: Current

State of the Art,‖ International Journal of

Computer Applications, vol. 37, no.11,

Jan. 2012.

 [3] L.C. Briand, J. Wuest, J.W. Daly, and

D.V. Porter, ―Exploring the relationship

between design measures and software

quality in OO systems,‖ Journal of

Systems and Software, vol. 5(3), pp. 245-

273, 2000.

[4] D. Coleman, D. Ash, B. Lowther and

P.W. Oman, ―Using metrics to evaluate

software system maintainability,‖ IEEE

Computing Practices, vol. 27, pp. 44-49,

1994.

[5] E. Chandra and P. Edith Linda, ―Class

Break Point Determination Using CK

Metrics Thresholds,‖ Global Journal of

Computer Science and Technology, vol. 10

no. 14, pp. 74, November 2010.

[6]A. Rana, ―A Comprehensive

Assessment of Object-Oriented Software

Systems Using Metrics Approach,‖

International Journal on Computer

Science and Engineering, vol. 02, no. 08,

pp. 2726-2730, 2010.

[7] Fowler and Martin, Refactoring:

Improving the Design of Existing Code

Addison-Wisely, 2000.

[8] L.H. Rosenberg, ―Applying and

Interpreting Object Oriented Metrics

Applying and Interpreting Object Oriented

Metrics,‖ Proc. Software Technology

Conf., Apr.1998.

[9] R. Shatnawi, ―An empirical study of

the bad smells and class error probability

in the post-release object-oriented system

evolution,‖ Journal of Systems and

Software ,vol. 80 no. 7, pp.1120-1128,

2007.

[10] M. J. Munro, ―Product Metrics for

Automatic Identification of "Bad Smell"

Design Problems in Java Source-

Code, in 'METRICS '05,‖ Proceedings of

the 11th IEEE International Software

Metrics Symposium, 2005.

[11] M. Mantyala, ―Bad Smells in

Software- a Taxonomy and an empirical

Study,‖ PhD Thesis, Helsinki University of

Technology, 2003.

 [12] L. Briand, J. Daly, and J. Wust, ―A

Unified Framework for Coupling

Measurement in Object-Oriented

Systems,‖ IEEE Trans. Software Eng., vol.

25, no. 1, pp. 91-121, 1999.

[13] R. Shatnawi, ―A Quantitative

Investigation of the Acceptable Risk

Levels of Object-Oriented Metrics in

Open-Source Systems,‖ IEEE

Transactions Software Engineering, vol.

36, no. 2, pp. 216-225, 2010.

[14] S. Chidamber and C.F. Kemerer, ―A

Metrics Suite for Object- Oriented

Design,‖ IEEE Trans. Software Eng., vol.

20, no. 6, pp. 476- 493, 1994.

[15] K. Usha, N.Poonguzhali, and

E.Kavitha, “A Quantitative Model for

Improving the Effectiveness of the

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 3, March - 2013

ISSN: 2278-0181

6www.ijert.org

IJ
E
R
T

IJ
E
R
T

Software Development Process using

Refactoring‖, International Journal of

Recent Trends in Engineering, vol. 2, no.

2, November 2009.

[16] R. Bender, ―Quantitative Risk

Assessment in Epidemiological Studies

Investigating Threshold Effects,‖

Biometrical Journal, vol. 41, no. 3, pp.

305-319, 1999.

[17] S. Olbrich, S. Daniela Cruzes, V.

Basili, and N. Zazworka, ―The Evolution

and Impact of Code Smells: A Case Study

of Two Open Source Systems,‖ Third

International Symposium on Empirical

Software Engineering and Measurement,

978 pp. 4244-4841, 2009.

[18] S. Bryton, F. Brito e Abreu, and M,

Monteiro, ―Reducing Subjectivity in Code

Smells Detection: Experimenting with the

Long Method,‖ IEEE Seventh

International Conference on the Quality of

Information and Communications

Technology , 2010.

[19] T. Gyimothy, R. Ferenc, and I. Siket,

―Empirical Validation of Object-Oriented

Metrics on Open Source Software for Fault

Prediction,‖ IEEE Transactions On

Software Engineering, vol. 31, no. 10,

October 2005.

[20] T. Khoshgoftaar and N. Seliya,

―Comparative Assessment of Software

Quality Classification Techniques: An

Empirical Case Study,‖ Empirical

Software Eng., vol. 9, no. 3, pp. 229-257,

2004

[21] V. Basili, L. Briand, and W. Melo, ―A

Validation of Object- Oriented Design

Metrics as Quality Indicators,‖ IEEE

Trans. Software Eng., vol. 22, no. 10, pp.

751-761, Oct. 1996.

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 3, March - 2013

ISSN: 2278-0181

7www.ijert.org

IJ
E
R
T

IJ
E
R
T

